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Disulfidptosis‑related signature predicts 
prognosis and characterizes the immune 
microenvironment in hepatocellular carcinoma
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Abstract 

Background  Disulfidptosis is a type of programmed cell death caused by excessive cysteine-induced disulfide bond 
denaturation leading to actin collapse. Liver cancer has a poor prognosis and requires more effective intervention 
strategies. Currently, the prognostic and therapeutic value of disulfidptosis in liver cancer is not clear.

Methods  We investigated the features of 16 disulfidptosis-related genes (DRGs) of HCC patients in the TCGA 
and classified the patients into two disulfidptosis pattern clusters by consensus clustering analysis. Then, we con-
structed a prognostic model using LASSO Cox regression. Next, the microenvironment and drug sensitivity were 
evaluated. Finally, we used qPCR and functional analysis to verify the reliability of hub DRGs.

Results  Most of the DRGs showed significantly higher expression in cancer tissues than in adjacent tissues. Our 
prognostic model, the DRG score, can well predict the survival of HCC patients. There were significant differences 
in survival, features of the microenvironment, effects of immunotherapy, and drug sensitivity between the high- 
and low-DRG score groups. Ultimately, we demonstrated that a few hub DRGs have differential mRNA expression 
between liver cancer cells and normal cells and that the protective gene LCAT can inhibit liver cancer metastasis 
in vitro.

Conclusion  We established a novel risk model based on DRG scores to predict HCC patient prognosis, drug sensitiv-
ity and immunotherapy efficacy, which provides new insight into the relationship between disulfidptosis and HCC 
and provides valuable assistance for the personalized treatment of HCC.
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Introduction
Worldwide, hepatocellular carcinomas account for 
80–90% of liver cancer cases, making it one of the most 
lethal tumors. The factors of liver cancer include afla-
toxin, viral infections (HBV and HCV), metabolic 
alteration (alcoholic steatohepatitis, nonalcoholic stea-
tohepatitis), obesity, smoking, etc. [1, 2]. Currently, the 
majority of patients with liver cancer receive their diag-
nosis at an advanced stage, and they typically have a dis-
mal prognosis. In actuality, few patients are eligible for 
surgical procedures, and prolonged chemotherapy use 
increases the risk of toxicity or drug resistance. In addi-
tion, only 20% of patients are candidates for treatment 
with immune checkpoint inhibitors (ICPs). Therefore, it 
is imperative and urgent to continue researching possible 
targets for the treatment of liver cancer treatment [3, 4].

Disulfidptosis is a recently discovered form of 
cell death. It occurs in cells with high expression of 
SLC7A11, in which glucose depletion leads to a reduc-
tion in intracellular NADPH production. This results in 
the accumulation of cysteine, which causes abnormal 
accumulation of disulfides and ultimately leading to cell 
death through targeting of the actin cytoskeleton [5, 6]. 
Importantly, GLUT inhibitors can induce disulfidpto-
sis in SLC7A11high tumor cells, inhibiting tumor growth 
both in vitro and in vivo. The mechanism of disulfidpto-
sis provides interesting potential targets for cancer treat-
ment. Furthermore, metastatic cancer cells have more 
lamellipodia and invasive protrusions, suggesting that 
they may be more sensitive to disulfidptosis [7]. Targeting 
metabolic reprogramming is one of the strategies in can-
cer treatment, and the study of disulfidptosis, as a novel 
form of metabolism-related cell death, offers new insights 
for cancer therapy and clinical translation [8, 9].

Glucose metabolism is important for tumor growth 
and progression, and glycogen accumulation is an impor-
tant event in inducing liver tumor initiation [10]. Fur-
thermore, prohibiting tumor malignancy and reducing 
the incidence of hepatic carcinoma by removing excess 
glycogen from the body is an efficient approach. Notably, 
disulfidptosis is a novel type of programmed cell death 
(PCD), which is caused by actin cytoskeleton network 
collapse due to bond abnormalities abnormality under 
glucose conditions. Thus, disulfidptosis may be strongly 
associated with the retardation of the malignant progres-
sion of liver cancer. However, the molecular mechanism 
by which disulfidptosis suppresses liver cancer is cur-
rently unclear.

In this study, we explored the expression profiles of 
16 DRGs and related features in HCC. A disulfidpto-
sis-related risk model based on DRG scores was estab-
lished to predict HCC patient features and prognosis. 
We also investigated the tumor microenvironment 

(TME) infiltration, drug sensitivity and immunotherapy 
response in different DRG score groups of HCC patients. 
Additionally, we revealed the role of LCAT induced 
disulfidptosis in the progression of liver cancer, provid-
ing new insight into liver cancer treatment via targeted 
disulfidptosis. The overall experimental design and major 
steps are could be shown in Fig. 1.

Materials and methods
Patient data source
The Log2 (RSEM + 1) normalized gene expression data, 
gene copy number variation data estimated using the 
GISTIC2 method, and corresponding clinical data of the 
TCGA-LIHC cohort were downloaded from UCSC Xena 
(https://​xenab​rowser.​net/). The testing cohort Interna-
tional Cancer Genome Consortium (ICGC-LIRI-JP) for 
liver cancer was downloaded from the ICGC Data Por-
tal (https://​dcc.​icgc.​org/). We further included patients 
with OS time greater than 0, complete survival status 
information, and comprehensive clinical and pathological 
data. Table 1 presents the age, sex, pathological stage, and 
survival information of the included patients. The copy 
number variation of genes was visualized by the “RCir-
cos” package.

