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Abstract 

Background  Breast cancer is the most common cancer among women. Accumulated evidence over the past 
decades indicates a very high prevalence of human cytomegalovirus (HCMV) in breast cancer. High-risk HCMV 
strains possess a direct oncogenic effect displayed by cellular stress, polyploid giant cancer cells (PGCCs) generation, 
stemness, and epithelial-to-mesenchymal transition (EMT) leading to cancer of aggressive phenotype. Breast cancer 
development and progression have been regulated by several cytokines where the latter can promote cancer cell 
survival, help in tumor immune evasion, and initiate the EMT process, thereby resulting in invasion, angiogenesis, and 
breast cancer metastasis. In the present study, we screened cytokines expression in cytomegalovirus-transformed 
HMECs (CTH cells) cultures infected with HCMV high-risk strains namely, HCMV-DB and BL, as well as breast cancer 
biopsies, and analyzed the association between cytokines production, PGCCs count, and HCMV presence in vitro and 
in vivo.

Methods  In CTH cultures and breast cancer biopsies, HCMV load was quantified by real-time qPCR. PGCCs count in 
CTH cultures and breast cancer biopsies was identified based on cell morphology and hematoxylin and eosin stain-
ing, respectively. CTH supernatants were evaluated for the production of TGF-β, IL-6, IL1-β, and IL-10 by ELISA assays. 
The above-mentioned cytokines expression was assessed in breast cancer biopsies using reverse transcription-qPCR. 
The correlation analyses were performed using Pearson correlation test.

Results  The revealed PGCCs/cytokine profile in our in vitro CTH model matched that of the breast cancer biopsies, 
in vivo. Pronounced cytokine expression and PGCCs count were detected in particularly CTH-DB cultures and basal-
like breast cancer biopsies.

Conclusions  The analysis of cytokine profiles in PGCCs present mostly in basal-like breast cancer biopsies and 
derived from CTH cells chronically infected with the high-risk HCMV strains might have the potential to provide novel 
therapies such as cytokine-based immunotherapy which is a promising field in cancer treatments.
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Introduction
Polyploid giant cancer cells (PGCCs) play an impor-
tant role in tumor heterogeneity; they are implicated 
in tumor initiation, progression, metastasis, and ther-
apy resistance in breast, ovarian, and prostate can-
cers [1, 2]. PGCCs count was associated with tumor 
grade and metastasis degree in patients with breast 
cancer (BC) [3]. PGCCs promote BC metastasis and 
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chemoresistance by modulating the tumor microenvi-
ronment (TME) [1, 4]. The presence of polyploidy was 
identified as a common characteristic among all the 
tumors initiated by oncoviruses [5]. Human cytomegal-
ovirus (HCMV), a ubiquitous beta-herpesvirus, exhib-
its a broad cellular tropism [6]. HCMV genome and/
or antigens were detected in numerous malignancies 
including breast, ovarian, prostate, and colon cancer, as 
well as in neural-derived cancers such as glioblastoma, 
neuroblastoma, and medulloblastoma. The potential 
relation between HCMV and cancer was explained 
by the oncomodulation paradigm [7–12]. Besides the 
oncomodulation paradigm, our research group high-
lighted a direct oncogenic effect of high-risk HCMV 
strains [13–17]. Following human mammary epithe-
lial cells (HMECs) infection, high-risk strains namely, 
HCMV-DB and HCMV-BL transformed HMECs into 
cytomegalovirus-transformed HMECs (CTH cells) [16, 
17]. PGCCs appearance was described in CTH cultures 
and associated with enhanced cell proliferation, activa-
tion of epithelial-to-mesenchymal transition (EMT), 
and stemness processes [17, 18]. Moreover, the expres-
sion of HCMV-IE1 was identified in PGCCs-CTH cells 
[17, 18]. These studies highlighted the emergence of 
PGCCs as a critical factor following HCMV infection.

