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Abstract 

Background  Colorectal tumor differentially expressed (CRNDE) is specifically expressed in human brains and is the 
most highly expressed lncRNA in gliomas. Nevertheless, its implications in low grade glioma (LGG) are still indistinct. 
This study presented systematic analyses of CRNDE in LGG biology.

Methods  We retrospectively retrieved TCGA, CGGC and GSE16011 LGG cohorts. Survival analysis was conducted for 
evaluating the prognostic significance of CRNDE in LGG. A CRNDE-based nomogram was established, and its pre-
dictive performance was verified. Signaling pathways underlying CRNDE were analyzed through ssGSEA and GSEA 
approaches. The abundance of immune cells and activity of cancer-immunity cycle were estimated with ssGSEA 
approach. Immune checkpoints, HLAs, chemokines, and immunotherapeutic response indicators (TIDE, and TMB) was 
quantified. U251 and SW1088 cells were transfected with specific shRNAs of CRNDE, and flow cytometry (apoptosis) 
and western blot (β-catenin and Wnt5a) assays were conducted.

Results  Up-regulated CRNDE was found in LGG, and was linked to unfavorable clinical outcomes. The CRNDE-based 
nomogram enabled to accurately predict patients’ prognosis. High CRNDE expression was linked to more genomic 
variations, activity of tumorigenic pathways, tumor immunity (increase in infiltration of immune cells, expression of 
immune checkpoints, HLAs and chemokines, and cancer-immunity cycle), and therapeutic sensitivity. CRNDE knock-
down mitigated malignant phenotypes of LGG cells.

Conclusions  Our study determined CRNDE as a novel predictor for patient prognosis, tumor immunity and thera-
peutic response in LGG. Assessment of CRNDE expression is a promising approach for predicting the therapeutic 
benefits of LGG patients.
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Background
Gliomas are the dominating primary central nervous 
system malignancies of human brains [1], which are clas-
sified as low grade glioma (LGG, composed of astrocy-
toma, oligoastrocytoma, and oligodendroglioma; grade I, 
II, and III) and glioblastoma (grade IV) [2]. LGG is a rela-
tively slow-growing, invasive, progressive brain tumor, 
which usually occurs in the third and fourth decade of 
life [3]. Surgical resection, radiotherapy, and temozolo-
mide chemotherapy all exert roles in the clinical manage-
ment of LGG [3]. Nevertheless, the sequence and optimal 
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timing are still debated. Advance in the tumor microenvi-
ronment and the brain’s immune response have inspired 
immunotherapy research. However, the validation of 
classic PD-1/PD-L1 inhibitors failed in phase III clinical 
trials among glioma patients [4]. More effective molecu-
lar targets are required against LGG.

Colorectal tumor differentially expressed (CRNDE), 
long noncoding RNA (lncRNA), is expressed in specific 
regions of the human brain as well as is the most highly 
expressed lncRNA in gliomas [5]. Experimental evidence 
has demonstrated the roles of CRNDE in gliomas. For 
instance, CRNDE triggers growth and invasion of glioma 
cells via mTOR signaling [5]. Knockdown of CRNDE 
heightens temozolomide sensitivity via autophagy in 
glioblastoma [6]. CRNDE facilitates malignant progres-
sion of gliomas through inactivating miR-384/PIWIL4/
STAT3 signaling [7]. Up-regulated CRNDE acts as an 
unfavorable prognostic indicator of glioblastoma patients 
[8]. Nevertheless, the functions and possible mecha-
nisms of CRNDE in LGG have not been expounded. 
Our study was conducted for uncovering the implica-
tions of CRNDE in prognosis, tumor immunity as well 
as therapeutic sensitivity in LGG patients. In addition, 
in vitro experiments were conducted to verify the roles of 
CRNDE in LGG progression.