Clustering analysis for disulfidptosis‑related genes
Sixteen disulfidptosis-related genes [including 4 con-
firmed suppressors of disulfidptosis (NCKAP1, RPN1, 
SLC3A2 and SLC7A11) and 12 potential synergistic of 
disulfidptosis (PPM1F, CNOT1, NDUFC1, NDUFA11, 
NDUFA10, LRPPRC, NUBPL, NDUFS2, GYS1, EPAS1, 
NDUFS1 and OXSM)] were obtained from the previ-
ous studies of Liu et al. in 2023 [5]. These DRGs can be 
seen in Additional file  2: Table  S1. We conducted the 
consensus clustering analysis using the ConsensusClus-
terPlus R package, (parameters of reps = 1000), to assess 
the disulfidptosis status and DRG cluster clusters of HCC 
patients in the TCGA-LIHC cohort. We select a suitable 
parameter for clusters through the CDF curve. Then, the 
patient OS time was determined through Kaplan–Meier 
(K-M) analysis using the “survival” and “survminer” 
packages.

Identification of DEGs and GSEA
Differential gene expression (DEGs) analysis between 
two disulfidptosis regulated clusters was performed 
using an empirical Bayesian algorithm using the “limma” 
R package and DEGs were given a significance thresh-
old of |log2 (FoldChange)|> 1 and an adjusted P-value 
of 0.05. Applying the ‘‘clusterProfiler’’ packages, gene set 
enrichment analysis (GSEA) and gene ontology (GO) 
enrichment analyses were carried out to study the bio-
logical activities of two disulfidptosis regulated clusters 

https://xenabrowser.net/
https://dcc.icgc.org/
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Fig. 1  The overall experimental design and major steps of our study. We first investigated the expression of 16 disulfidptosis-related genes in HCC 
patients in the TCGA-LIHC cohort and categorized the HCC patients into two DRG clusters based on the expression of those genes. Subsequently, 
we selected DEGs with prognostic significance between DRG clusters for LASSO analysis. In total, 19 hub genes were selected for the construction 
of the DRG score model in the TCGA cohort, which was validated in an external ICGC cohort. Then, we developed a nomogram based on our model 
and assessed immune infiltration and drug sensitivity in HCC patients. Finally, through experimental validation, we confirmed the anticancer role 
of the hub gene LCAT in liver cancer and explored its potential association with disulfidptosis-related death. DRG Disulfidptosis-related gene, HCC 
hepatocellular carcinoma, LASSO least absolute shrinkage and selection operator, DEG differentially expressed gene
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[11]. Annotation files for GO, the Kyoto Encyclopedia 
of Genes and Genomes (KEGG), and hallmark pathways 
were downloaded from the GSEA website (http://​www.​
gsea-​msigdb.​org/​gsea/​index.​jsp).

Construction and validation of prediction models
The univariate Cox proportional hazards regression sur-
vival analysis was performed via the ‘‘survival’’ R package 
to filter prognostic genes as in the TCGA-LIHC cohort 
based on the DEGs between two disulfidptosis regulated 
clusters. The prognostic genes were then further filtered 
to identify hub DRGs genes using the least absolute 
shrinkage and selection operation (LASSO) and tenfold 
cross validation using the ‘‘glmnet’’ R package. The sum 
of the expression value and weight coefficients of the hub 
genes was then used to calculate the DRG scores for each 
sample:

To evaluate the survival probabilities between the 
two DRG score groups in the TCGA training cohort, a 
Kaplan‒Meier (K‒M) analysis was conducted using the 
‘‘survival’’ and ‘‘survminer’’ packages. The area under 
the curve (AUC) was calculated using the ‘‘timeROC’’ 
package, which also performed receiver operating 

DRGscores =
∑n

k=1

(n

k

)

LASSO_coef k∗Expressionk

characteristic (ROC) analysis across 1, 3, and 5  years. 
Similarly, K‒M survival curves and ROC curves were 
generated for the ICGC-LIRI-JP testing cohort. Then, 
using clinical traits and DRG scores, multivariate Cox 
proportional-hazards regression was used to identify the 
independent predictors of HCC prognosis. Finally, using 
the ‘‘rms’’ R package, the stage and DRG scores served 
as independent predictors to generate a nomogram for 
clinical application. [12]. To assess the nomogram model, 
the ‘‘ggDCA’’ R package implemented the decision curve 
analysis (DCA).

Immune feature evaluation of DRG scores
Each HCC patient in the TCGA-LIHC cohort was 
assigned an immune score, stromal score, and an ESTI-
MATE score using the ESTIMATE method. The infil-
tration score of 23 human immune cells in each HCC 
patient was calculated via the CIBERSORT algorithm 
[13]. Additionally, Spearman correlation analysis was 
used to determine whether immune checkpoint genes 
and DRG scores in HCC patients were correlated.

