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Abstract 

Colorectal neoplasms are one of the deadliest diseases among all cancers worldwide. Thymoquinone (TQ) is a natural 
compound of Nigella sativa that has been used in traditional medicine against a variety of acute/chronic diseases 
such as asthma, bronchitis, rheumatism, headache, back pain, anorexia, amenorrhea, paralysis, inflammation, mental 
disability, eczema, obesity, infections, depression, dysentery, hypertension, gastrointestinal, cardiovascular, hepatic, 
and renal disorders. This review aims to present a detailed report on the studies conducted on the anti-cancer prop-
erties of TQ against colorectal cancer, both in vitro and in vivo. TQ stands as a promising natural therapeutic agent 
that can enhance the efficacy of existing cancer treatments while minimizing the associated adverse effects. The com-
bination of TQ with other anti-neoplastic agents promoted the efficacy of existing cancer treatments. Further research 
is needed to acquire a more comprehensive understanding of its exact molecular targets and pathways and maximize 
its clinical usefulness. These investigations may potentially aid in the development of novel techniques to combat 
drug resistance and surmount the obstacles presented by chemotherapy and radiotherapy.
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Graphical Abstract

Introduction
According to the GLOBOCAN report, colorectal can-
cer is the third most common cancer and the second 
leading cause of death among all cancers globally, 
affecting both genders [1]. In the year 2020, the esti-
mated quantity of fresh instances of colorectal cancer 
was 1.9 million, leading to 930,000 fatalities. These 
statistics are estimated to increase to 3.2 million fresh 
instances and 1.6 million fatalities by the year 2040 [2]. 
The endangerment variables correlated with colorectal 
cancer involve an inactive way of life (obesity), inges-
tion of a diet high in crimson flesh, alcohol, and low 
fiber foods, smoking, and chronic inflammation. Fur-
thermore, genetic predisposition has been determined 

to be a probable cause for the emergence of colorectal 
cancer [3, 4]. Aging is another risk factor for colorec-
tal cancer (CRC) since 90 percent of new incidences 
occurs in 50 years old or later [4]. Moreover, men have 
higher risk (1.3-fold) for CRC than women [5]. The 
significance of screening for CRC cannot be empha-
sized enough since it has the potential to identify pre-
cancerous polyps as well as early-stage cancers at the 
most opportune time for treatment. Colonoscopy, fecal 
occult blood testing, and stool DNA testing are some of 
the existing screening methods available [6]. According 
to the American Cancer Society, individuals who are at 
average risk of developing CRC should start screening 
at age 45 with promptness.
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Preventing CRC onset can be achieved by inducing 
lifestyle changes such as maintaining a nutrient-rich diet, 
keeping excess weight off, participating in activities that 
encourage physical movement, as well as avoiding the use 
of tobacco products and excess alcohol intake. Moreover, 
using nonsteroidal anti-inflammatory drugs (NSAIDs) 
for chemoprevention purposes has been known to effec-
tively lower the risk of developing CRC [7].

5-fluorouracil, capecitabine, oxaliplatin, irinotecan, 
and monoclonal antibodies such as bevacizumab, pani-
tumumab, and cetuximab are well-known chemotherapy 
agents administered as monotherapy or combination 
therapy [8–10]. Despite the positive effects of the afore-
mentioned agents in CRC control and treatment, most 
patients complain of neutropenia, vomiting, diarrhea, 
neurotoxicity, and mucositis which are attributed to 
especially higher doses of these drugs [11].

Nigella sativa, also known as black seed or black 
cumin, is an annual herb in the Ranunculacea family 
with numerous medicinal properties [12]. It contains 
a variety of active ingredients, including TQ, alkaloids, 
saponins, flavonoids, proteins, and fatty acids and these 
components have been shown to have positive effects 
in treating various diseases [13]. Preclinical studies have 
demonstrated its potential for use as an anti-cancer, anti-
microbial, analgesic, antipyretic, contraceptive and anti-
fertility, anti-oxytocic, anti-tussive, anti-inflammatory 
and antioxidant agent [13]. This review aims to present a 
detailed report on the studies conducted on the anti-can-
cer properties of thymoquinone (TQ) against CRC, both 
in vitro and in vivo.

Colorectal cancer pathogenesis
The development of colorectal cancer is a complex pro-
cess that is influenced by a combination of genetic and 
environmental factors and involves the accumulation 
of genetic alterations in normal colonic mucosa. These 
alterations can include mutations in genes such as adeno-
matous polyposis coli (APC), KRAS, TP53, and SMAD4 
[14]. APC mutations, which are found in up to 80% of 
sporadic colorectal cancer cases, are considered an early 
event in the pathogenesis of the disease [14]. APC is a 
tumor suppressor gene that regulates cell proliferation 
and differentiation. When mutated, it can lead to the acti-
vation of the Wnt signaling pathway, promoting cell pro-
liferation and inhibiting apoptosis [7]. KRAS mutations, 
found in approximately 40% of colorectal cancer cases, 
are associated with a poor prognosis. KRAS is a proto-
oncogene that regulates cell growth and differentiation. 
When mutated, it can lead to the activation of down-
stream signaling pathways that promote cell proliferation 
and survival [7, 14]. TP53 mutations, found in approxi-
mately 50% of colorectal cancer cases, are also associated 

with a poor prognosis. TP53 is a tumor suppressor gene 
that regulates cell cycle arrest, DNA repair, and apop-
tosis. When mutated, it can lose its tumor suppressor 
function, promoting cell proliferation and inhibiting 
apoptosis. SMAD4 mutations, found in approximately 
10% of colorectal cancer cases, are associated with a poor 
prognosis as well. SMAD4 is a tumor suppressor gene 
that regulates TGF-β signaling. When mutated, it can 
lead to the activation of downstream signaling pathways 
that promote cell proliferation and survival [7, 14].

