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Abstract
Background  Male patients with papillary thyroid carcinoma (PTC) tend to have poorer prognosis compared to 
females, partially attributable to a higher rate of lymph node metastasis (LNM). Developing a precise predictive model 
for LNM occurrence in male PTC patients is imperative. While preliminary predictive models exist, there is room to 
improve accuracy. Further research is needed to create optimized prognostic models specific to LNM prediction in 
male PTC cases.

Methods  We conducted a comprehensive search of publicly available microarray datasets to identify candidate 
genes continuously upregulated or downregulated during PTC progression in male patients only. Univariate Cox 
analysis and lasso regression were utilized to construct an 11-gene signature predictive of LNM. TIPARP emerged as 
a key candidate gene, which we validated at the protein level using immunohistochemical staining. A prognostic 
nomogram incorporating the signature and clinical factors was developed based on the TCGA cohort.

Results  The 11-gene signature demonstrated good discriminative performance for LNM prediction in training and 
validation datasets. High TIPARP expression associated with advanced stage, high T stage, and presence of LNM. A 
prognostic nomogram integrating the signature and clinical variables reliably stratified male PTC patients into high 
and low recurrence risk groups.

Conclusions  We identified a robust 11-gene signature and prognostic nomogram for predicting LNM occurrence 
in male PTC patients. We propose TIPARP as a potential contributor to inferior outcomes in males, warranting further 
exploration as a prognostic biomarker and immunotherapeutic target. Our study provides insights into the molecular 
basis for gender disparities in PTC.
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Background
Thyroid cancer, with rising incidence globally, is the 
most prevalent malignancy of the endocrine system 
[1]. In China, thyroid cancer ranked as the seventh 
most common cancer in 2020, with 221,000 new cases 
as per the Global Cancer Statistics report [2]. Differ-
entiated thyroid cancers (DTC) comprise over 95% of 
thyroid carcinomas, with papillary thyroid carcinoma 
(PTC) being the predominant histological subtype [3]. 
Currently, surgery is the primary treatment for PTC, 
either total or near-total thyroidectomy, or unilateral 
lobectomy with isthmectomy, based on tumor extent, 
patient age and comorbidities [4].

Despite an overall favorable prognosis, PTC pres-
ents risks such as lymph node metastasis (LNM) that 
impair quality of life and prognosis [5]. Conventional 
diagnostic approaches for LNM like clinical exam, 
ultrasound, and CT have limited accuracy, necessitat-
ing invasive fine needle aspiration (FNA) confirmation 
[6]. However, FNA has high technical demands and 
sample quality requirements. Additionally, consensus 
is lacking on prophylactic lymph node dissection dur-
ing surgery, especially for preoperative lymph node-
negative patients. Numerous studies demonstrate 
increased risks of recurrent laryngeal nerve/parathy-
roid damage, sometimes permanent hypocalcemia and 
vocal cord paralysis, with lymph node clearance [7]. 
Thus, preoperative LNM risk assessment is critical for 
guiding surgical protocols and prognosis in PTC. With 
advancing medical technology, several studies show 
combining FNA and genetic testing can effectively 
improve diagnostic accuracy [8].

There is a pronounced gender disparity in thyroid 
cancer incidence, with significantly higher rates in 
females versus males [9]. However, recent evidence 
indicates male thyroid cancer patients experience 
greater invasiveness and poorer prognosis [10], though 
the mechanisms underlying this difference remain 
unclear [11]. A Chinese retrospective study identified 
male sex as an independent risk factor for central cer-
vical lymph node metastasis in papillary thyroid car-
cinoma [12]. Large cohort studies also associate male 
gender with higher rates of revision neck surgery for 
differentiated thyroid cancers [13]. Extensive research 
has focused on elucidating the heightened female pap-
illary thyroid cancer (PTC) incidence, yet few stud-
ies have delineated the inferior male prognosis [14]. 
One study by Wang et al. leveraged bioinformatics to 
uncover significant expression differences between 
male and female PTC patients. Additionally, some dif-
ferentially expressed viral response genes also demon-
strated gender-specific prognostic value in PTC [15].