Analysis of drug susceptibility and immunotherapy 
response
For HCC patients in the TCGA-LIHC cohort, the Tumor 
Immune Dysfunction and Exclusion (TIDE) algorithm 
was used to forecast the immunotherapy response 
(http://​tide.​dfci.​harva​rd.​edu) [13]. The ‘‘oncoPredict’’ 
package was used to calculate the half-inhibitory concen-
tration (IC50) values for 198 medicines, including cancer 
treatment and medications specifically for HCC. [14].

scRNA‑seq data analysis
Single-cell data of seven tumors of untreated HBV-
related hepatocellular carcinoma (HCC) patients were 
downloaded from the GEO website (GSE202642) [15]. 
The ‘‘Seurat’’ R package was used for standardizing the 
single-cell analysis workflow. Cells expressing a minimum 
of 200 genes with mitochondrial percentage less than 
10% were selected, followed by normalization and scal-
ing. Subsequently, the RunPCA function was employed 
to perform principal component analysis (PCA), and the 
top 15 PCs were chosen for uniform manifold approxi-
mation and projection (UMAP) reduction. Cell type 
annotations were performed based on the marker genes 
of the major cell clusters. Finally, the AddModuleScore 
function was used to generate the DRG signature at the 
single-cell level.

Cell culture
The Cancer Research Institute of Central South Univer-
sity provided HepG2, L-02, SMMC-7721, HCCLM3 and 
Hep3B cells, as well as 293  T cells. All cell lines were 

Table 1  Clinical characteristics of HCC patients from TCGA and 
ICGC database

HCC hepatocellular carcinoma, TCGA​ the cancer genome atlas, ICGC​ international 
cancer genome consortium

TCGA​ ICGC​ Overall

Age (years)

 Mean (SD) 59.6 (13.4) 67.0 (10.2) 62.3 (12.8)

 Median 61.0 69.0 64.0

Gender

 Female 119 (32.6%) 50 (24.6%) 169 (29.8%)

 Male 246 (67.4%) 153 (75.4%) 399 (70.2%)

TNM stage

 I 170 (46.6%) 33 (16.3%) 203 (35.7%)

 II 84 (23"0%) 96 (47.3%) 180 (31"7%)

 III 83 (22.7%) 59 (29.1%) 142 (25.0%)

 IV 4 (1.1%) 15 (7.4%) 19(3.3%)

 Unknow 24 (6.6%) 0 (0%) 24 (4.2%)

Survival status

 Alive 234(64.1%) 168 (82.8%) 402 (70.8%)

 Dead 130 (35.6%) 35 (17.2%) 165 (29.0%)

 Not reported 1 (0.3%) 0 (0%) 1 (0.2%)

OS time (days)

 Mean (SD) 813 (726) 828(417) 818 (633)

 Median 596 810 661

http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
http://tide.dfci.harvard.edu
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cultured at 37 °C in a 37 ℃, 5% CO2 incubator in DMEM 
medium (Gibco) with 10%(v/v) BCS (Sigma) and 1%(v/v) 
streptomycin/penicillin/gentamicin. Furthermore, the 
above cell lines were free of mycoplasma contamination 
and were passaged < 10 times after being revived from 
frozen stock.

Plasmid constructs
The overexpression (OE) plasmid pEnter-LCAT was pur-
chased from Vigene Biosciences (CH896503). Moreover, 
all constructions were confirmed by DNA sequencing. 
Subsequently, cells were transfected with the LCAT or 
vector plasmids using LipoMax DNA Transfection Rea-
gent (SUDGEN, 32,110) according to the manufacturer’s 
procedure to establish transduced cell lines. After trans-
fection for 6 h, the medium was replaced with medium 
supplemented with 10% (v/v) BCS. After that, we verified 
the expression of LCAT in the cells via Western blotting.

Quantitative real‑time PCR assays
As previously mentioned [16, 17], quantitative real-time 
PCR experiments were carried out. In brief, the Prime-
ScriptTM RT Reagent Kit with gDNA Eraser (TaKaRa, 
Kusatsu, Japan) was used for reverse transcription after 
total RNA was extracted using RNAiso Plus (TaKaRa, 
Kusatsu, Japan) reagent. Afterward, real-time PCR was 
performed using a Bio-Rad CFX Connect real-time 
PCR apparatus. By deducting the Ct values of beta-actin 
(ACTB), the Ct values of each gene were normalized. 
Additional file 2: Table S2 contains a list of the primers.

Western blot analysis
The collected cells were washed twice with PBS buffer 
washed before being lysed with IP lysis buffer contain-
ing protease inhibitor cocktail for two hours on ice. The 
systems were set up after 15  min of centrifugation at 
15,000  rpm to determine the supernatant (BCA protein 
assay). Total protein was isolated using SDS–polyacryla-
mide gel and then transferred to a polyvinylidene fluo-
ride (PVDF) membrane. The membranes were incubated 
overnight with different primary antibodies at 4 °C, incu-
bated with the corresponding secondary antibody for 2 h 
at room temperature, and exposed via the ChemiDox 
XRS + image-forming system. The following antibodies 
were used: anti-LCAT (Baijia; IPB11128), and anti-β-
actin (Sigma; cat #A5411).

Cell viability, colony formation and transwell assays
Cell proliferation, colony formation, and Transwell 
experiments were conducted, as previously reported 
[18]. In brief, the cell Counting Kit-8 (CCK-8) test was 
used for the cell viability experiment in accordance with 
the manufacturer’s instructions (Bimake). First, 1000 

cells were plated in 96-well plates with five parallel wells 
in each group. Next, 10 μL of CCK-8 reagent was added 
to each well at each time point (0 h, 24 h,48 h,72 h,96 h), 
and each well was then incubated for 2 h at 37 ℃ with 5% 
CO2 for 2 h, and the OD450 was detected (BioTek).