Numerous studies have described the capacity of 
cytokines to regulate the induction and progression of 
breast cancer. Several interleukins including IL-1, IL-6, 
IL-11, IL-19, and transforming-growth factor β (TGF-β) 
promoted breast cancer cell proliferation and/or inva-
sion [19, 20]. TGF-β, the most studied cytokine in breast 
cancer, plays a dual role in tumor progression. At an early 
stage of tumorigenesis, TGF-β acts as a tumor suppressor 
due to its anti-proliferative effects. At late stages, TGF-β 
induces tumor progression by enhancing cancer cell 
invasion, survival, and immune evasion [21–24]. Further-
more, the presence of TGF-β in the microenvironment 
correlates with tumor progression and poor prognosis 
[22]. IL-6 is capable to convert non-stem cancer cells to 
cancer stem-like cells in breast and prostate cell lines 
[25]. IL-1 and IL-10 are highly expressed in high grade 
breast cancer [26–28]. Further, the IL-1 was associated 
with cancer cells’ proliferation, invasion, angiogenesis, 
and breast cancer metastasis [29, 30]. IL-6, and IL-1 acti-
vate NF-kB and increase cyclin D1 in the normal breast 
cells causing a neoplastic phenotype [31]. Furthermore, 

IL-6 and TGF-β initiate the epithelial-to-mesenchymal 
transition (EMT) process [24, 32–35] leading to cancer 
progression and metastasis [34, 36, 37]. Additionally, 
some cytokines including TGF-β, IL-10 and IL-6 were 
described to facilitate tumor escape [38–41]. Herein, we 
screened cytokines expression in CTH cultures as well 
as breast cancer biopsies, and analyzed the link between 
cytokines production, PGCCs, and HCMV presence 
in vitro and in vivo.

Materials and methods
Cells cultures
Human primary mammary cells (HMECs) were pur-
chased from Life Technologies (Carlsbad, CA, USA). 
HMECs were cultured in HMEC medium supplemented 
with HMEC supplement, bovine pituitary extract, and 
penicillin/streptomycin (Life Technologies) at 37  °C, 
5% CO2, and 95% humidity. HMECs were infected with 
high-risk strains HCMV-DB (KT959235) and HCMV-
BL (MW980585) at MOI of 1 as previously described 
[17, 42]. Following chronic infection, CMV-Transformed 
HMECs (CTH) cells were emerging and cultured in the 
same conditions as HMECs. CTH cells were maintained 
in culture for more than 12  months. Mycoplasma con-
tamination status was monitored on a monthly basis for 
all cultures (VenorGem classic mycoplasma detection, 
Minerva biolabs).

Breast biopsies
Healthy breast biopsies (n = 4) and breast cancer biop-
sies (n = 16: luminal tumor biopsies n = 8 and basal 
tumor biopsies n = 8) were provided by the Regional 
Tumor Bank (BB0033-00024 Tumorothéque Région-
ale de Franche-Comté). The local ethics committees of 
Besançon University Hospital (Besançon, France) and 
the French Research Ministry (AC-2015-2496, CNIL 
n°1173545, NF-S-96900 n ° F2015) permitted the study. 
All patients provide their written informed consent to 
participate in the study.

Viral detection
Real-time qPCR was used to assess the presence of 
HCMV in CTH cultures and breast cancer biopsies. DNA 

(See figure on next page.)
Fig. 1  PGCCs detection in CTH cultures. a An inverted light microscope was used to monitor the chronic CMV-transformed-HMECs (CTH)-BL and 
CTH-DB cultures, Magnification × 100, scale bar 100 μm. b Curves representing the PGCCs count detected in CTH cultures. The Y-axis represents 
the PGCCs count /well, and the X-axis represents the days post-infection. c. Time-course of the viral load in the CTH-DB and BL culture as measured 
by IE1-qPCR. Data are represented as mean ± SD of two independent experiments. Blue and orange curves represent the viral load (copies/ml) as 
measured by IE1-qPCR (Left Y-axis) and PGCCs count/well (Right Y-axis), respectively. The X-axis represents the days post-infection
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Fig. 1  (See legend on previous page.)
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was extracted from CTH supernatants using E.Z.N.A. 
Blood DNA Kit, D3392-02, Omega BIO-TEK). Genomic 
DNA isolated from patient breast tumor biopsies and 
healthy human breast tissue was provided by the Regional 
Tumor Bank (BB0033-00024 Tumorothèque Régionale 
de Franche-Comté). Viral load was quantified by qPCR 
using KAPA SYBR FAST Master Mix (KAPA BIOSYS-
TEMS, KK4601) and IE1 primers (Forward 5’-CGA​CGT​
TCC​TGC​AGA​CTA​TG-3’ and reverse 5’-TCC​TCG​GTC​
ACT​TGT​TCA​AA-3’) according to the manufacturer’s 
protocol. Reactions were activated at 95  °C for 10  min, 
followed by 50 cycles (15 s at 95 °C and 1 min at 60 °C). 
Real-time qPCR reactions were conducted using a Strata-
gene Mx3005P thermocycler (Agilent). Results were ana-
lyzed using MxPro qPCR software.