Epigenetic alterations, which are changes in gene 
expression that do not involve changes to the DNA 
sequence, play a critical role in the development of colo-
rectal cancer. The two most common epigenetic altera-
tions in this disease are DNA methylation and histone 
modification. DNA methylation involves the addition of 
methyl groups to cytosine residues in CpG dinucleotides. 
When CpG islands located in the promoter regions of 
tumor suppressor genes become hypermethylated, it can 
lead to the silencing of these genes and the loss of their 
tumor suppressor function. This can promote cell prolif-
eration and inhibit apoptosis [15]. Histone modification 
refers to changes in the structure of chromatin that can 
affect gene expression. Histones can be modified through 
processes such as acetylation, methylation, phosphoryla-
tion, or ubiquitination. These modifications can either 
activate or repress gene expression depending on their 
location within the chromatin structure [15].

The escalation from colorectal adenoma to carcinoma 
is caused by three cardinal pathways: microsatellite insta-
bility (MSI), chromosomal instability (CIN), and CpG 
island methylator phenotype (CIMP) [16]. When there is 
a malfunction in the DNA mismatch repair genes, MSI 
occurs, leading to an amassment of transformations in 
microsatellite areas throughout the genome. MSI is per-
ceived in approximately 15% of sporadic CRC cases and 
is correlated with a superior prognosis [16]. On the other 
hand, CIN occurs due to aneuploidy or chromosomal 
rearrangements, leading to a buildup of genetic changes 
throughout the genome. CIN is identified in approxi-
mately 85% of sporadic CRC cases and is related to an 
adverse prognosis [16]. Finally, CIMP is identified upon 
hypermethylation of CpG islands situated in promoter 
regions of tumor suppressor genes, leading to their sup-
pression. CIMP is identified in approximately 20% of spo-
radic CRC cases and is correlated with an unfavorable 
prognosis [16].

Anticancer effects of TQ
Nigella sativa L. (also known as black cumin, black 
seed, and black caraway) is a spice that also has been 
used in traditional medicine against a variety of acute/
chronic diseases such as asthma, bronchitis, rheumatism, 
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headache, back pain, anorexia, amenorrhea, paralysis, 
inflammation, mental disability, eczema, obesity, infec-
tions, depression, dysentery, hypertension, gastrointes-
tinal, cardiovascular, hepatic, and renal disorders based 
on antimicrobial/viral, antioxidative, anti-diabetic, anti-
inflammatory, and immunomodulatory properties of its 
components specifically TQ [17–24].

TQ is the main bioactive component of the volatile oil 
of N. sativa [18, 25–27]. Other components of N. sativa 
L. are thymohydroquinone, thymol, carvacrol, nigelli-
dine, nigellicine, and α-hederin [28, 29]. Thanks to chemo 
preventive and anti-tumor properties, TQ and N. sativa 
has been used against various neoplasms including lung, 
hepatobiliary, liver, breast, pancreas, hematopoietic/
leukemia, kidney, bladder, cervix, skin, ovary, prostate, 
osteosarcoma, fibrosarcoma, and colorectal cancers in-
vivo and in-vitro with less cytotoxicity against normal 
cells [18, 20, 22, 25, 30]. Different studies showed that 
TQ could target various mechanisms involved in cancer 
progression including proliferation [21, 22, 24, 30–38], 
migration [21, 30, 32, 34–36, 39–41] invasion/metastasis 
[22, 30, 32, 35, 41, 42], angiogenesis [22, 31, 41], colony 
formation [35, 36], tubulogenesis [43, 44], epithelial-mes-
enchymal transition (EMT) [32, 34, 42, 45], autophagy 
[45–47], and cancer stemness [43].

Furthermore, TQ enhanced tumor cell cytotoxicity [21, 
43, 48], cell cycle arrest at G2/M [49–55], G1/S [19, 31, 
56, 57], S [58], and G0/G1 [30, 38, 42, 48, 50, 59], apopto-
sis [19, 22, 30, 31, 35, 37, 38, 48, 56, 60–65], and necrop-
tosis [66].

A vast variety of proteins and signaling pathways that 
play key roles in cancer pathogenesis are reported to be 
modulated by TQ including inhibition of E2F-1 [67], 
eEF-2  K [21], microphthalmia‑associated transcription 
factor (MITF) [33], Rac1 [40], Notch1 [68], Src/FAK [21, 
31, 69–71], PI3K/Akt/mTOR [21, 31, 34, 36, 48, 72, 73], 
TGF‑β/Smad2/3 [32], Wnt/β-catenin [33, 42], tubulin 
α/β [74], NF-κB and p65 [21, 22, 31], TNF-α [75], anti-
apoptotic proteins (IAP1/2, XIAP, Bcl-2, Bcl-xL Mcl-1, 
c-FLIP and survivin) [22, 30, 31, 48, 50, 62, 63, 76], PD-L1 
[45, 64], HIF-1α [77], MUC4 [69, 78], ENA-78 and Gro 
[79], androgen receptor [67], Plk1 [80], IRAK1 [81], pro-
liferative proteins (cyclin A, cyclin B1, cyclin D1/2/3, 
cyclin E, CDK2/4, c-Myc, Ki-67, PCNA) [22, 31, 42, 48, 
50, 57, 65, 67, 73, 82, 83], CXCR4 [84, 85], Integrin-β1 
[47], Beclin-1 and LC3 [47], COX-2 [22, 84], HSP70 [58], 
u-PA [86], MMP-2/9 [22, 39, 70], MMP-3/7 [42, 87], Trx1 
[88], VEGF [22, 31, 39], ERK1/2 [41, 70, 89], JNK [71, 90], 
NLRP3 [91], BCR-ABL [37], JAK2/STAT3 [31, 37, 65, 
72, 73], FLT3-ITD [38], IL-8 [54], STAT5a/b [37, 72, 73], 
EP2 [92], vimentin, TWIST1, SLUG, SNAIL1, ZEB1, and 
N-cadherin [32, 34, 45], and promoting expression of SH-
PTP2 [31], SHP-1 [38, 93], SOCS-1/3 [38, 93], p16 [50], 