In addition, cells were seeded onto six-well plates 
at a density of 500 cells per well for the colony forma-
tion experiment, and the plates were then incubated for 
2  weeks. Each cell was seeded with three parallel wells. 
Then, the cells were fixed with methanol for 10  min, 
stained with 0.5% crystal violet for 30  min and subse-
quently counted using a microscope and ImageJ software 
(1.47 v, NIH, USA).

In the Transwell migration assay, 5 × 104 cells were 
plated in each 24 well chamber (8.0 μm pore size, Falcon) 
and incubated for 24  h. For the invasion test, 100  μl of 
Matrigel (Becton, Dickinson and Company, USA) was 
diluted 1:9 with serum-free media and placed onto tran-
swell chambers. Each compartment received 1 × 105 cells, 
which were then cultivated for 48 h later. After that, the 
cells were fixed with methanol, stained with 0.5% crystal 
violet for 30 min and examined under an optical micro-
scope. Each of these assays was repeated at least three 
times.

Immunofluorescence analysis
Cells were placed on chamber slides and then were 
washed three times with PBS. Subsequently, the were 
permeabilized with 0.5% Triton X-100 (v/v) for 5 min at 
room temperature after fixation with 4% paraformalde-
hyde for ten min. For each slide, 100  nM Actin-stain™ 
555 (Cytoskeleton, PHDH1) in PBS was added and incu-
bated at RT for half an hour in the dark. Next, the slides 
were contained with DAPI for 10  min, and washed 3 
times with PBS. Finally, a Zeiss LSM9 confocal micro-
scope was used to capture fluorescence images.

Results
Development of disulfidptosis‑regulated clusters and their 
features in HCC
We proceeded by analyzing the expression of DRG in 
the tumor tissues and adjacent tissues of TCGA cohort 
HCC cases. Except for NDUFS1, EPAS1 and NUBPL, 
the expression of the other 13 DRGs including NCKAP1, 
PPM1F, GYS1, NDUFC1, CNOT1, NDUFA10, LRP-
PRC, SLC7A11, OXSM, NUDFS2, RPN1, SLC3A2 and 
NDUFA11, was significantly upregulated in HCC tis-
sues (Fig. 2A). The frequency of CNVs in 16 DRGs from 
HCC was next examined; most DRGs showed copy num-
ber amplification and deletion (Fig.  2B). The locations 
of the CNV changes for 16 DRGs on 23 chromosomes 
are shown in Fig. 2C. We classified HCC patients in the 
TCGA dataset using a consensus clustering approach in 
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order to further define the expression signatures of DRG 
in HCC patients. The clustering results showed that when 
k = 2 was optimal (Additional file 1: Figure S1A–F), and 
these patients were well divided into two clusters (165 in 
Cluster 1, 200 patients in Cluster 2). Using ESTIMATE 
algorithms to evaluate the immune infiltration of the 
two clusters, we found that compared to cluster 2, clus-
ter 1 had a higher immune score, suggesting the potential 
immune regulation function of DRGs in HCC (Fig. 2D). 
Then, the Kaplan–Meier analysis showed that patients 
in Cluster 1 had a lower overall survival (OS) rate and 
a shorter progression-free interval (PFI) than those in 
Cluster 2 (Fig. 2E, F).

Construction of the disulfidptosis‑related prognostic 
model
We used the ‘‘limma’’ R package to analyze the differ-
ences in gene expression between the two clusters. A 
total of 373 DEGs were screened out, and after further 
using univariate Cox regression analysis to select those 
genes with prognostic significance, a total of 190 DEGs 
were included in the following analysis (Additional 
file 2: Tables S3, S4). The majority of metabolism-related 
pathways, including those for amino acid metabolism 
and fatty acid metabolism, were repressed in Cluster 1 
according to GSEA of hallmark pathways, KEGG path-
way analysis, and GO enrichment analysis based on the 
DEGs (Additional file  1: Figure S2A–C). On the other 
hand, immune-related pathways, such as the inflamma-
tory response and TNF-α signaling via the NF-κB path-
way, were activated in Cluster 1, suggesting differences in 
immune status and metabolism regulation between these 
two disulfidptosis clusters. The best λ value was then 
determined using LASSO regression analysis, and 19 hub 
genes were determined (Fig.  3A, B). Among these hub 
genes, LCAT, TRIM55, GHR, OGN, TCP10L and DNA-
SE1L3 were identified as protective genes, while GAGE1, 
PPP2R2C, TNFRSF11B, IL8, TREM1, SLC2A1, SCIN, 
AKR1B15, MMP1, CORIN, SLC1A5, GAGE4 and NEIL3 
were identified as risk-related genes (Fig.  3C). The vol-
cano plot showed that all the risk genes were significantly 
upregulated and the protective genes were significantly 
downregulated in Cluster 1 (Fig. 3D). The results of the 
univariate analysis indicated the adverse or protective 
effects of these hub genes on patient survival in Cluster 1 
(Fig. 3E). Then, we constructed the disulfidptosis-related 
gene score model based on the LASSO regression 
results: DRG score = (−  0.05847)* LCAT + (-0.02276)* 
TRIM55 + (-0.02275)* GHR + (−  0.01317)* OGN + 
 (− 0.01217)* TCP10L + (-0.0027)* DNASE1L3 +  
0.00039* GAGE1 + 0.0009* PPP2R2C + 0.00413* TNFRS 
F11B + 0.00576* IL8 + 0.00878* TREM1 + 0.01065* 

SLC2A1 + 0.01942* SCIN + 0.02512* AKR1B15 +  
0.02715* MMP1 + 0.03276* CORIN + 0.0385* SLC1A5 + 
 0.0627* GAGE4 + 0.06288* NEIL3. In the TCGA-LIHC 
training cohort, patients with high a DRG score had a 
substantially worse survival rate (Fig. 3F, G). In the train-
ing cohort, the DRG score had satisfactory predictive 
value (AUC for survival at 1  year, 3  years, and 5  years 
were 0.787, 0.748, and 0.711, respectively; Fig. 3H).