PGCCs detection and count in CTH cultures and biopsies
CTH cells were monitored by an Olympus optical micro-
scope (Japan) and OPTIKA microscopy digital camera 
(Opticam, Italy). PGCCs present in CTH cultures were 
identified and counted based on cell morphology as previ-
ously reported [18]. PGCCs presence in BC biopsies was 
confirmed by hematoxylin and eosin staining based on 
Zhang et  al. PGCCs description [43]. PGCCs quantifica-
tion was similarly performed for all breast cancer biop-
sies. Briefly, PGCCs were counted in five hot spots of each 
tumor sample in hematoxylin and eosin slides (magnifica-
tion 400X, field diameter 0.45 mm).

Cytokines production and expression in CTH cultures 
and biopsies
Supernatants from CTH cultures were harvested on dif-
ferent days post-infection and evaluated for the pres-
ence of cytokines. ELISA kits were used for the detection 
of Human TGF-β (kit reference 650.010.096, Diaclone, 
France), human IL-6 (kit reference 851.520.001, Diaclone, 
France), human IL-1β (kit reference 851.610.001, Diaclone, 
France), and human IL-10 (kit reference 851.540.005, Dia-
clone, France) in CTH supernatants. ELISA assays were 
performed according to the manufacturer’s protocol.

Cytokines expression in breast cancer biopsies was 
evaluated by reverse transcription-quantitative polymer-
ase chain reaction (RT-qPCR). Total RNA was extracted 
from BC biopsies using E.Z.N.A. Total RNA Kit I (Omega 
Bio-Tech, GA, USA). Following DNase I treatment 

(ThermoFisher), reverse transcription was performed using 
the SuperScript IV First-Strand Synthesis kit (Invitrogen, 
Carlsbad, CA, USA). Expression of TGF-β, IL-6, IL1-β, 
and IL-10 was measured by real-time qPCR using KAPA 
SYBR FAST Master Mix (KAPA BIOSYSTEMS, KK4601) 
and specific primers (listed in Additional file 1: Table S1) 
according to the manufacturer’s protocol. The cytokines 
analyzed in the tissue samples were normalized to the 
housekeeping gene GAPDH. The GAPDH primers used 
are listed in Additional file 1: Table S1.

Statistics
The statistic software SPSS 23 was used to analyze the 
data. Correlation analyses were performed using Pear-
son correlation test. p-value ≤ 0.05 was considered signifi-
cant. Plots and histograms were executed using Microsoft 
Excel. Data are presented as mean ± SD of two independent 
experiments.

Results 
Kinetics of PGCCs appearance in CTH cultures
CTH cells were maintained in culture for more than 
12  months as previously reported [17, 18]. After chronic 
infection, CTH cells exhibit an extremely heterogeneous 
population. Compared to uninfected HMECs, we identi-
fied the presence of large cells with morphological hetero-
geneity in chronic CMV-transformed-HMECs (CTH)-BL 
and CTH-DB (Fig.  1a, red arrows). Besides the presence 
of small-sized cells, giant cells with large nuclei, as well 
as giant cells with blastomere-like morphology and mes-
enchymal cells, were identified in CTH cultures parallel 
to the asymmetric cell division patterns; these giant cells 
were named PGCCs as previously reported [17, 18]. The 
PGCCs count was monitored from day 171 to 404 and 
from day 243 to 390 in chronically infected CTH-DB and 
CTH-BL cultures, respectively. The PGCCs count in CTH-
BL cultures increased slightly at day 343 post-infection and 
reached a peak at days 371, 374, and 378 post-infection. A 
higher PGCCs count was observed in CTH-DB cultures, 
especially at day 369 post-infection (Fig. 1b). Furthermore, 
we assessed the presence of HCMV in CTH cultures using 
real-time qPCR. HCMV viral load was higher in CTH-
BL compared to CTH-DB cultures. Viral replication was 
noticed in the presence of low PGCCs count in CTH cul-
tures (Fig. 1c).