p21 (CIP1/WAF1) [51, 67], p27 (Kip1) [48, 67], activated 
p38/MAPK [61, 69], p53 [40, 48, 50], p62 [46], p73α/β 
[59, 74], PPAR-γ [30], PTEN [52, 72], PKM2 [94], Bax [48, 
62, 63, 95], LKB1/AMPK [96], Par-4 [97], Bad [48], LC3-
II [46], E-cadherin [32, 34, 45, 98], Tristetraprolin (TTP) 
[78], gelsolin [99], TIMP3 [39], HSPA6 [100], Nrf2 [64], 
IL17RD [101], cleavage of caspases-3/7/8/9, and PARP 
[30, 31, 36, 48, 61, 63, 95], TRAIL [102], DR5 (TRAIL-R2) 
[54, 102, 103], cytochrome C release [48, 95] and ROS 
production/oxidative stress [54, 59, 65, 104].

Hypermethylation of tumor suppressor genes which 
leads to the downregulation of these TSGs contributes 
to several malignancies [38] Epigenetic modulation is 
another mechanism of action of TQ to combat cancers, in 
this regard, expression of SHP-1 and SOCS-3, two TSGs 
inhibiting JAK/STAT pathway, increased through TQ-
induced hypomethylation of CpG island of these genes’ 
promoters [38, 93]. This modulation was considered to 
be related with TQ-induced upregulation of TET2 and 
WT1 and downregulation of DNA methyltransferases 
1/3A/3B, UHRF1, HDAC1/2 [38, 59, 88, 105].

Several studies indicated that TQ exerted its anti-can-
cer characteristics via non-coding RNAs such as upregu-
lation of miR-603 [21] and miR-1-3p [39], miR-34a [40, 
106, 107], miR-125a-5p [108], miR-16 [106, 109], miR-
877-5p [45], and miR-375 [109].

In-vitro studies also mentioned the combination of 
TQ with anti-neoplastic agents or flavonoids such as 
thalidomide [31], temozolomide [110], bortezomib [31], 
doxorubicin [30], 5-fluorouracil [30, 111], paclitaxel 
[30], methotrexate [62, 63], cisplatin [79, 112], tamoxifen 
[113], topotecan [114], gemcitabine [68, 94], curcumin 
[36], quercetin [115], and emodin [116] augmented cyto-
toxic effects of these chemicals against cancer cells.

Interestingly, since TQ like other flavonoids and poly-
phenolic compounds are sensitive to light and pH, incor-
poration of TQ into various nanoparticles increased 
its solubility, stability, and improved its efficacy against 
tumor cells [117–119]. Various nanoparticles have been 
used in this manner including chitosan encapsulating 
poly D,L-lactic-co-glycolic acid (PLGA) [118], lipid [120], 
liposome [60, 121, 122], PEG [40], and PLGA [20], zinc 
oxide [123], mesoporous silica [124], and lipid polymer 
hybrid nanoparticles [125].

TQ and colorectal cancer
A multitude of preclinical studies have been conducted 
in the realm of colorectal cancer research (Fig. 1). As pre-
viously discussed, TQ demonstrates a notable cytotoxic 
effect against cancer cells, while sparing normal cells 
[126]. In the study conducted by Eftekhar et  al., it was 
observed that TQ significantly enhances the Area Under 
the Curve (AUC), Maximum Concentration (Cmax), 
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and Time to Reach Maximum Concentration (Tmax) of 
5-FU, thereby augmenting its pharmacokinetic profile. 
Interestingly, even trace amounts of TQ were observed 
to potentiate the growth-inhibitory effects of 5-FU on 
colorectal cancer cells. Furthermore, TQ was found to 
reduce the viability of HT-29 cells in a dose-dependent 
manner, with an IC50 value of 0.284  mM. Notably, the 
combined administration of TQ and 5-FU resulted in 
an enhanced cytotoxic effect compared to the individual 
suppressive impact of 5-FU. This combination demon-
strated a significant suppressive effect at 5-FU concen-
trations of 0.027 and 0.055  mM, suggesting that TQ 
could potentially amplify the growth-suppressive effects 
of 5-FU on cancer cells [127]. The concurrent adminis-
tration of 30  μM imatinib, a tyrosine kinase inhibitor, 
and 10  μM TQ resulted in the suppression of ABCB1, 
ABCG2, and hOCT1, thereby enhancing the uptake of 
imatinib in HCT-116 cells [128]. The combination of 20 
and 40 µM TQ with 0.2 µM cisplatin amplified the cyto-
toxicity of cisplatin in HCT-116 and COLO205 cells. This 
data suggests that TQ potentiates cisplatin-induced cell 
death in a dose-dependent manner, indicating a potential 
role for TQ in augmenting the chemosensitivity of colon 
cancer cells [129]. Research conducted by Osorio-Pérez 
demonstrated a significant reduction in the expression 
levels of miR-21-5p in HCT-15 cells following TQ treat-
ment [130]. Interestingly, the combination of TQ with 
ionizing radiation (IR) enhanced cytotoxicity against 