In this study, we integrated seven GEO datas-
ets and the TCGA-THCA cohort to identify reliable 

differentially expressed genes (DEGs) specific to male 
PTC patients, termed msDEGs. Furthermore, we per-
formed univariate Cox regression and lasso logistic 
regression analysis to pinpoint msDEGs associated 
with LNM in PTC. Utilizing gene expression and clini-
cal data from TCGA-THCA, we then developed a gene 
signature-based predictive model for LNM. We also 
established TIPARP as a candidate LNM-related gene, 
validated by immunohistochemistry. Additional gene 
set enrichment analysis (GSEA) elucidated biologi-
cal functions and pathways linked to TIPARP. Finally, 
we assessed correlations between TIPARP expression, 
immune infiltration, and the tumor microenvironment.

Method
Data collection
We systematically searched the Gene Expression 
Omnibus (GEO) database (http://www.ncbi.nlm.nih.
gov/geo/) from inception to September 1, 2022 to 
identify relevant gene expression profiles. Datasets 
were included if they met the following criteria:

1.	 Contained data for both normal thyroid and tumor 
samples.

2.	 Included both female and male samples.
3.	 Used Affymetrix gene chips for detection.
4.	 Had sample sizes greater than 10.

Based on these criteria, we screened and selected 
seven GEO datasets: GSE3467, GSE3678, GSE6004, 
GSE29265, GSE33630, GSE53157, and GSE60542. 
Additionally, an RNA-sequencing dataset from The 
Cancer Genome Atlas (TCGA) (https://cancergenome.
nih.gov/) was chosen as an independent validation 
cohort [16].

Data processing
The gene expression profiles from GEO datasets were 
downloaded and normalized using R software (version 
4.2.1). Clinical data and survival information for the 
TCGA-THCA cohort were obtained from UCSC Xena 
(https://xena.ucsc.edu; University of California, Santa 
Cruz). The clinical data included age at diagnosis, sex, 
number of examined lymph nodes, tumor focus, thy-
roid tumor location, pathologic TNM staging (AJCC 
7th edition), and progression-free interval (PFI) [17]. 
Probe IDs were matched to gene symbols using GEO 
platform annotations (ftp://ftp.ncbi.nlm.nih.gov/geo/
platforms). For probes mapping to the same gene, 
expression values were averaged. For samples with 
missing gender information, the massiR Bioconductor 
package was utilized to predict sex based on unsuper-
vised clustering of Y chromosome probe signals [15].

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://xena.ucsc.edu
ftp://ftp.ncbi.nlm.nih.gov/geo/platforms
ftp://ftp.ncbi.nlm.nih.gov/geo/platforms
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Differentially expressed genes (DEGs) screening and 
funtional annotation
The R package “limma” was utilized to identify differ-
entially expressed mRNAs between normal and PTC 
samples in females and males separately. Cutoffs of false 
discovery rate (FDR) < 0.05 and |log2Fold change| >1 
were applied. Genes significantly differentially expressed 
between PTC and normal tissues exclusively in males 
were selected as male-specific DEGs (msDEGs). Results 
from the 7 GEO datasets were merged and intersected 
with msDEGs from TCGA-THCA to determine common 
msDEGs.

The Bioconductor package “clusterProfiler” annotated 
msDEG biological functions via gene ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis, exploring the terms biolog-
ical process (BP), cellular component (CC), and molecu-
lar function (MF) [18]. An FDR < 0.05 was considered 
significant [18].

Signature construction and validation
Following differential expression analysis, univariate 
logistic regression screened for genes significantly asso-
ciated with LNM (P < 0.05). The 124 male PTC cases 
from TCGA-THCA were then randomly partitioned 
into training (70%) and testing (30%) sets. Least absolute 
shrinkage and selection operator (LASSO) regression 
selected crucial LNM-related genes and coefficients from 
the msDEGs [19], while optimal λ was choosen using 
cross-validation by minimum(lambda.min) and 1-SE- 
criteria (lambda.1se). A novel gene signature was derived 
via multivariate logistic regression, with risk scores cal-
culated using the gene coefficients in R package “rms”.

Signature predictive performance was evaluated by 
area under the receiver operating characteristic curve 
(AUC) in the training, testing, and additional validation 
set (GSE60542). Calibration curves assessed prediction 
accuracy.