Validation of the prognostic model and establishment 
of a disulfidptosis‑related predictive nomogram for HCC
Next, we chose the ICGC-LIRI-JP liver cancer cohort as 
our test cohort to validate our prognostic model. Similar 
to our previous analysis, with the increase in DRG score, 
the risk of patient death increased, and the survival time 
decreased. K‒M survival curves revealed that the high 
DRG score group had poorer overall survival (Fig. 4A, B). 
Importantly, the one-year and three-year survival predic-
tions based on the DRG score model had AUC values of 
0.674 and 0.741, respectively, in the ICGC-LIRI-JP vali-
dation cohort (Fig. 4C). Then, we performed multivariate 
Cox regression analyses on the clinical characteristics of 
the TCGA-LIHC cohort and the DRG score and found 
that DRG score and stage can be used as independent 
prognostic predictors for HCC patients (Fig.  4D). We 
further integrated the DRG score and stage to create a 
nomogram in the TCGA-LIHC cohort to create individ-
ualized predictions for HCC patients (Fig.  4E). Further-
more, the nomogram model’s AUC value for patient OS 
accuracy was better (AUC for 1 year, 3 years, and 5 years 
of survival were 0.806, 0.758, and 0.730, respectively; 
Fig. 4F). Importantly, compared with stage or DRG score 
alone, the nomogram model showed higher predictive 
value for patient survival status (Fig.  4G, H). The DCA 
curve also suggested that the nomogram model performs 
better in clinical practice than stage or DRG score alone 
(Fig. 4I).

Evaluation of tumor microenvironment features based 
on the DRG scores
We initially employed ESTIMATE methods to com-
pare the immune infiltration features of the two patient 
groups with high and low DRG scores in order to bet-
ter understand the characteristics of the immunologi-
cal milieu of the two patient groups. Patients with high 
and low DRG scores had significantly different immune 
scores (Fig.  5A). Using the CIBERSORT method, we 
further examined the relationship between 19 hub 
genes and different immune cells and found that the 
expression of these genes in the TCGA-LIHC cohort 
was closely related to the infiltration levels of mac-
rophages, NK cells and T cells (Fig. 5B). Moreover, we 
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also found that in the high DRG score group, the infil-
tration levels of macrophages and Tregs were higher, 
while the infiltration levels of naive B cells, CD4 + T 
cells and CD8 + T cells were lower (Fig. 5C), suggesting 

that the high DRG score group had a suppressive 
immune microenvironment, which coincided with 
their poorer overall survival outcomes. In addition, 
we analyzed the correlation between the expression of 

Fig. 2  Identification of disulfidptosis-regulated clusters based on 16 DRGs in HCC. A Differences in the expression levels of 16 DRGs in HCC 
and normal tissue, most of those genes were significantly upregulated in HCC tissues. (B) CNV (amplification and deletion) frequencies 
of DRGs in HCC. (C) The location of CNVs of DRGs on 23 chromosomes. (D) Boxplot showing the significant difference in the immune score 
between the two disulfidptosis-regulated clusters in the TCGA cohort (Wilcoxon test, * P < 0.05). (E and F) The prognosis analysis for two 
disulfidptosis-regulated clusters: Cluster 1 had lower overall survival (OS) and progression-free interval (PFI) than Cluster 2. P values are shown as * 
P < 0.05; ** P < 0.01; *** P < 0.001; ns, not significant. DRGs Disulfidptosis-related genes, HCC hepatocellular carcinoma, CNV copy number variation, 
OS overall survival, PFI progression-free interval, TIME tumor immune microenvironment
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Fig. 3  Construction of the disulfidptosis-related prognostic model in HCC. A and B LASSO regression identified hub DRGs and coefficient 
profiles. C Histogram showing the 6 protective genes and 13 risk genes and their weighted coefficients. D Volcano plot of 19 selected hub 
genes between two disulfidptosis-regulated clusters. E Univariate Cox regression analysis of selected hub genes associated with overall survival 
in HCC patients. F Distribution of DRG scores and patient survival status in the TCGA-LIHC cohort. G and H The Kaplan–Meier OS curves G 
and time-dependent ROC curves H for patients in the high- and low-DRG score groups in the TCGA training cohort. The group with high DRG 
scores had worse survival rates, and the AUC values of DRG scores for one-year, three-year, and 5 year OS were 0.787, 0.748, and 0.711, respectively. 
DRGs Disulfidptosis-related genes; HCC hepatocellular carcinoma, LASSO least absolute shrinkage and selection operator, DEGs differentially 
expressed genes, LIHC liver cancer, ROC receiver operating characteristic
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Fig. 4  Validation of the DRG score model and establishment of a disulfidptosis predictive nomogram for HCC. A–C Distribution of patient survival 
status A and Kaplan–Meier OS curves B and time-dependent ROC curves C for patients in the high- and low-DRG score groups in the ICGC − LIRI-JP 
validation cohort. The group with high DRG scores had a worse survival rates (P = 0.00095), and the AUC values of the DRG scores for 1 year 
and 3 year OS were 0.674 and 0.741, respectively. D Multivariate Cox regression showed that high stage (P = 0.003, HR = 1.39) and DRG score 
(P < 0.001, HR = 3.69) were independent risk factors for worse OS. E The establishment of a nomogram to predict the 1-, 3-, and 5 year overall 
survival probability for HCC patients in the TCGA cohort. F The ROC curves demonstrated that the nomogram model’s AUC values for one-year 
OS, 3 year OS, and 5 year OS were 0.806, 0.768, and 0.730, respectively. G and H Compared with stage or DRG score alone, the nomogram 
model showed a higher AUC value for 1 year G and three-year H OS, which suggested that the model was effective. I The DCA curve suggested 
that the nomogram model performs better in clinical practice than stage or DRG score alone. P values are shown as * P < 0.05; ** P < 0.01; *** 
P < 0.001; ns not significant. DRGs Disulfidptosis-related genes, ROC receiver operating characteristic, ICGC​ international cancer genome consortium, 
HCC hepatocellular carcinoma, AUC​ area under curve, DCA decision curve analysis
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immune checkpoint genes (CD274, PDCD1, CTLA4, 
CD276, HAVCR2, TIGIT and IDO1) and DRG score in 
the TCGA-LIHC cohort [19, 20]. We observed a signifi-
cant positive correlation between the immune check-
point genes and DRG score (Fig. 5D–J). Analysis of the 
features of hub genes at the single-cell level to better 
understand the effectiveness of the constructed model 
has become a commonly employed method in recent 
years [21]. We analyzed the single-cell data of untreated 
hepatitis B virus (HBV)-related hepatocellular carci-
noma (HCC) patients (GSE202642) [15]. Following the 
study conducted by Zhu et al., 9 cell clusters were iden-
tified (Additional file  1: Figure S3A, B). Subsequently, 
we investigated the expression of our hub DRGs within 
each cell cluster. The results indicated that the DRG 
signature was predominantly distributed on tumor 
cells, endothelial cells, cancer-associated fibroblasts 
(CAFs), tumor-associated macrophages (TAMs), and T 
cells, which corresponded to our CIBERSORT immune 
infiltration analysis results.