HT-29 and HCT-116 cells. The combination of a low 
dose of TQ (3 µM) with IR (2 Gy) resulted in complete 
inhibition of sphere formation by the fifth generation. 
This outcome was linked to the suppression of stemness 
and DNA repair mechanisms [131]. An in vivo study was 
conducted to evaluate the protective role of TQ against 
DMH-induced CRC in adult male Wistar rats. Both pre 
and post treatment with TQ significantly inhibited CRC 
initiation and progression. Notably, pre-treatment with 
TQ was more effective than post-treatment. The protec-
tive effects of TQ include reduced ROS production and 
lipid peroxidation (MDA) [132]. Moreover, TQ alone or 
in combination with vitamin D showed favorable out-
comes in Azoxymethane-induced CRC rats [133] (see 
Table 1).

TQ-loaded polymeric nanocapsules were synthesized 
by Ramzy et  al., utilizing the nanoprecipitation tech-
nique, with Eudragit S100 serving as the polymeric shell. 
Anisamide was conjugated as a targeting ligand for sigma 
receptors, which are overexpressed by colon cancer cells. 
The anisamide-targeted nanocapsules exhibited superior 
cytotoxicity compared to non-conjugated nanocapsules 
and free TQ against HT-29 cells following 48 h of incuba-
tion. This increased cytotoxicity can be attributed to the 
high level of sigma receptor expression on HT-29 cells, 
leading to enhanced uptake of nanocapsules [134]. One 
study suggested that TQ has the potential to enhance 
replication fidelity and that the chemo preventive effects 

Fig. 1  TQ, acting via multiple targets, may serve as a potential natural therapeutic agent against CRC. This is achieved through the augmentation 
of apoptosis and oxidative stress, coupled with the attenuation of cell cycle progression/proliferation, inflammation, CRC-associated signaling 
pathways, angiogenesis, and metastasis
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Table 1  Represents the experimental TQ studies on CRC in vitro and in vivo

Study Cells; IC50 Animal model Effects Refs.

In vitro HCT-116; 12 h: 60 µM G1/S cell cycle arrest, enhanced apopto-
sis, increased p53 and p21,
decreased proliferation, reduced Bcl-2

[146]

HCT-116; 24 h: 35 µM

HCT-116; 48 h: 22 µM

In vitro HT-29; 24 h: 51.6 ± 3.0 µM
HT-29; 48 h: 53.3 ± 1.7 µM
HT-29; 72 h: 51 ± 0.7 µM

Enhanced necrosis, decreased prolifera-
tion

[148]

In vitro and In vivo C26; 24 h: 40 μM Female Balb/c mice Enhanced apoptosis and decreased ACF 
(not proliferation) in vivo, decreased 
invasion in vitro

[150]

In vitro HCT-116; 24/48 h: 30/14 μM
LoVo; 24/48 h: 38/28 μM
DLD-1; 24/48 h: 42/23 μM
Caco-2; 24/48: 15/12.5 μM
HT-29; 48 h:110 μM
FHs74Int (Normal Cell Line)

Enhanced apoptosis (caspase-3) 
in DLD-1 (not HT-29), increased ROS 
in DLD-1 and Caco-2, decreased prolif-
eration of all CRC cell lines (not FHs74Int)

[126]

In vitro and In vivo DLD1; 196 μM
HCT116; 118 μM
RKO; 86 μM
HCEC-1CT; 79 μM
HT29; 160 μM
LoVo; 36 μM

ApcMin mice Enhanced apoptosis in polyps, 
decreased proliferation (Ki-67) of villi, 
reduced c-myc expression in polyps 
and in vitro, RAS/RAF/MEK1/2 inhibition, 
Wnt/ β-catenin inhibition, suppressed 
GSK-3β phosphorylation

[143]

In vitro HCT-116 Enhanced apoptosis (increased p21, p27, 
cleavage of caspases-3/7/9 and PARP), 
decreased activated form, JAK2/STAT3 
inhibition, Src inhibition

[145]

In vitro HCT-116; 72 h: GI50: 12.7 ± 0.9 μM
HT-29; 72 h: GI50: 27.3 ± 3.0 μM

Enhanced apoptosis (mainly 
through late apoptotic process), 
increased NQO1 protein level, decreased 
(glutathione) GSH activity

[147]

In vitro HCT-116; 24 h: 64.15 ± 2.80 µM Enhanced apoptosis (increased cas-
pase-3 activity/mRNA levels and Bax 
while decreased Bcl-2) in combination 
with Doxorubicin

[158]

In vitro and In vivo HCT-116; 59.64 μM Immunodeficient female NCr 
nude homozygous mice

Free TQ and TQ-NP decreased tumor vol-
ume/weight alone or with Doxorubicin

[136]

In vitro HT-29 Increased mRNA/protein levels of PPAR-γ [159]

In vitro & In vivo HCT-116; 48/72 h: 40 µM
HCT-116/5FU; 48 h: 60 µM

NOD-SCID mice Enhanced apoptosis (increased p53 
and p21 while reduced NF-κB, PCNA 
and p-MEK protein levels), suppressed 
CD44, decreased migration/invasion 
of 5-FU sensitive and resistant cells
Decreased tumor growth (increased p53, 
p21, γ-H2AX, Iκβα, and reduced PCNA, 
NF-κB (p65), and p-MEK), suppressed 
CD44 in 5-FU sensitive xenograft mice