Fig. 2  Cytokines production in CTH cultures. Cytokines TGF-β (a), IL-10 (b), IL-1β (c), and IL-6 (d) were measured in supernatants of CTH cultures by 
ELISA kits. Remarkably, TGF-β concentration was enhanced along with the PGCCs count in the CTH-DB culture. IL-10 concentration was reduced in 
the CTH-BL culture with the presence of a high PGCCs count. The higher IL-6 expression was detected in CTH-DB culture. Data are represented as 
mean ± SD of two independent experiments. Blue and orange curves represent the cytokine concentration (pg/ml) (Left Y-axis) and PGCCs count/
well (Right Y-axis), respectively. The X-axis represents the days post-infection

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Kinetics of cytokines production (TGF‑β, IL‑1β, IL‑6, 
and IL‑10) in CTH cultures
We assessed cytokines production in CTH cultures using 
ELISA assays (Fig.  2). The cytokine TGF-β was detected 
in CTH-BL and DB cultures at a concentration ranging 
between 500 and 3400  pg/ml. The highest TGF-β con-
centration was noticed at day 343 post-infection in CTH-
BL culture. Remarkably, the TGF-β concentration was 
increased along with the PGCCs count in the CTH-DB 
culture (Fig. 2a). The production of IL-10 and IL-1β slightly 
varied between CTH-BL and CTH-DB cultures (Fig.  2b 
and c). Particularly, IL-10 concentration was decreased in 
the CTH-BL culture with the presence of a high PGCCs 
count (Fig. 2b). Higher expression of IL-6 was induced in 
CTH-DB compared to CTH-BL (Fig. 2d).

Correlation between PGCCs/cytokine production depends 
on the HCMV strain (DB versus BL)
We analyzed the link between viral load or PGCCs 
presence and cytokines production using Pearson’s 
correlation test. We noticed a statistically significant 
negative correlation between IL-10 expression and 
PGCCs count in CTH-BL (r = -0.444, p-value = 0.05) 
(Fig.  3 and Table  1). Furthermore, TGF-β or all 
cytokines production were strongly and positively 
correlated with PGCCs count in CTH-DB culture 
(r = 0.519, p-value = 0.02, and r = 0.519, p-value = 0.02, 
respectively) (Fig.  3). No other statistically signifi-
cant correlation was detected between the remaining 
cytokines and PGCCs count (Table  1. For example, 
a non-significant negative correlation was detected 

Fig. 3  Correlation between PGCCs count and cytokines production in CTH cultures. Pearson’s correlation between PGCCs count and cytokine 
production was conducted in CTH cultures. A statistically significant negative correlation was detected between IL-10 expression and PGCCs count 
in CTH-BL culture. Moreover, a significant strong positive correlation was observed between PGCCs count and TGF-β or all cytokines production in 
CTH-DB cultures. The X-axis represents cytokine concentration (pg/ml), and the Y-axis represents PGCCs count. All cytokines: TGF-β, IL-6, IL10, IL-1β, 
Pro-inflammatory cytokines: IL-1β and IL-6. (r) stands for correlation coefficient and (*) shows significant p-value ≤ 0.05
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between PGCCs count and IL-6 production in CTH-
DB culture (r = -0.427, p-value = 0.06) (Fig.  3). No 
significant correlation was found between HCMV 
presence (IE1 gene) and cytokines production (Fig. 4).