Comprehensive analysis of the model
We analyzed correlations between the gene signature 
and clinical parameters including age, gender, BRAF/
RAS mutation status, TNM stage, extrathyroidal exten-
sion, residual tumor, and primary tumor foci in the 
TCGA-THCA cohort [20]. Patients were classified as low 
or high recurrence risk via optimum risk score cutoffs 
from R package “qROC”. Single sample gene set enrich-
ment analysis (ssGSEA) with R package “gsva” calculated 
immune cell type and pathway infiltration scores [21]. 
Gene set enrichment analysis (GSEA) was then per-
formed between high and low risk groups using GSEA 
v4.1 software against the KEGG reference gene sets [22]. 
Significantly enriched pathways were defined as nominal 
p-value < 0.05 and FDR < 0.05.

Building and validation of a predictive nomogram
To identify potential clinical and genomic indicators of 
lymph node metastasis (LNM) in papillary thyroid car-
cinoma (PTC), multivariate logistic regression was per-
formed incorporating clinical variables and the gene 
signature-derived risk score using R package “Stats”. A 
nomogram to predict LNM probability was constructed 
using R package “rms” (v6.1-0) [23]. Calibration curves 
were plotted to assess nomogram prediction perfor-
mance. The Hosmer-Lemeshow goodness-of-fit test (R 
package “ResourceSelection”) evaluated calibration and 
prediction accuracy.

IHC staining and evaluation
We also examined TIPARP protein levels through 
immunohistochemistry (IHC) in 40 paired papillary 
thyroid carcinoma (PTC) and normal thyroid tissues 
from Zhujiang Hospital collected from February 2021 
to March 2023 after ethical approval and informed 
consent.

Eighty human thyroid normal and tumor tissues 
were fixed in 4% formaldehyde and embedded in par-
affin. Paraffin-embedded samples were cut into 6  μm 
thick sections, and then they were placed in xylene 
and ethanol solution for deparaffinating and rehydra-
tion in PBS. 3% hydrogen peroxide solution were used 
to block endogenous peroxidase activity and nonspe-
cific sites after samples were placed in the EnVisionTM 
FLEX Target Retrieval Solution, High pH(50×) for 
antigen retrieval [24].

Sections were stained with rabbit antibodies against 
TIPARP (Abcam, AB84664, 1:500), for incubating 
at 4  °C overnight, and then incubation in the second 
antibody was carried out at room temperature for 2 h. 
DAB solution was used to develop and hematoxylin 
was re-stained.

Results were visualized and recorded with the help of 
digital pathology section scanner(d.metrix DMS-10-
Pro). Ten pictures of thyroid normal or tumor tissues 
foci were randomly taken for each slide and images 
were analyzed using digital image analyzing software 
(ImageJ, U.S. National Institute of Health, Bethesda, 
Maryland, USA, https://imagej.net) [25], and the mean 
option density was calculated in the manner of inte-
grated option density (IOD) [26].

Immune microenvironment and gene set enrichment 
analysis
To assess lymph node metastasis (LNM) risk stratifi-
cation by TIPARP, papillary thyroid carcinoma (PTC) 
cases were classified as “low risk” or “high risk” based 
on median TIPARP expression. Single sample gene set 
enrichment analysis (ssGSEA) with R package gsva 

https://imagej.net
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then calculated infiltration scores for 16 immune cell 
types and 13 immune-related pathways [21, 27].

Additionally, gene set enrichment analysis (GSEA) 
was performed between high and low TIPARP expres-
sion groups using GSEA v4.1 against the KEGG refer-
ence gene sets [28]. Significantly enriched pathways 
were defined as nominal p-value < 0.05 and false dis-
covery rate (FDR) < 0.05 [29].

Single-cell data analysis
We searched the GEO database for single-cell RNA-
sequencing datasets from male papillary thyroid 
carcinoma (PTC) patients with lymph node metas-
tasis (LNM) and obtained raw data for GSE193581, 
GSE163203, and GSE191288 [30–32]. The R package 
harmony was used to integrate the data from each 
sample. After dimensionality reduction, clustering, 
and cell type annotation with “SingleR” and Cell-
Marker2.0 database(http://bio-bigdata.hrbmu.edu.cn/
CellMarker/) [33], we assigned each cell population to 
specific cell types. Violin plots generated with “Seurat” 
visualized gene expression across annotated cell types 
[34, 35].

Chemotherapy and immunotherapy sensitivity analysis
To investigate TIPARP-associated drug sensitivity in 
male papillary thyroid carcinoma (PTC), we obtained 
NCI-60 cell line drug activity and RNA-seq data from 
CellMiner (https://discover.nci.nih.gov/cellminer) 
[36]. Pearson correlation analysis examined sensitivity 
for FDA-approved or clinical trial drugs [37].