[160]

In vitro Dox-treated HCT-116; 24 h: 
66.75 ± 2.00 µM

Enhanced apoptosis [161]

In vivo Azoxymethane-induced CRC rats Decreased ACF, Wnt, β-catenin, NF-κB 
and COX-2, while increased DKK-1 
and CDKN1-A mRNA levels, decreased 
TGF-β1, COX-2, HSP-90 and VEGF protein 
levels

[133]

In vitro and In vivo LoVo Nude mice Inhibited migration, decreased p-PI3K, 
p-Akt, p-GSK3β, β-catenin, COX-2, 
and LEF-1/TCF-4 in vitro, Decreased COX-
2, β-catenin, and p-Akt in vivo

[141]

In vitro COLO205
HCT116

Increased chemosensitivity to cisplatin, 
Suppressed NF-κB p65 phosphorylation, 
VEGF, c-Myc, and Bcl-2 protein levels,

[129]
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of TQ in Lynch syndrome are due to this property. TQ 
has been observed to decrease the incidence and mul-
tiplicity of intestinal tumors in Msh2 loxP/loxP Villin-Cre 
mice as well as MSI in Msh2-deficient epithelium [135]. 
Nano formulations of TQ with PLGA and PVA also 
enhanced the efficiency of TQ in HCT-116 xenograft 
models and also showed protective effects against dox-
orubicin-induced cardiotoxicity [136]. Encapsulated TQ 
in lipid nanocapsules (LNCs) enhanced its specificity and 
cellular absorption. In vivo studies revealed that intratu-
moral administration of TQ-LNCs led to a reduction in 
tumor size in mice with colorectal cancer, compared to 
the control group. Interestingly, TQ-LNCs proved to be 
more effective than free TQ in inducing tumor cell death 
[137].

TQ targets signaling pathways
In a study conducted by El-Baba et  al., an experiment 
was performed on colorectal HCT116wt cells using 
the PepChip Kinomics v2 peptide array. Following 

treatment with 40 μM TQ for a duration of 24 h, a sig-
nificant increase in phosphorylation was observed in 
104 proteins. Out of these proteins, 50 proteins and 
kinases exhibited an upregulation of ≥ twofold (out 
of 1152 kinase substrate peptides). Further analysis 
revealed that among the top 50 candidate proteins, 
24 were classified into the cancer-related networks 
“cytoskeleton”, “PI3K/AKT”, and “Wnt signaling”. Upon 
the introduction of TQ, significant structural altera-
tions were observed in P21-Activated Kinase 1 (PAK1), 
which disrupted its scaffold function in the pro-sur-
vival PAK1/MEK/ERK1/2 signaling pathway. This led 
to the modification of several signaling mechanisms: 
The binding affinity between ERK1/2 and PAK1 is 
enhanced, which inhibits the phosphorylation of pPAK-
1Thr212 by ERK1/2. This results in an increase in phos-
phorylation at the Thr423 site, which interferes with 
the catalytic domain of PAK1 and prevents PAK1 acti-
vation. Ultimately, this cascade of events leads to the 
induction of apoptosis [138].

Table 1  (continued)

Study Cells; IC50 Animal model Effects Refs.

In vivo AOM-induced CRC rate Increased DKK-1, CDNK-1A, TGF-β1, 
and Smad4, suppressed Wnt, β-catenin, 
NF-κB, and COX-2 mRNA levels

[162]

In vitro HT-29; 24 h: 59.2 µM
HT-29; 48 h: 68.4 µM

Enhanced apoptosis, decreased prolif-
eration

[163]

In vitro CPT-11-R LoVo; 24 h: 6–8 µM Increased unphosphorylated BAD, 
and reduced phosphorylated BAD
increased autophagic cell death 
(upregulated Atg5, Atg7, Atg12, Bec-
lin-1, LAMP2, LC3-II, and SQSTM1/p62, 
while downregulated Atg3), decreased 
IKKα/β and NF-κB, suppressed EMT 
and metastasis (decreased Snail, Twist, 
vimentin, MMP-2/9), inhibited ERK1/2 
and PI3K, enhanced JNK and p38

[164, 165]

In vitro HCT-116; 24 h: 21.71 µM
HCT-116; 48 h: 20.53 µM
SW480; 24 h: 10.26 µM
SW480; 48 h: 10.50 µM

Decreased colony formation, prolif-
eration, EMT, migration and invasion 
Reduced glucose fermentation, lactate 
production, and ATP production, 
Suppressed HexoKinase 2, PI3K/Akt, 
E-cadherin, increased N-cadherin

[139]

In vitro HT29
SW480
SW620

Enhanced apoptosis, p21, p27, PTEN, 
BAX, Cytochrome-C, Caspase-3
Reduced proliferation, CCND1, CCND3, 
BCL-2, suppressed PI3K/AKT/mTOR

[140]

In vitro HT29
SW480
SW620

Enhanced G2/M cell cycle arrest 
apoptosis, reduced CCND1, CCND3, 
PCNA, survivin, HIF1α, LDHA, and PDHK1, 
inhibited PI3K/AKT/mTOR, RAPTOR, 
and RICTOR, augmented p21, p27, BAX, 
Cytochrome-C, cleaved Caspase-3, PTEN, 
AMPKα, and PDH, increased ROS/RNS, 
MDA, and PCC, while reduced total GSH 
and catalase (CAT)

[61]

In vitro HCT-15; 24 h: 82.59 μM Reduced proliferation, Bcl-2, and miR-
21-5p expression