Detection of PGCCs and cytokines, as well 
as the correlation between PGCCs/cytokine expression 
in BC biopsies
To further decipher the relation between PGCCs 
count and cytokine production in  vivo, we analyzed 
sixteen breast cancer biopsies (luminal n = 8 and basal-
like n = 8) parallel to four healthy mammary biopsies 
for the presence of PGCCs, HCMV, as well as cytokine 
expression. The pathological data for the sixteen breast 
cancer biopsies were provided in Table 2. PGCCs with 
giant or multiple nuclei were detected in human breast 
cancer biopsies, in particular basal-like breast cancer 
biopsies (Fig.  5, arrows). Compared to healthy biop-
sies, high expression of TGF-β, IL-1β, and IL-10 was 
reported in BC biopsies, notably in basal-like biop-
sies; a slight variation in IL-6 expression was noticed 
in BC biopsies (Fig. 6). Hence, all cytokines as well as 
pro-inflammatory cytokines were highly expressed in 
basal-like BC biopsies compared to healthy biopsies 
(Fig. 6). As we previously confirmed the positive corre-
lation between PGCCs count and HCMV presence in 
basal-like breast cancer, we assessed the expression of 
cytokines in these PGCCs-positive basal-like biopsies. 
A statistically significant strong positive correlation 
was identified between HCMV presence and IL-10, 

IL-6, all cytokines, and pro-inflammatory cytokines 
in PGCCs-positive basal-like biopsies (r = 0.899 
p-value = 0.04, and r = 0.924, p-value = 0.03, r = 0.961, 
p-value = 0.009, and r = 0.882, p-value = 0.05, respec-
tively) (Fig. 7).

Discussion
Polyploid giant cancer cells (PGCCs) were previously 
found in vitro and in vivo, and are especially noticeable 
in poorly differentiated, late-stage, and treatment-resist-
ant cancers [44–46]. PGCCs count is increased in high 
breast tumor grade and lymph node metastases which 
suggests a relation between PGCCs and tumor recur-
rence potential [3]. Moreover, PGCCs were found in 
MDA-MB-231 and MCF7 breast cancer cell lines [43, 47, 
48]. PGCCs induced a mesenchymal phenotype and dis-
played stem-like properties [3, 43, 46]. In line with these 
studies, PGCCs were mainly detected in basal-like com-
pared to luminal biopsies. Further, our CTH cells that 
exhibit PGCCs following chronic HCMV infection were 
described to display mesenchymal and embryonic-like 
stemness features [17, 18]. As oncoviruses might trigger 
PGCCs formation [5], it is worth mentioning the absence 
of any other oncovirus in our viral stocks and CTH cul-
ture, thus confirming that the detected PGCCs pheno-
type is due to HCMV.

Furthermore, cytokines were described to regulate the 
induction and protection in breast cancer [31]; overex-
pression of several cytokines was described in estrogen 
receptor-negative breast carcinoma [26]. We mainly 
detected high expression of TGF-β, IL-1β, and IL-10 in 
basal-like breast cancer compared to healthy and lumi-
nal biopsies. In agreement with our data, TGF-β and 
IL-6 were described to promote epithelial to mesenchy-
mal transition by downregulating the expression of cell 
adhesion genes and upregulating the cell motility genes 
and genes associated with the mesenchymal phenotype 
[24, 32–34, 49]. This regulation could lead to a complete 
mesenchymal process (C-EMT) which was strongly asso-
ciated with basal-like tumors [50, 51]. Additionally, ER-
positive breast tumor cells were described to produce 
lower levels of IL-6 than ER-negative breast tumor cells 
[52]. Overexpression of IL-6 exhibits an epithelial-to-
mesenchymal transition (EMT) phenotype in MCF7 cells 
and promotes their invasiveness [53]. In line with this 
study, higher IL-6 production was detected in CTH-DB 
cultures that previously exhibited more EMT features 
compared to CTH-BL cultures [17, 18]. However, the 
inhibition of IL-6 and IL-8 in TNBC cell lines decreased 
cell survival as well as colony formation, and prevented 
tumor growth in  vivo [54]. Likewise, the expression of 
IL-1β was mainly reported in a highly malignant inva-
sive mammary cell line (such as MDA-MB-231) [28, 55, 

Table 1  Correlation between PGCCs count and cytokines 
production in CTH cultures