We also calculated tumor mutational burden (TMB) 
in TCGA-THCA using TCGAbiolinks and corre-
lated it with TIPARP expression [38]. The Estimation 
of System Immune Response (EaSIeR) method pre-
dicted immunotherapy response based on the tumor 
microenvironment to assess associations with TIPARP 
expression [38, 39].

Statistical analysis
All statistical analyses were performed in R v4.2.1 
(https://www.r-project.org/). Differentially expressed 
genes (DEGs) were identified using the limma pack-
age (v3.6). LASSO regression selected candidate genes 
predicting lymph node metastasis (LNM). After devel-
oping the gene signature model, multivariate logis-
tic regression assessed the value of the risk score and 
clinical variables for predicting LNM. Receiver operat-
ing characteristic (ROC) curves were generated with 
pROC (v1.17.0.1) to evaluate model accuracy, with the 
optimum sensitivity + specificity threshold identified. 
Comparisons between two and among three or more 
groups were conducted using the two-tailed Student’s 
t-test. P < 0.05 was considered statistically significant.

Result
1.356 male specific differentially expressed genes
We analyzed 7 GEO datasets and TCGA-THCA, using 
GSE60542 for validation. Of 7 datasets, 245 samples 
lacked sex annotation and were predicted (massiR pack-
age), giving 365 female and 159 male samples (Sup-
plementary Table 1). A stepwise approach identified 
male-specific differentially expressed genes (msDEGs) 
associated with lymph node metastasis (LNM) in papil-
lary thyroid carcinoma (PTC).

In the 7 GEO datasets, 1860 msDEGs were found 
between male tumor and normal tissue. TCGA-THCA 
yielded 2890 msDEGs from 5856 DEGs in male and 3342 
in female (Fig.  1a,b). By intersecting GEO and TCGA 
results, 383 total msDEGs (213 upregulated, 143 down-
regulated) remained (Fig. 1c,d). GO and KEGG pathway 
enrichment analysis annotated the 383 msDEGs (Fig. 1e-
f ). Top GO terms included immune receptor activity, 
MHC protein binding, leukocyte proliferation and migra-
tion. Key enriched pathways were PI3K-Akt signaling, 
microRNAs in cancer, and proteoglycans in cancer.

Construction of the predictive model
Using Univariate logistic regressionthe, 209 of 383 
msDEGs are closely related to lymph node metasta-
sis (LNM)(p < 0.05). The dataset with survival data was 
randomly split into training (70%) and test (30%) sets. 
msDEGs associated with LNM underwent LASSO 
regression to reduce overfitting and feature dimensions 
(Fig.  2a,b). By preferring to lambda.1se considering the 
best AUC values in lasso model, we developed an 11-gene 
signature model to predict LNM in male PTC (Fig.  2c). 
Risk scores were calculated based on the signature.

Receiver operating characteristic (ROC) curves 
assessed signature performance in predicting LNM. Area 
under the curve (AUC) was 0.864, 0.847 and 0.855 for 
training, test and combined sets, respectively (Fig.  2E-
G). Performance was verified in the validation set (AUC 
0.812).

Comprehensive analysis of the 11 gene model
Analyzing signature correlations with clinical variables 
showed lower risk scores in patients without extrathyroi-
dal invasion versus those with invasion (p < 0.001). Scores 
were similar across groups stratified by age (p = 0.116), 
BRAF mutation (p = 0.276), and RAS mutation (p = 0.656).

Gene set enrichment analysis (GSEA) of 124 TCGA-
THCA male cases revealed altered pathways in the 
high-risk group. Enrichment of p53 signaling (NES 1.90, 
p < 0.001) and JAK-STAT signaling (NES 1.81, p = 0.008) 
suggests aggressive behavior (Fig.  3a, Additional file 1). 
This implicates potential mechanisms for the 11-gene 
signature in male PTC.