[130]
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The PI3K/Akt signaling pathway is frequently impli-
cated in the progression of CRC [139]. TQ has been 
observed to inhibit PI3K/Akt activation in CRC cell 
lines, including HCT-116 and SW480 probably through 
enhancing PTEN tumor suppressor [61, 139, 140]. This 
inhibition could potentially alter metabolic reprogram-
ming in CRC cells, as evidenced by the suppression of 
factors and enzymes related to glycolysis and the War-
burg effect, including HIF1α, hexokinase2, PDHK1, and 
LDHA. Conversely, TQ was found to enhance the expres-
sion of the PDH enzyme [61, 139]. The suppression of the 
PI3K-AKT/HK2 pathway is associated with a reduction 
in the tumorigenic capabilities of CRC cells, including 
wound healing and invasiveness [139].

Previous research has suggested that PGE2 enhances 
COX-2 expression by activating the EP4/β-catenin path-
way, implying that PGE2 regulates p-PI3K, p-AKT, and 
p-GSK-3β expression in LoVo cells. It has been noted 
that PGE2 initiates downstream signaling through EP2 
and EP4 to induce a variety of biological reactions. The 
administration of TQ was observed to diminish the 
increase in COX-2 expression induced by PGE2, and 
β-catenin significantly influenced the modulation of 
EP2 and EP4 by PGE2. Hsu et al. reported that TQ suc-
cessfully inhibited PGE2/EP2/EP4-induced activation of 
p-Akt/p-PI3K/p-GSK3β/β-catenin/LEF-1/TCF-4 in LoVo 
cells [141]. Results showed that TQ decreased nuclear 
translocation of β-catenin/LEF-1/TCF-4 in a concentra-
tion-dependent manner which led to downregulation of 
COX-2. Researchers concluded that COX-2 inhibition 
led to suppressing cell migration as well as metastasis 
in vivo [141]. Within the nucleus, β–catenin operates as 
a transcription factor, forming a complex with TCF/LEF 
that binds to DNA enhancer sequences. This interac-
tion results in the upregulation of certain genes, includ-
ing the proto-oncogene c-myc [142]. Research conducted 
by Lang et  al., revealed that TQ translocated β–catenin 
to the membrane, thereby suppressing c-myc expression 
in APCMin mice. TQ was found to inhibit the phospho-
rylation of GSK-3β, likely through the suppression of 
MEK1/2 rather than PI3K. In untreated colorectal cells, 
GSK-3β undergoes phosphorylation at the Ser9 position 
via several pathways (such as Ras-Raf-MEK, PI3K-AKT1, 
and WNT), rendering it inactive. However, follow-
ing TQ administration, there was a decrease in GSK-3β 
Ser9 phosphorylation (which is downstream of Ras, Raf, 
MEK). This results in β-catenin being relocated to the 
membrane and a reduction in nuclear c-myc (due to 
phosphorylation, ubiquitination, and eventual degrada-
tion) [143].

TQ has been reported to increase activated (phospho-
rylated) forms of JNK1/2 and ERK1/2 in DLD-1 cells, 
likely through ROS production. However, this effect 

was abolished after 24 h treatment. No alterations were 
observed in the expression of p-p38 and total p38 protein 
as well as total JNK and ERK protein in response to TQ 
[126]. STAT3 is perpetually active in colon cancer and 
plays a crucial role in cell proliferation by transcription-
ally activating pro-survival genes [144]. The treatment of 
cells with TQ obstructed the continuous phosphorylation 
of STAT3 at the tyrosine-705 residue and reduced the 
nuclear localization of p-STAT3. Furthermore, TQ could 
target EGFR, Src kinase and JAK2. Incubation of 50 μM 
TQ in HCT-116 cells decreased activated form of JAK2 
(p-JAK2) followed by a suppression in p-STAT3 [145]. 
TQ has been identified as a potent inhibitor of NF-κB, 
a key cellular transcription factor. At a concentration of 
60  µM, TQ was found to suppress the phosphorylation 
of NF-κB p65 subunit, resulting in the inhibition of its 
downstream genes including VEGF, c-Myc, and Bcl-2 in 
COLO205 cells [129].

The effects of TQ on cell proliferation/cycle
El-Najjar reported that TQ inhibited the proliferation 
of a panel of CRC cell lines, including HT-29, HCT-116, 
DLD-1, Lovo, and Caco-2, in a time and concentration-
dependent manner. Among these cell lines, Caco-2 was 
the most sensitive and HT-29 was considered the most 
resistant to TQ according to their IC50 [126]. Gali-
Muhtasib et  al. [146] found that TQ arrested the cell 
cycle at G1/S within 24 h/48 h of 60 µM TQ treatment. 
At elevated doses of TQ (100  µM) and with extended 
incubation periods, there was a noticeable accumula-
tion of a sub-G1 peak of hypodiploid cells to the left of 
the G1 peak, along with a corresponding decrease in the 
S population. The G1/S cell cycle arrest is attributed to 
p21/WAF1 expression, which prevents transition to the 
S phase and is enhanced by TQ-induced p53 expression 
[146].