All cytokines: TGF-β, IL-6, IL10, IL-1β, Pro-inflammatory cytokines: IL-1β and IL-6. 
(r) stands for correlation coefficient and (*) shows significant p-value ≤ 0.05. 
PGCCs Polyploid giant cancer cells, CTH Cytomegalovirus-Transformed HMECs, 
TGF-β Transforming growth factor beta, IL Interleukin

Correlation between PGCCs 
and the cytokines below

r p-value

CTH-BL TGF-β − 0.127 0.59

CTH-DB 0.519 0.02*
CTH-BL IL-10 − 0.444 0.05*
CTH-DB 0.097 0.68

CTH-BL IL-1β − 0.291 0.21

CTH-DB 0.265 0.26

CTH-BL IL-6 0.115 0.63

CTH-DB − 0.427 0.06

CTH-BL All cytokines − 0.127 0.59

CTH-DB 0.519 0.02*
CTH-BL Pro-inflammatory cytokines − 0.291 0.21

CTH-DB 0.265 0.26
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56]. In agreement with our in vivo outcomes, high levels 
of IL1-β were linked to breast cancer aggressiveness and 
poor prognosis [26, 57]. In addition, high expression of 
IL-10 was reported in breast tumors [26, 58].

Cytokines play a critical role not only in tumor growth 
and metastases but also in tumor evasion.

For instance, the anti-inflammatory cytokine IL-10 
inhibits cytokine production and antigen presentation by 
T cells and macrophages [38, 39]. TGF-β was described to 
suppress natural killer cells (NK) and promote regulatory 
T-cell activity through a neuropilin-1-mediated mecha-
nism [24, 59, 60]. This could explain the high IL-10 and 
TGF-β expression detected in the poor prognosis basal-
like breast cancer biopsies compared to the luminal and 
healthy breast biopsies. Additionally, HCMV-infected 
tumor cells produce immunosuppressive cytokines such 
as IL-10 to escape the immune responses and counteract 

the pro-inflammatory cytokines production [8, 61]. 
This might be in line with the significant strong correla-
tion detected between HCMV replication (IE1 expres-
sion) and IL-10 production in PGCCs-positive basal-like 
biopsies.

The HCMV-encoded IL-10, a homolog of the potent 
human interleukin 10 (hIL-10), possesses a range of 
immunomodulatory functions, including suppression of 
pro-inflammatory cytokine production. [62–64]. During 
viral latency, the expression of latency-associated cmvIL-
10 (LAcmvIL-10), another isoform of the virus-encoded 
IL-10, modulates the microenvironment of infected cells 
and allows immunity evasion [65]. Furthermore, the 
immune suppressive cytokine TGF-β was reported to 
stimulate HCMV replication in fibroblast cultures [66]. 
HCMV produces TGF-β in different tumor cell types 
including glioblastoma, leukemia, and osteosarcoma cells 

Fig. 4  Correlation between HCMV presence and cytokines production in CTH cultures. Pearson’s correlation between viral load and cytokine 
production was conducted in CTH cultures. No significant correlation was identified between IE1 gene expression and cytokines production. The 
X-axis represents cytokine concentration (pg/ml), and the Y-axis represents viral load as measured by IE1 detection using qPCR (copies/ml). All 
cytokines: TGF-β, IL-6, IL10, IL-1β, Pro-inflammatory cytokines: IL-1β and IL-6. (r) stands for correlation coefficient
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[67, 68]. The HCMV IE2 protein enhances TGF-β gene 
transcription by interacting with the Egr-1 DNA-binding 
protein [69]. Moreover, a comparative study showed that 
HCMV-IE proteins activated the TGF-β promoter in the 
absence and presence of HCMV infection [68]. Hence, 
the production of TGF-β by HCMV could influence the 

infected cells, neighboring tissues and immune responses 
to benefit from the stimulating viral replication and 
avoid immune responses through the negative regulatory 
effects of TGF-β on lymphocytes functions [9, 70, 71]. 
This could further explain the enhanced expression of 
TGF-β detected in CTH cultures and basal-like biopsies.