Materials and methods
Data retrieval
RNA-seq profiling (fragments per kilobase per million 
(FPKM)) and matched clinical information of pan-cancer 
tissue samples were obtained from The Cancer Genome 
Atlas (TCGA) database utilizing TCGAbiolinks pack-
age [9]. The FPKM value was converted into transcripts 
per kilobase million (TPM) value. Single nucleotide vari-
ants (SNVs) (mutation annotation format), copy number 
variations (CNVs), aneuploidy score, tumor mutational 
burden (TMB), cancer-testis antigen (CTA) score, 
homologous recombination defects, intratumor het-
erogeneity, SNV neoantigens, SCNA level, immune sub-
types and stemness score (mRNA expression based-index 
(mRNAsi)) of LGG samples were also retrieved from 
TCGA database. Transcriptome data and matched clini-
cal data of LGG patients were also obtained from Chi-
nese Glioma Genome Atlas (CGGC) and GSE16011, as 
an external validation. Additional file 1: Fig. S1 illustrates 
the schematic diagram of our study design.

Genomic variation analysis
The mutational landscape was visualized through 
maftools package [10]. CNVs were analyzed utilizing 
GISTIC 2.0 for identifying arm- or focal-level variations 
in TCGA LGG samples [11].

Functional enrichment analyses
The ssGSEA approach was applied for estimating the 
standardized enrichment score utilizing GSVA pack-
age [12]. The gene expression values of LGG samples 
were ranked and the rest of the genes was used for gen-
erating enrichment scores in a specific signature. The 
gene set files “c5.go.bp.v7.5.1.symbols”, “c2.cp.kegg.
v7.5.1.symbols” and “” and hallmark were obtained 
from the Molecular Signatures Database (MSigDB) 
[13]. The markers in known biological pathways were 
collected from previously published literature [14]. 
Gene set enrichment analysis (GSEA) of TCGA LGG 
samples was carried out utilizing GSEA software [15].

Analysis of tumor immunity signatures
Tumor immunity signatures were assessed in two 
aspects. (1) The expression of immune checkpoints, 
human leukocyte antigen (HLA) genes and chemokines 
was measured. (2) ssGSEA was utilized for quantifying 
the abundance of immune cell fractions on the basis of 
the gene sets from Charoentong’s study [16]. The frac-
tions of stromal and immune cell types in LGG tis-
sues were computed with the Estimation of STromal 
and Immune cells in MAlignant Tumor tissues using 
Expression data (ESTIMATE) algorithm [17].

Evaluation of therapeutic response
The gene sets of seven steps within the cancer-immu-
nity cycle were collected from previously published 
literature [18]. Above events were scored by ssGSEA 
utilizing gene expression for each LGG tissue. Tumor 
Immune Dysfunction and Exclusion (TIDE) tool 
(http://​tide.​dfci.​harva​rd.​edu/) was utilized for calculat-
ing the TIDE score [19]. High TIDE score predicts poor 
benefit from immunotherapy. TMB each megabase 
was computed through the ratio of the total number 
of mutations in each LGG tissue to the genome size of 
the coding region (40  Mb), as a biomarker of immu-
notherapeutic response. Drug response data were col-
lected from the GDSC dataset [20]. The 50% inhibiting 
concentration (IC50) values of therapeutic compounds 
were inferred utilizing pRRophetic algorithm [21].

Cell culture and transfection
U251 and SW1088 cells (ATCC) were grown in DMEM 
supplemented with 10% fetal bovine serum (Sigma 
Aldrich) in a humidified atmosphere of 5% CO2 at 
37  °C. Short hairpin RNA (shRNA) targeting CRNDE 
or scramble shRNA (Genechem) was cloned into len-
tiviral vectors, followed by transfection into U251 and 
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SW1088 cells for 3 days and exposure to 4 μg/mL puro-
mycin for one week.

RT‑qPCR
Total RNA was extracted from cells utilizing TRIzol 
reagent (Beyotime), which was quantified via Nan-
odrop 1000. cDNA was reverse-transcribed from 
500  ng extracted RNA utilizing PrimerScript RT Mas-
ter Mix (Takara) and diluted at 1:20 with DEPC water. 
RT-qPCR was then carried out through SYBR Green II 
Mixture (TaKaRa) in an ABI 7900 system (ABI). 2−ΔΔCt 
method was utilized to calculate the relative expression 
of CRNDE with GAPDH as an internal reference. The 
primer sequences were as follows: CRNDE, 5’-TGA​AGG​
AAG​GAA​GTG​GTG​CA-3’ (forward), 5’-TCC​AGT​GGC​
ATC​CTA​CAA​GA-3’ (reverse); GAPDH, 5’-GGT​CTC​
CTC​TGA​CTT​CAA​CA-3’ (forward), 5’-GTG​AGG​GTC​
TCT​CTC​TTC​CT-3’ (reverse).