DLD-1 cells were subjected to a treatment of 40  μM 
TQ for either 24 or 48  h, and then collected for flow 
cytometric analysis of DNA content via PI staining. TQ 
induced a significant rise in the proportion of cells in the 
preG1 phase of the cell cycle in a time-dependent man-
ner: at 40  μM TQ for 24  h, it increased from 2.5% to 
18.8%, and for 48 h, it escalated from 4.0% to 31.2% [126]. 
Another study used 10 μM and 20 μM TQ and evaluated 
the effect of TQ following 24 and 72 h. In HCT-116 cells, 
a 24-h exposure to 20 μM TQ led to a notable build-up 
of pre-G1 events with a reduction in G1, S, and G2/M 
events, while no alteration was detected with 10  μM 
TQ. After 72  h, 10  μM TQ triggered a significant G1/S 
halt with diminished G2/M events; at 20  μM, the most 
pronounced disturbance (albeit less than after a 24-h 
treatment) was the build-up of pre-G1 events [147]. TQ 
was observed to increase the proportion of HT29 cells 
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in the G2/M phase, while simultaneously reducing the 
count in the S-phase when compared to untreated cells. 
Conversely, TQ resulted in a halt at the G0/G1-phase 
in SW480 cells. This was accompanied by a decline in 
CCND1 and CCND3 mRNA/protein levels, while an 
increment was observed in p21 and p27 levels [61] In 
addition, TQ lessened the expression of STAT3 target 
gene products, such as survivin, c-Myc, cyclin-D1, -D2, 
and elevated the expression levels of the cell cycle regula-
tory proteins p27 and p21 [145]. The growth of HCT-15 
cells was observed to be suppressed by TQ in a dose-
dependent manner (IC50: 82.59  µM). Furthermore, the 
growth of these cells was adversely affected even when 
exposed to higher doses of TQ [130]. TQ with ioniz-
ing radiation caused G2/M arrest in HT-29 and HCT-
116 cells. While radiation (2  Gy) alone led to a minor 
increase in the proportion of HCT116 cells in the G2/M 
phase, the combination of radiation with TQ (10 µM and 
30  µM) resulted in a significant accumulation of cells 
in the G2/M phase. Furthermore, there was a notable 
decrease in the percentage of cells at G0/G1 in HCT116 
cells treated with 30 µM TQ and radiation. In HT29 cells, 
cell cycle arrest was observed in irradiated cells and in 
cells treated with 60 µM TQ. This effect was more pro-
nounced in cells treated with a combination of TQ and 
radiation compared to either treatment alone. Interest-
ingly, when combined with radiation, TQ led to a signifi-
cant increase in the G2/M population from 21% in the 
control to 26% and 31% at TQ concentrations of 10 µM 
and 60 µM, respectively [131].

The effect of TQ on cell death and induction of apoptosis
Treatment with 100 µM of TQ after 24 h reduced Bcl-2 
and increased apoptosis in a p53-dependent manner 
in HCT-116 cells. The suppression of p53 expression 
curtailed the over-expression of p53 induced by TQ 
and significantly reduced apoptosis, indicating that 
p53 is the primary regulator of apoptosis induced by 
TQ [146]. TQ diminished the expression of the anti-
apoptotic proteins Bcl-2 and Bcl-xl, while it ampli-
fied the expression of the pro-apoptotic protein Bax 
in HCT116 cells following treatment with 25 or 50 µM 
TQ after 24/48/72  h. The administration of TQ to 
HCT116 cells triggered the cleavage of caspase-9, -7, 
and -3, and PARP, and heightened the activity of cas-
pase-3. The pre-treatment of cells with a pan-caspase 
inhibitor z-VAD-fmk nullified the TQ-induced cas-
pase-3 activity, as well as the cleavage of caspase-3 and 
PARP. Furthermore, obstructing the activation of cas-
pase-3 led to the cessation of TQ-induced apoptosis 
[145]. TQ instigated a significant increase in apoptosis 
that was dependent on the concentration after an expo-
sure of 24  h, with most apoptotic events taking place 

in the late-apoptotic quadrant (A+ /PI+), reaching 10% 
for 10  µM and 23% for 20  µM. However, after 72  h, 
there were diminished and non-significant escalations 
in apoptotic cells observed in these cells, even with a 
treatment of 20 µM in HCT-116 cells [147].

Treatment with 100 µM of TQ in HT-29 cells led to an 
increase in the necrosis rate, exceeding 90% after 24  h 
[148]. TQ was found to increase reactive oxygen species 
(ROS), specifically the superoxide radical O2− , which 
subsequently led to DNA damage. This was confirmed by 
the high expression of γH2AX, a marker of DNA dam-
age [149]. ROS production occurred in both p53+/+ and 
p53−/− HCT-116 cells, but was higher in p53+/+ cells. 
Gali-Muhtasib et al. indicated that p53-induced CHEK1 
reduction contributed to apoptosis. Also, CRC clinical 
samples verified that CHEK1 inhibition was observed 
in p53 expressing patients rather than p53 null patients 
[149]. To confirm that p53-induced CHEK1 inhibition 
is related to caspase-3 dependent apoptosis, HCT-166 
p53+/+ and p53−/− xenograft mouse models were estab-
lished, and similar results were obtained [149]. TQ was 
observed to induce the apoptotic cleavage of PARP, 
resulting in an 89 kDa fragment at 24 h. However, in the 
presence of IPA-3, a PAK1 inhibitor, this cleavage was 
more pronounced and occurred earlier, at 6  h. Intrigu-
ingly, the combination of TQ (40 μM) and IPA-3 (10 μM) 
led to a significant increase in cell death and reduced 
cell viability by 70% in HCT-116 wt cells [138]. Among 
CRC cell lines, HT-29 is reported to be the most resist-
ant to TQ-induced apoptosis, while DLD-1 showed TQ-
induced early apoptosis. The rise in apoptosis over time 
due to TQ was further validated by the M30 immunoflu-
orescent pictures, which displayed distinct cytoplasmic 
indications for the M30 antibody following TQ admin-
istration. The M30 cytodeath antibody, which identifies 
a specific caspase cleavage site within cytokeratin 18, is 
a characteristic indicator of early apoptosis initiation. 
Moreover, a 2.5-fold and fourfold surge in caspase-3/7 
activity was noted at 24 h and 48 h respectively, follow-
ing the administration of 40  μM TQ [126]. El-Najjar 
et  al. have stated that oxidative stress is the mechanism 
through which TQ exerts its anti-cancer and pro-apop-
totic effects [126].