Latency was reported to be essential for transforma-
tion induced by oncogenic herpesviruses [17, 72]. HCMV 
persistence was described in tubular epithelial cells [73], 
neural stem cells [74], and osteogenic sarcoma-derived 
cells [75]. Furthermore, the detection of some lytic blips 
suggests that both lytic viral replication and viral latency 
are essential to promote and maintain CTH transforma-
tion as previously reported for the other two oncogenic 
herpesviruses, namely EBV and Kaposi’s sarcoma-asso-
ciated herpesvirus (KSHV) [76, 77]. In addition, the 
detection of different PGCCs count and cytokine con-
centrations in CTH cultures suggests that the diversity 
of HCMV strains could affect the exhibition of PGCCs 
and cytokines production. Several studies showed that 
HCMV disease and pathogenesis could be related to 
HCMV genome diversity [78, 79]. Increasing evidence 
suggests an association between HCMV genetic diversity 
and HCMV pathogenesis that could also modulate onco-
modulation/oncogenesis [80, 81].

PGCCs detection and cytokines expression depend 
not only on breast cancer type but also on the tumor 
microenvironment (TME). The composition of TME is 
modified by PGCCs through the recruitment of diploid 
cancer cells from adjacent zones; these diploid cells can 

Table 2  Pathological data of breast cancer biopsies

ND Not determined

Biopsies # ER PR HER2 Histo Type Elston Ellis Grade Vascular 
emboli

TNM

Luminal biopsies #1 95 10 0 Lobular II (3,2,1) No T2N0Mx

#2 100 95 0 Ductal II (2,2,2) No T2N0Mx

#3 95 90 0 Ductal II (3,2,1) No T1cN0Mx

#4 95 70 0 Ductal II (3,2,2) No T2N1Mx

#5 100 100 0 Ductal I (2,1,1) No ND

#6 80 90 0 Lobular II (3,2,1) No T2N1Mx

#7 95 95 0 Ductal I (2,2,1) No T1cN1mi

#8 99 15 0 Ductal III (3,2,3) No T3N1miMx

Basal biopsies #9 0 0 0 Ductal III (3,3,3) No T2N2aMx

#10 0 0 0 Ductal III (3,2,3) ND ND

#11 0 0 0 Ductal III (3,3,3) Yes ND

#12 0 0 0 Ductal III (3,3,3) Yes ND

#13 0 0 0 Ductal III (3,3,3) Yes ND

#14 0 0 0 Ductal III (3,3,2) Yes ND

#15 0 0 0 Ductal III (3,3,3) Yes T2N1mi

#16 0 0 0 Ductal III (3,2,3) ND T2N0

Fig. 5  PGCCs detection in breast cancer biopsies. Presence of PGCCs 
in breast cancer biopsies (arrows). The tissue was stained using HES. 
Magnification: 40X. Scale bars are 50 μm
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Fig. 6  Cytokines expression in breast biopsies. Histogram representing the expression of TGF-β, IL-10, IL-6, IL-1β, all cytokines and pro-inflammatory 
cytokines in healthy breast biopsies, all breast cancer biopsies (BC), as well as luminal and basal biopsies. Cytokines expression in biopsies was 
assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Data are represented as mean ± SD of two independent 
experiments