Flow cytometry
Cell apoptosis detection kit (KTA0002; Abbkine) was 
adopted for flow cytometry. Briefly, cell suspension was 
incubated with 5 μL Annexin V-AbFluor™ 488 binding 
and 2 μL PI at room temperature and away from light 
for 15  min. After adding 400 μL 1× Annexin V buffer, 
apoptotic level was measured utilizing Flow cytometer 
(Beckman).

Western blot
Cells were lysed in RIPA buffer (Beyotime), followed 
by protein concentration measurement utilizing BCA 
method. Equal protein amount was loaded onto 10% 
SDS-PAGE and transferred onto PVDF membranes. 
After blockade in 5% non-fat milk for one hour, the 
membranes were incubated with primary antibody of 
β-catenin (1:1000; ABM0057; Abbkine), Wnt5a (1:1000; 
55184-1-AP; Proteintech), or GAPDH (1:3000; ab8245; 
Abcam) at 4  °C overnight, followed by secondary anti-
body incubation. The membranes were developed, and 
visualized via gel imaging system (Bio-rad).

Statistical analysis
Univariate Cox regression models were established for 
computing hazard ratio (HR) and confidence inter-
val (CI) of CRNDE expression. CRNDE expression and 
clinical variables were employed for univariable and 

multivariate models. The forest plots were drawn to vis-
ualize the above results. A nomogram was established 
based on independent prognostic factors. Concordance 
index (C-index), calibration curves, receiver operating 
characteristic (ROC) curves and decision curve analyses 
(DCA) were utilized for evaluating the predictive power 
of the nomogram. Statistical significance in overall sur-
vival (OS), disease-free survival (DFS), progression-free 
survival (PFS), and disease-specific survival (DSS) analy-
sis was estimated utilizing log-rank test. The predictive 
capacity of CRNDE expression for survival was demon-
strated via ROC curves, followed by calculation of area 
under the curve (AUC) value. Two groups with non-
normally distributed data were compared with Wilcoxon 
test, with Student’s t-test for normally distributed data. 
Correlation coefficients were evaluated with Spearman 
correlation test. All statistical analyses were implemented 
utilizing R (version 4.1.1). Significant P-value was noted 
including: ns > 0.05, * < 0.05, ** < 0.01, *** < 0.001 and 
**** < 0.0001.

Results
Expression and prognostic significance of CRNDE in LGG
We firstly assessed CRNDE expression in TCGA pan-
cancer tissue samples. Most primary tumors (includ-
ing glioblastoma (GBM), LGG, breast cancer (BRCA), 
cervical cancer (CESC), lung adenocarcinoma (LUAD), 
esophageal cancer (ESCA), stomach and esophageal car-
cinoma (STES), kidney renal papillary cell carcinoma 
(KIRP), colon adenocarcinoma (COAD), prostate adeno-
carcinoma (PRAD), stomach adenocarcinoma (STAD), 
kidney renal clear cell carcinoma (KIRC), lung squamous 
cell carcinoma (LUSC), liver hepatocellular carcinoma 
(LIHC), thyroid carcinoma (THCA), rectum adenocar-
cinoma (READ), pancreatic adenocarcinoma (PAAD), 
pheochromocytoma and paraganglioma (PCPG), CHOL) 
had higher CRNDE expression in comparison to adjacent 
normal tissues (Fig. 1A). Through univariate Cox regres-
sion analyses, prognostic value of CRNDE was evaluated 
across pan-cancer. It was found that CRNDE expression 
acted as a risk factor of OS (Fig. 1B), DFS (Fig. 1C), PFS 
(Fig. 1D), and DSS (Fig. 1E) of LGG patients, indicating a 
close relationship between CRNDE and LGG prognosis. 
Thus, we further focused on the role of CRNDE in LGG. 
Associations between CRNDE expression and clini-
cal variables were evaluated both in TCGA and CGGC 