http://bio-bigdata.hrbmu.edu.cn/CellMarker/
http://bio-bigdata.hrbmu.edu.cn/CellMarker/
https://discover.nci.nih.gov/cellminer
https://www.r-project.org/
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Fig. 1  Identification of the msDEGs in TC and data integration. (a) Volcano plot of DEGs in male in THCA, (b) Volcano plot of DEGs in female in THCA, (c) 
Venn plots of overlapping upregulated msDEGs, (d) Venn plots of overlapping downregulated msDEGs, (e) Bubble charts of the enriched KEGG pathways. 
(f) Bar plot of the enriched GO terms
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Fig. 2  Establishment of a 11-gene model for predicting the LNM of male PTC patients. (a) LASSO coefficient profiles of the 209 msDEGs. (b) Selection of 
the optimal λ-value through the cross-validation. The best values by minimum(lambda.min, right vertical dotted line) and 1-SE- criteria (lambda.1se, left 
vertical dotted line) representing the dotted vertical lines. (c) the forest plot showing the results of the univariate Logistic regression analyses. (e~g) The 
ROC of the training group (AUC = 0.864); The ROC of the testing group (AUC = 0.847); The ROC of the validation group (AUC = 0.812).
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Fig. 3  Exploration of the 11-gene model. (a) GSEA revealed the signaling pathways enriched in the high-risk group. (b) Comparison of the ssGSEA score 
of signatures in the high- and low-risk score patients in TCGA cohorts. (c) nomogram used for prediction of LNM in male PTC patients. (d) The ROC of the 
TIPARP (AUC = 0.692)
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Divergence between risk groups likely stems from 
tumor microenvironment (TME) intricacies. Single sam-
ple GSEA (ssGSEA) examined infiltration of 28 immune 
cell types in TCGA thyroid carcinomas. The high-risk 
group showed significantly higher immune infiltration, 
indicated by elevated immune cell activation (Fig. 3b).

Nomogram
To enable clinical application, a nomogram integrat-
ing the 11-gene signature and clinical-pathological risk 
factors (gender, age, stage, T, N, M) predictive of lymph 
node metastasis (LNM) by univariate logistic regression 
was developed.

Nomogram predictive performance was evaluated 
through 1000 bootstrap resampled calibration curves, 
showing good agreement between predicted and 
observed LNM. The Hosmer-Lemeshow test indicated 
good calibration (p = 0.319). The nomogram c-index 
was 0.786. Risk scores were calculated per sample and 
receiver operating characteristic (ROC) curves generated 
(Fig. 3c).

Analysis and validation of TIPARP expression in PTC 
patients
Gene function analysis revealed TIPARP’s links to gender 
differences, androgen and estrogen activity. TCGA data 
analyzed through XENA tools showed TIPARP mRNA 
was upregulated in male papillary thyroid carcinoma 
(PTC) with lymph node metastasis (LNM) versus with-
out (AUC 0.692), indicating potential as a diagnostic bio-
marker (Fig. 3D). High TIPARP associated with male sex, 
advanced stage, high T stage, and more LNM.

Immunohistochemistry verified increased TIPARP 
protein expression in human PTC versus adjacent nor-
mal tissue, especially in males (Fig.  4A-C, E). Notably, 
TIPARP expression was substantially elevated in male 
PTC patients with LNM compared to those without 
(Fig. 4F).

Correlation of TIPARP expression with tumor immune 
microenvironment
Emerging research underscores the pivotal role of the 
tumor microenvironment in immunotherapy response. 
The tumor microenvironment also impacts tumor migra-
tion. To further understand links between TIPARP 
expression and immune activity, we calculated enrich-
ment scores for immune cell subsets and immune-related 
functions/pathways by ssGSEA algorithm.

Intriguingly, the high TIPARP expression group 
showed positive correlations with immune cell infiltra-
tion. The ssGSEA results further confirmed the signa-
ture’s reflection of tumor immune microenvironment 
status (Fig. 5A).

Biological function of TIPARP in male PTC
To identify pathways potentially regulated by TIPARP, 
we performed gene set enrichment analysis (GSEA) 
comparing tissues with high versus low TIPARP expres-
sion. Using thresholds of normalized enrichment score 
(NES) > 0 and nominal p-value < 0.05, enriched pathways 
were identified.

High TIPARP expression associated with cell cycle, 
TGF-beta signaling, ErbB signaling, RIG-I-like receptor 
signaling, and p53 signaling (Fig. 5B, Additional file 2).

Single-cell data analysis
We obtained raw single-cell RNA-seq data for 7 male 
papillary thyroid carcinoma samples with lymph node 
metastasis from GEO datasets GSE193581, GSE163203, 
and GSE191288. After series clustering and dimen-
sionality reduction, 22 total cell clusters were identified 
(Fig.  6A). Using SingleR and CellMarker2.0 database, 
clusters were annotated to various cell types (Fig. 6B).