Fig. 7  Correlation between HCMV presence and cytokines expression in PGCCs-positive breast biopsies. Pearson’s correlation between HCMV 
load and cytokines expression was conducted in luminal and basal breast cancer biopsies. A statistically significant strong positive correlation was 
observed between HCMV presence and IL-10, IL-6, all cytokines, and pro-inflammatory cytokines in PGCCs-positive basal-like biopsies. The X-axis 
represents cytokine expression (Ct value), and the Y -axis represents viral load as measured by IE1 qPCR (Ct value). All cytokines: TGF-β, IL-6, IL10, 
IL-1β, Pro-inflammatory cytokines: IL-1β and IL-6. (r) stands for correlation coefficient. *p-value ≤ 0.05; **p-value ≤ 0.01
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ultimately become PGCCs [82]. Additionally, PGCCs 
progeny formation was described to be a part of the 
TME. PGCCs stemness, metastasis, vasculogenic mim-
icry and chemoresistance were recognized as the out-
comes of the dynamic relationship between PGCCs and 
the TME [1]. Tumor cells secrete cytokines that recruit 
and activate other cells in the TME. Moreover, cytokines 
induce a tumor-supportive immune microenvironment 
by inhibiting anti-tumor immunity [83]. The inactiva-
tion of NF-kB in myeloid cells was described to reduce 
cytokines expression and tumor size [84]. The inflam-
matory cytokines including IL-1β, IL-6, IL-8, and CCL-5 
that are induced by NF-kB promote tumor growth 
through the induction of cell proliferation [85]. The 
tumor-associated macrophage (TAMs), tumor-associated 
neutrophils (TANs), myeloid-derived suppressor cells 
(MDSC), and regulatory cells (Tregs) present in the TME 
are associated with poor prognosis. They produce IL-10 
and TGF-β that suppress the activity of NK cells, T and 
B lymphocytes in the TME, allowing the proliferation 
and survival of cancer cells [85]. Also, TAMs, endothelial 
cells, and fibroblasts in the TME induce angiogenesis via 
IL-6, IL-8, and TGF-β [86–88]. TAMs promote metasta-
sis and invasion in breast cancer through the secretion 
of IL-1β [31, 89]. TAMs, the most abundant cells in the 
TME, were associated with poor prognosis, especially 
in basal-like breast cancer [90, 91]. Furthermore, the 
pro-metastatic microenvironmental factor S100A4 was 
described to stimulate basal-like breast cancer cells to 
secrete pro-inflammatory cytokines that convert mono-
cytes into TAM-like cells [92]. In line with this data, we 
detected the highest expression of the pro-inflammatory 
cytokines, IL-1β and IL-6, in basal-like breast cancer. 
Moreover, the abundant presence of TAMs in basal-like 
breast cancer could explain the high expression of TGF-β 
and IL-10 detected in basal biopsies compared to lumi-
nal ones. Hence, we highlighted the critical relationship 
between PGCCs/cytokines present in the TME and the 
basal-like breast cancer. Furthermore, the significant 
strong correlation identified between HCMV presence 
and the expression of IL-10, IL-6, all cytokines and pro-
inflammatory cytokines suggested that HCMV presence 
could regulate cytokines expression in basal-like BC 
biopsies. High HCMV load might favor EMT features 
and immune evasion in basal-like BC biopsies by upreg-
ulating the expression of cytokines, particularly IL-10 
and IL-6. Thus, our outcomes underline the strong link 
between HCMV load, PGCCs presence and cytokines 
expression in basal-like breast cancer that displays the 
most aggressive phenotype.

The in  vitro PGCCs/cytokine profile present in our 
CTH model matched the in vivo PGCCs/cytokine pro-
file identified in breast cancer biopsies. The highest 

IL-6 expression usually linked to EMT and PGCCs 
count was identified in CTH-DB culture and basal-like 
biopsies that harbor the most malignant phenotype 
[17, 18, 93]. Finally, telomere dysfunction-driven poly-
ploidization is a universal source of tumor evolution 
that occurs continuously during neoplastic cell growth 
[94]. Oncoviruses deregulate telomerase activity and 
telomere length and promote cancer development [95]. 
Interestingly, HCMV activates telomerase [96], and 
favors the appearance of PGCCs which are considered 
as hallmarks of oncoviruses [5]. Further studies are 
needed to investigate the relationship and underlying 
mechanisms between polyploid cancer cells, cytokines 
production, and cytomegalovirus.

Our study has some limitations to address. To start 
with, the limited sample size; higher sample size 
enhances the significance level of our findings. Fur-
thermore, the restricted cytokine evaluation; assess-
ing more cytokines in CTH cultures and breast cancer 
biopsies might highlight the potential role of HCMV 
in cytokine production and cancer progression. Addi-
tionally, the absence of characterization of inflamma-
tory cells that might underline the link between HCMV, 
cytokine production and cancer progression.

Conclusion 
In conclusion, our findings revealed for the first time an 
association between high-risk HCMV strains, PGCCs 
formation, and cytokines production in vitro and in vivo. 
Our study presents a proof-of-concept for highlight-
ing the cytokine profile in breast cancer, particularly 
the basal-like breast cancer, parallel to the presence of 
PGCCs and HCMV detection, thereby opening the door 
toward new therapeutic approaches in breast cancer 
patients with poor prognostic characteristics.
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