(See figure on next page.)
Fig. 1  Expression and prognostic significance of CRNDE in LGG. A CRNDE expression in pan-cancer primary tumors (orange) and adjacent normal 
tissues (blue) in TCGA datasets. B–E Forest diagrams for the univariate Cox regression analyses on CRNDE expression with B OS, C DFS, D PFS, and 
E DSS of TCGA LGG patients. F Differences in CRNDE expression between different clinical variables, including age ≤ 40 versus > 40; male versus 
female; grade G2 versus G3; mutant versus wild type IDH; codel versus non-codel 1p19q; methylated versus unmethylated MGMT. G–I Kaplan–
Meier curves of G OS, H PFS and I DSS for TCGA LGG patients with high or low CRNDE expression. J–L ROC curves at 1-, 3- and 5-year J OS, K PFS 
and L DSS for CRNDE expression in TCGA LGG cohort
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Fig. 1  (See legend on previous page.)
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datasets. In TCGA dataset, higher CRNDE expression 
was found in > 40 versus ≤ 40, grade G3 versus G2, wild-
type versus mutant IDH, non-codel versus codel 1p19q, 
and unmethylated versus methylated MGMT, but with-
out significant difference between male and female 
patients (Fig.  1F). In CGGC dataset, higher CRNDE 
expression was found in grade G3 versus G2, wild-type 
versus mutant IDH, and non-codel versus codel 1p19q, 
but without significant difference in > 40 versus ≤ 40, 
male versus female, or unmethylated versus methylated 
MGMT (Additional file  2: Fig.  S2A). Additionally, high 
CRNDE expression group presented worse OS (Fig. 1G), 
PFS (Fig.  1H) and DSS (Fig.  1I) outcomes than low 
CRNDE expression group in TCGA dataset. ROC curves 
demonstrated that CRNDE expression enabled to accu-
rately predict LGG patients’ 1-, 3- and 5-year OS (Fig. 1J), 
PFS (Fig. 1K) and DSS (Fig. 1L). Consistently, poorer OS 
outcome was found in patients with high CRNDE expres-
sion (Additional file  2: Fig.  S2B), and CRNDE expres-
sion could predict patients’ survival (Additional file  2: 
Fig.  S2C) in CGGC cohort. The similar survival differ-
ence between high and low CRNDE expression groups 
(Additional file  2: Fig.  S2D) and the prediction perfor-
mance of CRNDE expression (Additional file 2: Fig. S2E) 
were proven in GSE16011 cohort.

Establishment of a CRNDE‑based nomogram for LGG
According to univariate Cox regression analyses, in 
TCGA dataset, age, grade, and CRNDE were risk factors 
of LGG prognosis, while IDH, 1p19q, and MGMT were 
protective factors (Fig. 2A). Subsequent multivariate Cox 
regression analyses showed that age, grade, and CRNDE 
were independent risk factors of LGG prognosis (Fig. 2B). 
To facilitate the clinical application, the nomogram was 
then established for predicting 1-, 3-, and 5-year survival 
through totaling the points determined on the points 
scale for CRNDE and clinical parameters (Fig. 2C). Cali-
bration curves showed that the nomogram-predicted 
survival probabilities were highly consistent with actual 
survival (Fig.  2D). The AUC values at 1-, 3-, and 5-year 
survival exceeded 0.80, demonstrating the high accuracy 
of the nomogram (Fig. 2E). DCA results confirmed that 
LGG patients could clinically benefit from the nomogram 
at 3- (Fig.  2F) and 5-year (Fig.  2G) survival threshold 
probabilities.

Consistently, in GSE16011 dataset, CRNDE was 
proven as an independent risk factor of LGG progno-
sis (Additional file  3: Fig.  S3A, B). The CRNDE-based 
nomogram was also established (Additional file  3: 
Fig.  S3C), which could accurately predict patient sur-
vival (Additional file 3: Fig. S3D), and had clinical ben-
efits at 1- (Additional file  3: Fig.  S3E), 3- (Additional 
file 3: Fig. S3F) and 5-year (Additional file 3: Fig. S3G) 

survival threshold probabilities. The independency 
of CRNDE in prognosis prediction was also demon-
strated in CGGC cohort (Additional file  4: Fig.  S4A, 
B). As expected, the CRNDE-based nomogram enabled 
to accurately predict patient survival according to cali-
bration curves (Additional file  4: Fig.  S4C), and ROC 
curves (Additional file  4: Fig.  S4D). DCA results at 3- 
(Additional file 4: Fig. S4E) and 5-year (Additional file 4: 
Fig.  S4F) survival threshold probabilities also proven 
the excellent clinical benefits. The C-index of the model 
was > 0.7 in TCGA, GSE16011 and CGGC cohorts. 
Altogether, the CRNDE-based nomogram might be a 
reliable tool for prognosis prediction of LGG.