In the merged data from 7 GSM in GEO dataset, 
TIPARP was expressed across multiple annotated 
immune and epithelial cell populations (Fig. 6C), partially 
validating associations between TIPARP and immune 
activity in male PTC.

Drug sensitivity analysis
We analyzed correlations between TIPARP expres-
sion and drug sensitivity using the CellMiner data-
base. TIPARP expression positively correlated with 
CH-7,057,288, CEP-40,783, Fluvastatin, BMS-77,760, 
and AZD-1480 (Fig.  7A), but negatively correlated with 
AFP464 and Homoharringtonine (Fig. 7B).

The data suggest TIPARP may confer chemoresistance 
to agents like Fluvastatin, while reduce chemoresistance 
to antitumor drugs like Homoharringtonine, and we 
speculate that the influence of TIPARP on chemoresis-
tance might be linked to biosynthesis of DNA and RNA, 
and lipid metabolism.

Associations between TIPARP and the efficacy of 
immunotherapy
Tumor mutational burden (TMB) serves as a biomarker 
for immunotherapy response in some cancers, but 
TIPARP did not correlate with TMB (Fig.  7C). Using 
the R package EaSIeR, we objectively evaluated pre-
dicted immunotherapy response by integrating multiple 
immune proxies including cancer type, TMB, pathway 
activities, cell fractions, transcription factor activities, 
and intra/intercellular signaling.

Notably, high versus low-risk groups stratified by 
TIPARP expression showed significant differences in 
EaSIeR scores (Fig.  7D). TIPARP expression positively 
associated with EaSIeR scores (Fig. 7E).
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Fig. 4  Verification the expression of TIPARP. (a-b) Representative sections of PTC thyroid, normal tissues. The expression of TIPARP was detected by using 
immunohistochemistry (IHC). (c) compare of TIPARP in different tumor group. (*P < 0.05; **P < 0.01, ***P < 0.001) (ML: Male lymph node metastasis group; 
MN: Male non-lymph node metastasis group; FL: Female lymph node metastasis group; FN: Female non-lymph node metastasis group)
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Discussion
Papillary thyroid carcinoma (PTC) demonstrates dis-
tinct gender differences, with higher incidence in females 
but poorer outcomes in males. The reasons underlying 
this disparity remain unclear. Lymph node metastasis 
(LNM), a major manifestation of PTC progression, also 
shows higher rates in males. The lack of definitive LNM 
diagnosis poses challenges for surgical management. 
While numerous studies have examined LNM predic-
tion in general PTC populations, few have explored the 
mechanisms driving increased LNM in male PTC spe-
cifically. In this study, through comprehensive analysis of 
public PTC datasets, we identified a set of genes differ-
entially expressed only in males that associate with LNM 
occurrence.

Recent advances in bioinformatics have enabled discov-
ery of novel biomarkers for papillary thyroid carcinoma 
(PTC) through extensive genomic profiling. Our inte-
grated analysis of GEO and TCGA datasets identified 356 
robust differentially expressed genes (DEGs) implicated 
in PTC pathogenesis. KEGG pathway analysis revealed 
enrichment for tumorigenesis pathways.

Based on univariate and multivariate Cox regression, 
an 11-gene signature model stratified male PTC patients 
into high and low-risk groups for lymph node metastasis 
(LNM), with significant prognostic performance by ROC 
analysis. Compared to a previous 14-gene signature, 
our model demonstrated improved predictive accuracy 
(c-index 0.855 vs. 0.806), highlighting utility as a reliable 
LNM predictor in male PTC.

Fig. 5  ssGSEA and GSEA scores between the different TIPARP expression groups. (a) Comparison of the ssGSEA score of signatures in the high- and low- 
TIPARP expression patients in TCGA cohorts. (b) GSEA showed that high TIPARP expression was positively correlated with several immunity-related and 
cancerrelated pathways
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The signature also associated with important clini-
cal factors like extrathyroidal invasion and TNM stage. 
Tumor microenvironment analysis revealed greater 
immune cell infiltration in the high-risk group, including 
T cells, NK cells, macrophages, eosinophils, mast cells, 
MDSCs and dendritic cells.