Correlations of the DRG scores with immunotherapy 
and drug sensitivity
We then applied the TIDE algorithm to evaluate the 
immunotherapy response for HCC patients in the 
TCGA-LIHC cohort. According to our results (Fig. 6A, 
B), patients with low DRG scores may benefit more 
from immunotherapy because their TIDE scores were 
significantly higher than those of the low DRG score 
group and their response rates were significantly lower 
than those of the high DRG score group. We further 
predicted the efficacy of 198 drugs by the oncoPredict R 
package in TCGA-LIHC and assessed the drug sensitiv-
ity of the high- and low-DRG score groups. Forty drugs 
were negatively correlated with DRG scores (P < −  0.2, 
Additional file 2: Table S5), and Fig. 6C shows the top 
ten drugs with a negative correlation. Chemotherapy 
drugs for liver cancer, such as cisplatin and vinorel-
bine, and the targeted drugs gefitinib and sorafenib had 
lower IC50 values in patients with high DRG scores 
(Fig. 6D–G), suggesting that the above drugs have bet-
ter therapeutic effects on these patients. Overall, the 

findings showed that the prognostic model based on 
DRG scores can aid in predicting the efficacy of medi-
cations in HCC patients.

Validation of the DRG hub genes in HCC cell lines 
and functional analysis
We initially used qPCR to assess the mRNA expression 
levels of hub DRGs in two liver cancer cell lines (HepG2 
and Hep3B) and a normal liver cell line (L-02) to further 
validate our investigation. The results demonstrated that 
LCAT and DNASE1L3 were significantly downregulated 
in liver cancer cells, while NEIL3, GAGE4, SLC1A5, 
MMP1, SCIN and GAGE1 mRNA expression levels were 
notably elevated (Fig. 7A), in agreement with the bioin-
formatics prognostic model described above. The mRNA 
expression levels of a few hub genes were too low in the 
liver cancer cell line to be detected by qPCR. Since the 
protective gene LCAT has the lowest risk coefficient 
for hepatocellular carcinoma, we further explored the 
expression profile and identified the biological function 
of LCAT. Firstly, Western blotting analysis revealed that 
liver cancer cells expressed less of the LCAT protein than 
normal liver cells did (Fig. 7B, Additional file 1: Fig. S4A). 
After that, to examine the impact of LCAT overexpres-
sion in HCC, we established LCAT overexpressing 
HCCLM3 and Hep3B cell lines (Fig. 7C, Additional file 1: 
Figure S4B, C). Transwell assays indicated that increas-
ing LCAT expression dramatically reduced the capacity 
of LM3 and Hep3B cells to migrate and invade (Fig. 7D, 
E). However, LCAT did little to suppressed the cell pro-
liferation (Additional file 1: Fig. S4D, E) and colony for-
mation (Additional file 1: Fig. S4F, G) capabilities of liver 
cancer cells in vitro. Thus, we inferred that LCAT is pri-
marily associated with liver cancer metastasis. Moreover, 
we treated LM3 cells with BAY-876 (Selleck, S8452), a 
GLUT1 inhibitor agent, to block glucose uptake. Immu-
nofluorescence results showed that overexpressing 
LCAT in LM3 cells during glucose deprivation obviously 
altered their cell shape, including F-actin contraction 
and cell shrinkage (Fig.  7F). Furthermore, the reducing 
drug TCEP (Selleck, S4611) was successful in preventing 
disulfidptosis-induced cell death. Hence, LCAT enhanced 
glucose starvation-induced disulfidptosis of liver cancer 