Associations between CRNDE and genomic variations 
in LGG
More genomic instability represents a commonly 
detected hallmark of cancer. Overall, high CRNDE 
expression group (Fig.  3A) occurred more somatic 
alterations in comparison to low CRNDE expression 
group (Fig.  3B). For identifying the mutational differ-
ence between two groups, the first 20 mutated genes 
were analyzed. Mutated IDH1 was more frequent for 
samples with low CRNDE expression, while mutated 
TP53, ATRX, TTN, EGFR, etc. were more frequent in 
high CRNDE expression group (Fig. 3A, B). The differ-
ence in arm-level CNV gains or losses was evaluated. 
Overall, high CRNDE expression samples had more 
copy number gains (Fig.  3C) and losses (Fig.  3D) in 
comparison to low CRNDE expression samples (Fig. 3E, 
F), indicating that CRNDE was positively linked with 
copy number variations in LGG.

Additionally, this study validated the interactions 
utilizing aneuploidy score that is an experimental 
approach for measuring the entire amount of changed 
chromosome arms [22]. Aneuploidy score was com-
puted as the sum of altered arms on a scale of 0–39 
(long and short arms for each non-acrocentric chro-
mosome, and only long arms for chromosomes 13, 14, 
15, 21 and 22). Higher aneuploidy score was present 
in high CRNDE expression group (Fig.  3G). We then 
assessed the associations between CRNDE expression 
and tumor immunogenicity, containing CTA score, 
homologous recombination defects, intratumor het-
erogeneity, SNV neoantigens and SCNA level, thereby 
characterizing the multi-dimensional maps of the 
immuno-oncology landscape. High CRNDE expres-
sion group displayed relatively higher homologous 
recombination defects, intratumor heterogeneity, SNV 
neoantigens, and SCNA level, and lower CTA score in 
comparison to low CRNDE expression group (Fig. 3G).
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Fig. 2  Establishment of the CRNDE-based nomogram for LGG in TCGA cohort. A, B Forest diagrams of uni- and multivariate Cox regression analyses 
of CRNDE and clinical variables with prognosis. C Nomogram of CRNDE and grade. The total points projected on the bottom scales indicate the 1-, 3 
and 5-year survival probabilities. D Calibration curves for predicting 1-, 3- and 5-year survival probabilities. E ROC curves at 1-, 3- and 5-year survival. 
F, G DCA curves for intuitively evaluating the clinical benefits and application of the nomogram. The abscissa represents the 3- and 5-year survival 
threshold probabilities, and the ordinate represents the estimated net benefits

(See figure on next page.)
Fig. 3  Associations between CRNDE and genomic alterations in LGG. A, B Waterfall plots for the first mutational events for each TCGA LGG case 
with A high or B low CRNDE expression. Statistical diagrams of mutational events of individual genes are displayed in the left panel. Mutation types 
are marked by unique colors in the right panel. Bar diagram in the top panel represents the number of mutations across cases. C, D Significantly C 
amplified and D deleted gene fragments in the high CRNDE expression group. E, F Significantly E amplified and F deleted gene fragments in the 
low CRNDE expression group. The abscissa denotes the CNV fragments on chromosomes, and the ordinate denotes the chromosome number. 
Red and blue separately represent the amount of CNV gains and losses. The CNV locations on the chromosomes are noted on the right panel. 
G Differences in aneuploidy score, CTA score, homologous recombination defects, intratumor heterogeneity, SNV neoantigens, and SCNA level 
between high and low CRNDE expression groups
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Fig. 3  (See legend on previous page.)
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Signaling pathways underlying CRNDE in LGG
The molecular mechanisms underlying CRNDE were 
then assessed. Tumorigenic pathways (p53 pathway, 
etc.) and tumor immunity (antigen processing and 
presentation, etc.) displayed the higher activity in 
high CRNDE expression group versus low CRNDE 
expression group in TCGA dataset (Fig.  4A), which 
were proven in CGGC datasets (Fig.  4B). Addition-
ally, CRNDE expression was positively correlated to 
tumor immunity, stromal activation (pan-F-TBRS, 
EMT1-3, angiogenesis, etc.), cell cycle progression, and 
DNA damage repair in TCGA LGG samples (Fig. 4C). 
GSEA indicated that cell cycle, and tumorigenic path-
ways (p53 pathway, pancreatic cancer, and small cell 
lung cancer) were activated in high CRNDE expression 
group compared with low CRNDE expression group 
(Fig. 4D). It was also confirmed the close relationships 
of CRNDE with most hallmark pathways both in TCGA 
(Fig. 4E) and CGGC cohorts (Fig. 4F).