Intraperitoneal (i.p.) injection of TQ was found to 
decrease DMH-induced CRC in female bulb/c mice by 
promoting caspase-3 and apoptosis. Similar results were 
obtained in HCT-116 xenograft of this model. Injection 
of TQ significantly decreased both the count and size of 
Aberrant Crypt Foci (ACF) at the 10-week mark, with 
ACF numbers dropping by 86%. Tumor multiplicity was 
also reduced at the 20-week mark, decreasing from 17.8 
in the DMH group to 4.2 in mice injected with TQ. This 
suppression was observed at the 30-week mark and was 
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long-term; tumors did not re-grow even when TQ injec-
tion was discontinued for 10 weeks [150].

The effect of TQ against cancers based on human studies
A phase 1 randomized, double-blind, placebo-controlled 
trial was conducted to assess the safety of a black cumin 
oil formulation containing 5% TQ, administered at a dose 
of 200 mg per adult per day for a period of 90 days, on 
healthy participants. The study did not report any seri-
ous adverse side effects or significant changes in hemato-
logical parameters. Similarly, no significant changes were 
observed in biochemical parameters related to liver func-
tion (ALT, AST, ALP) and renal function (serum creati-
nine and urea). However, the lipid profile analysis showed 
a significant reduction in total cholesterol, LDL, VLDL, 
and triglycerides, albeit within the normal range [151]. 
A clinical trial was conducted in a randomized, double-
blind, placebo-controlled manner to assess the potential 
benefits of Nigella sativa seeds oil as an adjunctive ther-
apy for hypertension, blood sugar regulation, and lipid 
metabolism. The intervention group were given 2.5  ml 
of N. sativa seeds oil twice daily for 8 weeks. There was 
a notable reduction in blood pressure, total cholesterol, 
low-density lipoprotein, MDA, and FBS levels, along with 
a significant rise in high-density lipoprotein and Glu-
tathione Reductase levels [152]. In a separate study, it 
was found that when administered in conjunction with 
a daily dose of 1000 mg Metformin, both 50 and 100 mg 
doses of TQ showed a decrease in HbA1c and blood glu-
cose levels. This combination therapy proved to be more 
effective than the standard treatment of diabetes, which 
involves administering Metformin alone [153]. A study 
conducted by Soleymani and colleagues revealed that a 
hydrogel made from N. sativa had a significant impact 
on alleviating the symptoms of acne vulgaris. The treat-
ment was also found to be well-tolerated by the patients 
[154]. Ammar and others concluded that supplementing 
with black cumin oil, taken as 500  mg soft gel capsules 
three times a day for a duration of 6  months, has been 
found to provide additional benefits when used along-
side metformin in improving conditions related to Poly-
cystic Ovary Syndrome (PCOS). These benefits include 
the resumption of regular menstrual cycles, weight loss, 
alteration in body fat distribution, and the restoration of 
oxidative balance [155].

According to https://​clini​caltr​ials.​gov/, a phase II clini-
cal trial conducted by Nabil investigated the chemopre-
ventive effects of N. sativa. This randomized, controlled 
study (NCT03208790) enrolled 48 patients with pre-
malignant oral lesions1. The participants were given 
either a 10  mg N. sativa tablet to the buccal mucosa, a 
5  mg buccal N. sativa tablet, or a placebo. The primary 
outcome measure was the size of the lesion at 3 months 

post-treatment compared to the initial dimensions. 
Although the study was completed in 2020, the results 
have not yet been published [156, 157].

To the best of our current understanding, there have 
been no clinical studies that specifically investigate the 
impact of TQ on colorectal cancer.

Conclusion
Despite notable progress in surgical and chemotherapy 
procedures, the survival rates of patients with life-threat-
ening diseases such as cancers are still affected by drug 
resistance and adverse side effects experienced under 
chemotherapy or radiotherapy [166]. Hence, it is impera-
tive to fortify exploration and development endeavors 
to enhance the efficacy of prevalent remedial protocols 
while concurrently curtailing their adverse influence 
on patient health and standard of living. In this regard, 
natural agents like TQ have shown immense promise in 
advancing cancer treatment outcomes. Various studies 
have illustrated that TQ, through its capability to mod-
ulate different signaling pathways, can provide potent 
anti-cancer properties. The anti-inflammatory and anti-
oxidant features of TQ have been well documented as 
capable of suppressing colorectal malignancies. Addi-
tionally, TQ may affect cellular processes such as apop-
tosis, angiogenesis, cell cycle, and proliferation, as well as 
metastasis, thereby enhancing its anticancer effects.

In summary, TQ stands as a promising natural thera-
peutic agent that can enhance the efficacy of existing can-
cer treatments while minimizing the associated adverse 
effects. However, further research is of vital importance 
in order to acquire a more comprehensive understanding 
of its exact molecular targets and pathways and maxi-
mize its clinical usefulness. These investigations may 
potentially aid in the development of novel techniques to 
combat drug resistance and surmount the obstacles pre-
sented by chemotherapy and radiotherapy.
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