(See figure on next page.)
Fig. 5  Evaluation of tumor microenvironment (TME) features based on the DRG score. A Boxplot showing that the immune score of the high-DRG 
group was significantly higher than that of the low-DRG score group in the TCGA cohort (Wilcoxon test, *** P < 0.001). B CIBERSORT analysis 
of correlations between the proportion of immune cells and 19 hub genes showed that these genes in HCC patients in the TCGA cohort were 
closely related to macrophages, B cells, NK cells and T cells. C Boxplot showing the proportion of immune cells in the low- and high-DRG score 
groups in HCC patients, which suggested that the high DRG score group had higher infiltration levels of macrophages and Tregs and lower 
infiltration levels of naive B cells, CD4 + T cells and CD8 + T cells. D–J The immune checkpoint genes (CD274, PDCD1, CTLA4, CD276, HAVCR2, 
TIGIT and IDO1) significantly correlated with the DRG score. P values are shown as * P < 0.05; ** P < 0.01; *** P < 0.001; ns, not significant. HCC 
hepatocellular carcinoma, TME tumor microenvironment, DRGs Disulfidptosis-related genes
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Fig. 5  (See legend on previous page.)
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cells through actin cytoskeletal network breakdown. 
Finally, we analyzed the expression differences of LCAT 
in HCC patient tumor tissues and adjacent nontumor tis-
sues in TCGA. Then, we generated the survival curves 
for patients with high LCAT expression (n = 240) and low 
LCAT expression (n = 123). The results revealed a signifi-
cantly lower expression of LCAT in cancer tissues than 

in adjacent nontumor tissues (Fig.  7G). Furthermore, 
patients with high LCAT expression exhibited a better 
survival status (Fig. 7H). These findings also suggest that 
LCAT may serve as a protective gene, suppressing the 
progression of liver cancer. Our findings collectively sug-
gest that LCAT slows the progression of HCC by mediat-
ing disulfidptosis.

Fig. 6  Correlations of the DRG score with immunotherapy and chemotherapeutic sensitivity in HCC. A Compared to patients in TCGA-LIHC 
with low DRG scores, those in the high DRG score group exhibited higher TIDE scores (Wilcoxon, P < 0.01). B The response rate of the high DRG 
score group was significantly lower than that of the low DRG score group (chi sq. test P < 0.001). C Correlations of the DRG scores and drug 
sensitivity in patients (Spearman correlation < − 0.2). The therapeutic sensitivity of cisplatin D, vinorelbine E, sorafenib F, and gefitinib G 
between the high- and low-risk groups. DRGs Disulfidptosis-related genes, TIDE Tumor immune dysfunction and exclusion

(See figure on next page.)
Fig. 7  Validation of the hub DRGs in HCC cell lines and functional analysis. A qPCR was used to analyze the mRNA expression of the protective 
and risk-related genes for disulfidptosis model in liver cancer cells. B Western blotting analyses of LCAT expression in liver cancer cell lines. C 
Western blotting analyses of LCAT expression in LM3 and Hep3B cell lines. D Migration was measured in LCAT-overexpressing LM3 and Hep3B cells. 
E Invasion was measured in LCAT-overexpressing LM3 and Hep3B cells. F Fluorescence staining of F-actin with phalloidin in vector and LCAT​-OE 
LM3 cells treated with 5 μM BAY-876 or 1 mM TCEP for 18 h. G and H: The expression of LCAT in tumor tissues was significantly lower than that in 
adjacent nontumor tissues in HCC patients in the TCGA cohort G, and patients with higher LCAT expression demonstrated better survival outcomes 
H 
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Fig. 7  (See legend on previous page.)



Page 14 of 16Tang et al. Cancer Cell International           (2024) 24:19 

Discussion
Disulfidptosis, as a newly discovered form of PCD, is 
closely associated with cancer metabolism and provides 
new insights for cancer treatment. However, the specific 
role of this cell death pathway in various types of tumors 
remains poorly understood, and its relationship with 
hepatocellular carcinoma (HCC) is still unclear.

In our research, we selected 16 genes critical for medi-
ating and inhibiting the occurrence of disulfidptosis as 
disulfidptosis-related genes. Considering that disulfidp-
tosis is an induced process in cancer cells, analysis of 
genes involved in this process could accurately and 
fundamentally reflect the disulfidptosis status of each 
patient, and our data support the reliability of the model. 
From the DRGs, we identified 19 hub genes to construct 
our model. Among these genes, 6 genes were identified as 
protective genes and the remaining 13 genes were identi-
fied as risk-related genes. Importantly, we validated the 
expression of some genes in liver cancer and normal liver 
tissue cell lines through RT‒qPCR experiments.

We further selected lecithin-cholesterol acyltrans-
ferase (LCAT) for biological functional experiments. 
LCAT is involved in cholesterol transport and converts 
free cholesterol into its hydrophobic form, ultimately 
synthesizing high-density lipoprotein (HDL) [22]. LCAT 
is abundantly expressed in the human body and has low 
expression in breast cancer and liver cancer tissue that 
in compared to normal tissue, but high expression in the 
serum of advanced breast cancer, suggesting that LCAT 
may serve as a plasma protein biomarker for late-stage 
breast cancer and metastasis [23]. In contrast, LCAT 
levels are lower in the serum of colorectal cancer, liver 
cancer, and ovarian cancer patients, making it a potential 
biomarker [24–26].