Associations between CRNDE and tumor immunity of LGG
Tumor immunity acts as a key dominator in tumor 
growth as well as patients’ survival. Hence, we inves-
tigated the impact of CRNDE on tumor immunity of 
LGG. Using ESTIMATE approach, immune score (indi-
cating the proportions of immune cell populations), 
and stromal score (indicating the proportions of stro-
mal cell populations) were computed across TCGA 
(Fig.  5A) and CGGA (Fig.  5B) LGG samples, respec-
tively. Both in the two cohorts, high CRNDE expres-
sion was positively correlated to increased immune 
and stromal scores (Fig. 5A, B). Through implementing 
ssGSEA, 22 immune cell compositions were decon-
voluted. The abundance of most tumor-infiltrating 
immune cell populations was positively linked to 
CRNDE expression (Fig.  5A, B). Moreover, we found 
the positive interactions between CRNDE expression 
and the abundance of endothelial cells and fibroblasts 
(Fig. 5A, B). Furthermore, this study evaluated immune 
molecular features associated with CRNDE expression. 
High CRNDE expression group displayed the increased 
expression of immune checkpoints such as CD274 (PD-
L1), PDCD1LG2 (PD-L2), CD86, and CD276 (Fig. 5C). 
Moreover, positive correlations of CRNDE expres-
sion with HLA molecules (Fig.  5D) and chemokines 
(Fig.  5E) were found across LGG samples. Patients in 
high CRNDE expression group had more lymphocyte 
depleted phenotype (C4) and more immunologically 
quiet phenotype (C5) in comparison to those in low 
CRNDE expression group [23] (Fig.  5F). Altogether, 
above analyses demonstrated the role of CRNDE in 
tumor immunity of LGG.

Evaluation of the predictive value of CRNDE 
for immunotherapy response of LGG
Both in TCGA (Fig.  6A) and CGGC (Fig.  6B) cohorts, 
high CRNDE expression group displayed the enhanced 
abundance of most immune cell types (especially mono-
cytes (M0, M1, and M2 macrophages), dendritic cells 
(resting and activated dendritic cells), NK cells, and T 
cells) in comparison to low CRNDE expression group. 
The cancer-immunity cycle comprises seven steps, which 
can reflect anti-tumor immunity. Through ssGSEA func-
tion, we quantified the activity of each step. In Fig.  6C, 
CRNDE expression was positively correlated to most 
steps, such as release of cancer cell antigens, cancer anti-
gen presentation, priming and activation, CD8 T cell 
recruiting, infiltration of immune cells into tumors, rec-
ognition of cancer cells by T cells, and killing of cancer 
cells.

To predict immunotherapeutic response, we computed 
TIDE of LGG patients on the basis of two main mecha-
nisms of tumor immune escape: dysfunction of T cells in 
tumor tissues with highly infiltrated cytotoxic T lympho-
cytes (CTLs) as well as exclusion of T cell infiltrations in 
tumor tissues with lowly infiltrated CTLs. Both in TCGA 
and CGGC datasets, high CRNDE expression group had 
the increased TIDE and exclusion scores and reduced 
dysfunction score (Fig. 6D, E). Additionally, high CRNDE 
expression was linked to increased TMB (Fig.  6F). 
Microsatellite instability (MSI) represents a molecular 
feature of hypermutated tumors because of defects in 
mismatch repair genes [24]. However, no difference was 
found between high and low CRNDE expression groups 
(Fig. 6G). Evidence demonstrates that mRNAsi correlates 
to immunotherapeutic response of glioblastoma [25]. 
Lower mRNAsi was found in high CRNDE expression 
group (Fig. 6H).