GSEA showed enrichment for cell adhesion, NK cyto-
toxicity, JAK/STAT, apoptosis and p53 signaling in the 
high-risk group, linking the 11 genes to tumor progres-
sion. A prognostic nomogram integrating the signature 
and T stage was developed for individualized LNM risk 
estimation.

Fig. 6  single-cell analysis. (a) Scatter plot showed the result of the combination of 7 GSM. (b) Scatter plot showed the distributions of different cell types 
of the combined dataset. (c) Violin plots of TIPARP expression in various types of annotated cells in the combined datasets
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Functional analysis identified TIPARP as a key can-
didate gene warranting further exploration. TIPARP 
encodes a poly(ADP-ribose) polymerase regulating 
innate immunity and repressing type I interferon sig-
naling [40]. It also modulates stem cell pluripotency, 
autophagy and gene expression, with induction by 
growth factors, viral infection, nuclear receptors, hypoxia 
and aryl hydrocarbon receptor (AHR) [41]. Prior stud-
ies establish TIPARP as a negative regulator of AHR and 
IFN-I signaling [42, 43].

GO and KEGG enrichment linked TIPARP to cellular 
hormone metabolism including androgen and estrogen. 
Immunohistochemistry validated TIPARP protein upreg-
ulation in male versus para-carcinoma thyroid tissues.

Additional GSEA analysis revealed TIPARP’s poten-
tial impacts on apoptosis, JAK/STAT, p53, cell adhesion, 
MAPK, and immune cell migration pathways. Litera-
ture indicates TIPARP can suppress Warburg effect and 
tumorigenesis by inhibiting HIF-1 [44], exhibits tight reg-
ulation by AR signaling in prostate cancer [45, 46], and 
correlates with antitumor immunity .

Fig. 7  Drug and immunotherapy response analysis. (a-b) The correlation between drug sensitivity and TIPARP in Cellminer database. (c) Correlation of 
the TIPARP expression with tumor mutation burden (TMB) level in the TCGA cohort. (d) Correlations of the easier score with TIPARP expression. (e) Scatter 
plot of TIPARP vs. easier score
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Single-cell RNA sequencing of 7 male lymph node 
metastatic PTCs showed TIPARP upregulation primarily 
in malignant, T cell and cholangiocyte populations [47]. 
This implicates TIPARP’s involvement in PTC progres-
sion through interactions with these cell types, warrant-
ing further exploration through functional experiments.

Radioactive iodine is first-line for metastatic papillary 
thyroid cancer, but 60% develop resistance necessitating 
new strategies [48]. In some models, TIPARP inhibitors 
show persistent tumor growth suppression, potent antip-
roliferative effects, and restored interferon signaling [49]. 
Our CellMiner analysis revealed correlations between 
TIPARP and drug sensitivities like Homoharringtonine 
and Fluvastatin.

Immunotherapy also shows promise for advanced 
thyroid cancers, underscoring the need for response 
biomarkers [50]. Emerging evidence proposes TIPARP 
activation as an anti-cancer approach, with its inhibition 
stimulating cancer cell and immune effects via enhanced 
IFN signaling [51]. Using the EaSIeR package accounting 
for intrinsic/extrinsic immune escape, high-risk patients 
stratified by TIPARP had significantly higher predicted 
immunotherapy efficacy scores versus low-risk.

Conclusions
In summary, we developed and validated a prognostic 
11-gene signature and diagnostic nomogram to reliably 
predict lymph node metastasis in male papillary thy-
roid carcinoma patients. Through integrated bioinfor-
matic analysis and experimental validation, we identified 
TIPARP as a candidate contributor to the more aggres-
sive phenotype in males. TIPARP’s associations with 
immune activity revealed by ssGSEA and single-cell anal-
ysis provide clues to understanding mechanisms underly-
ing this disparity.

Our study lays the groundwork for elucidating biologi-
cal drivers of inferior outcomes in male PTC patients. 
The gene signature and nomogram may enable better 
risk stratification to guide surgical management. TIPARP 
warrants further exploration as both a prognostic bio-
marker and potential immunotherapeutic target for this 
understudied subgroup.

Overall, our findings offer insights into the molecular 
underpinnings of gender disparities in PTC. With further 
research, this approach may inform more personalized 
prognostic and therapeutic strategies to improve out-
comes for male patients.

Figure titles and legends.
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