In addition, bioinformatics analysis has indicated that 
LCAT plays a critical role in the development of liver cir-
rhosis into HCC [27]. Our experiments have confirmed 
the low expression of LCAT in liver cancer cell lines, con-
sistent with previous reports [28]. Furthermore, in vitro 
experiments have clearly demonstrated that LCAT sig-
nificantly inhibits the migration and invasion abilities of 
liver cancer cells, and promotes cell death via disulfide 
bond formation under glucose deprivation conditions. 
However, LCAT has a limited impact on the proliferation 
and colony formation abilities of liver cancer cells, sug-
gesting that LCAT mainly affects the metastasis of liver 
cancer by inducing disulfidptosis. Then, the role of LCAT 
in disulfidptosis need further experimental verification. 
Since LCAT is a newly discovered tumor suppressor, it is 
worthwhile to further investigate the molecular mecha-
nisms by which LCAT affects disulfidptosis in HCC.

Moreover, our results demonstrated that the developed 
DRG score model successfully divides HCC patients 

into two clusters. The group with high DRG scores had 
a worse prognosis and exhibited an immunosuppressive 
microenvironment characterized by immune infiltration. 
Additionally, this group showed stronger resistance to 
immune therapy. However, these patients demonstrated 
greater sensitivity to certain chemotherapy drugs for liver 
cancer, such as cisplatin and vinorelbine. Immune cells, 
particularly CD4 + T cells, CD8 + T cells, and Th cells, 
play critical roles in a variety of diseases, including can-
cer and several infectious diseases [29–31], and some 
costimulatory molecule and immune check point such 
as CD40 and PD-1 are extensively expressed abnormally 
in different immune cells [32, 33]. In our study, CIBER-
SORT analysis showed that DRG hub genes are closely 
related to T cells. Patients with high DRG scores have 
lower CD4 + T cell and CD8 + T infiltration, and DRG 
scores are positively correlated with the expression of 
immune checkpoint genes such as PD-1. These results 
also suggested that patients with high DRG scores may be 
more sensitive to immunotherapy.

Currently, sorafenib, which targets ferroptosis in liver 
cancer cells, is the most useful first-line chemotherapy 
drug for the treatment of advanced HCC [34, 35]. Moreo-
ver, regulating ferroptosis could also alleviate the tumor 
immunosuppressive microenvironment, thereby enhanc-
ing the sensitivity of patients to immunotherapy [36]. In 
addition, applying AEG35156, resminostat (4SC-201) or 
panobinostat (LBH589) induced apoptosis in patients 
with HCC [37]. Since some patients present drug resist-
ance, exploring other effective therapeutic approaches 
for hepatic carcinoma is still a great challenge [38]. Thus, 
treating liver cancer patients by promoting disulfidptosis 
is a potential way to improve patient survival.

It must be noted out that our research has certain limi-
tations. First, the data used to construct and validate the 
model were derived solely from public databases, which 
may not fully reflect the characteristics and conditions of 
all HCC patients. Second, we selected 16 genes involved 
in the mechanism of disulfidptosis, of which only a 
portion have been validated, while some are potential 
mediators of disulfidptosis. As the investigation into the 
mechanism of disulfidptosis progresses, the effective-
ness of the model we constructed can be further con-
firmed. Third, it demands more robust assays to explore 
the molecular mechanisms by which LCAT induces 
disulfidptosis, and to demonstrate that LCAT is capable 
of hindering liver cancer metastasis. Moreover, other 
hub genes of disulfidptosis besides LCAT deserve addi-
tional in-depth study. Overall, the DRG score model links 
disulfidptosis to hepatocellular carcinoma, and could be 
used for survival prognosis prediction in HCC patients; 
it provides valuable assistance for personalized treatment 
approaches.
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Additional file 1: Figure S1. Consensus cluster analysis of HCC patients 
based on disulfidptosis-regulated genes. A and B The cumulative dis-
tribution function (CDF) and relative change in the area under the CDF 
curve when k takes different values. C–F The diagrams show consistent 
clustering results when k was 2, 3, 4, and 5. It was most reliable when 
k was 2. Figure S2. The GSEA results of Hallmark pathway and KEGG 
pathway and GO enrichment analysis base on two DRGs clusters. Figure 
S3. Distribution of hub DRGs at the single-cell level. (A and B) UMAP plots 
of GSE202642 and different cell clusters were identified and visualized. 
C Expression of the DRG signature in 9 cell types. Figure S4. Biological 
function analysis of liver cancer cells overexpressing LCAT. A Related 
LCAT expression in liver cancer cells and normal liver cells. B Related LCAT 
expression in LM3 cells that overexpressed LCAT. C Related LCAT expres-
sion in overexpression LCAT Hep3B cells. D and E The CCK-8 assay was 
performed to assess the viability of LM3 and Hep3B cells overexpressing 
LCAT. F and G A plate colony formation assay was performed in LM3 and 
Hep3B cells that were transfected with LCAT.

Additional file 2: Table S1. The details of selected 16 disulfidptosis-
related genes. Table S2. Primers for RT-PCR Table S3. 373 differential 
expression genes between two disulfidptosis-related clusters. Table S4. 
190 differential expression genes with prognostic significance. Table S5. 
The correlations between the DRGs scores and the sensitivity of 198 drugs 
in HCC patients.
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