Prediction of therapeutic sensitivity in high and low 
CRNDE for LGG
Associations between CRNDE expression and drug sensi-
tivity were further evaluated across TCGA LGG samples. 
High CRNDE expression group had the higher sensitivity 
to Cisplatin, Erlotinib, Methotrexate, Paclitaxel, Campto-
thecin, Etoposide, Rapamycin, and Doxorubicin than low 
CRNDE expression group (Fig.  7A). This study further 
assessed the GDSC drug response dataset to determine 
potential small molecular compounds associated with 
CRNDE. Drug response of patients with high and low 
CRNDE expression was estimated according to the AUC 
values of compounds. Three compounds (Etoposide, Val-
rubicin, and Daunorubicin) with Spearman’s r > 0.35 were 
determined via Spearman correlation analyses between 
CRNDE expression and AUC value (Fig.  7B), indicating 
that CRNDE expression was correlated to the enhanced 
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Fig. 4  Signaling pathways underlying CRNDE in LGG. A, B The activity of GO and KEGG pathways in A TCGA and B CGGC LGG tissues with high 
or low CRNDE expression. C Associations between CRNDE expression and known biological processes. D GSEA for the pathways activated in high 
CRNDE expression group. E, F The activity of hallmark pathways in E TCGA and F CGGC LGG tissues with high or low CRNDE expression
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Fig. 5  Associations between CRNDE and tumor immunity in LGG. A, B Heatmaps for the infiltration of immune and stromal cells, stromal and immune 
scores, and the expression of immune checkpoints in A TCGA and B CGGC LGG samples. C–E The expression of C immune checkpoints, D HLAs, and E 
chemokines across TCGA LGG samples with high or low CRNDE expression. F Distribution of immune subtypes across the two groups from TCGA dataset
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sensitivity of above compounds. In addition, the identi-
fied drugs were significantly correlated to tumorigenic 
pathways including DNA replication, RTK signaling and 
chromatin histone acetylation (Fig. 7C).

CRNDE contributes to malignant phenotypes of LGG cells
The influence of CRNDE on LGG progression was 
further investigated through in  vitro experiments. 
Three specific shRNAs targeting CRNDE named 

Fig. 6  Evaluating the predictive value of CRNDE for immunotherapy response of LGG. A, B The abundance of immune cell populations of A 
TCGA and B CGGC LGG samples with high or low CRNDE expression. C Associations between CRNDE expression and seven steps within the 
cancer-immunity cycle across TCGA LGG samples. D, E TIDE, dysfunction and exclusion scores for D TCGA and E CGGC LGG samples with high or 
low CRNDE expression. F TMB, G MSI, and H mRNAsi in the two groups from TCGA dataset
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sh-CRNDE#1–3 were transfected into two LGG 
cell lines (U251 and SW1088), and RT-qPCR results 
showed that CRNDE expression was significantly 

reduced by sh-CRNDE (Fig. 8A, B). Next, flow cytom-
etry was conducted to measure the apoptosis of U251 
and SW1088 cells. As a result, higher apoptosis rate 

Fig. 7  Prediction of therapeutic sensitivity in high and low CRNDE for TCGA LGG patients. A Differences in estimated IC50 values of common drugs 
for high or low CRNDE expression specimens. B Interactions of CRNDE expression with GDSC-derived drug sensitivity via Spearman correlation 
analyses. The length of the horizontal line represents the correlation coefficient. C Associations of drugs with KEGG pathways utilizing Spearman 
correlation analyses
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was found in CRNDE-knockout cells (Fig. 8C–E). This 
indicated that knockdown of CRNDE significantly pro-
moted apoptosis of LGG cells. Wnt/β-catenin signaling 
plays a crucial role in cancer progression. Therefore, 
we detected the expression of β-catenin and Wnt5a in 
U251 and SW1088 cells. Consequently, the expression 
of β-catenin and Wnt5a was remarkably decreased in 
CRNDE-knockout LGG cells (Fig.  8F–K). Altogether, 
targeting CRNDE could alleviate malignant phenotypes 
of LGG.

Discussion
This study determined that CRNDE was up-regulated 
in LGG, and the up-regulation was capable of predict-
ing patients’ clinical outcomes and progression. CRNDE 
expression was positively linked to grade G3, wild-type 
IDH and non-codel 1p19q. LGG patients with codele-
tion of chromosomal arms 1p and 19q (1p/19 codeletion) 
usually present favorable clinical outcomes [26]. By inte-
grating independent risk factors (CRNDE and grade), we 

Fig. 8  CRNDE contributes to malignant phenotypes of LGG cells. A, B CRNDE transcript level in U251 and SW1088 cells with CRNDE knockdown. 
C–E Apoptotic level of CRNDE-knockout U251 and SW1088 cells. F–K Protein level of β-catenin and Wnt5a in CRNDE-knockout LGG cells. 
****p < 0.0001
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established the nomogram that could accurately predict 
LGG prognosis for clinical practice. More genomic vari-
ations were found in LGG with high CRNDE expression. 
Moreover, up-regulated CRNDE was correlated to tumo-
rigenic pathways, and tumor immunity (antigen process-
ing and presentation, etc.), stromal activation, and DNA 
damage repair, thereby revealing the crucial roles of 
CRNDE in LGG.

The brain tumor microenvironment comprises many 
different nonneoplastic cell types, all of which exert 
distinct roles in the formation, maintenance, and pro-
gression of LGG [27]. Monocytes, dendritic cells, NK 
cells, and T cells are the dominating nonneoplastic cell 
types in LGG [28]. Despite the roles of T cells in target-
ing and eliminating tumor cells, they also exist in other 
states, such as tolerance, ignorance, anergy and exhaus-
tion. Moreover, T cells act as a driver of LGG growth. 
Because T cells are from the blood and bone marrow 
sinuses, their functions as both positive and negative 
regulatory factors of LGG growth have ignited renewed 
interest in their deployment as immunotherapy drugs. 
A randomized trial showed that neoadjuvant vaccina-
tion with tumor-cell lysate enabled to induce effector 
CD8 + T cell response in LGG patients’ peripheral blood 
and vaccine-reactive CD8 + T cells to migrate into the 
tumor microenvironment [29]. Up-regulated CRNDE 
was linked to the enhanced infiltration of most immune 
cell types (especially monocytes, dendritic cells, NK cells, 
and T cells). Previously, LGG can be classified as six 
subtypes in TCGA dataset, including C1 (wound heal-
ing), C2 (IFN-γ dominant), C3 (inflammatory), C4 (lym-
phocyte depleted), C5 (immunologically quiet), and C6 
(TGF-β dominant). Patients with high CRNDE expres-
sion displayed more C4 and C5 phenotypes. Although we 
assessed the response of LGG patients to immunotherapy 
in TCGA and CGGC cohorts, our study cannot analyze 
whether immunotherapy-received LGG patients with 
distinct CRNDE expression had distinct benefits due to 
the lack of expression profiles. Investigations should be 
undertaken in our further research to compare CRNDE 
with current biomarkers as well as to evaluate the asso-
ciation between CRNDE expression and immunotherapy 
in LGG patients.

CRNDE restrains chemoresistance in gastric can-
cer through SRSF6-mediated alternative splicing of 
PICALM [30]. Transfer of CRNDE in tumor-associated 
macrophages-derived exosomes can be attributed to cis-
platin resistance in gastric cancer [31]. On the contrary, 
CRNDE triggers chemoresistance of colorectal cancer 
(CRC) through miR-181a-5p-regulated Wnt/β-catenin 
pathway [32]. Additionally, it promotes oxaliplatin resist-
ance via sponging miR-136 in CRC [33]. Downregu-
lated CRNDE attenuates drug resistance of liver cancer 

cells through enhancing miRNA-33a expression and 
reducing HMGA2 expression [34]. CRNDE facilitates 
ATG4B-induced autophagy as well as weakens sorafenib 
sensitivity in hepatocellular carcinoma (HCC) cells [35]. 
CRNDE promotes chemoresistance in HCC via epige-
netically suppressing CUGBP Elav-like family member 
2 (CELF2) and large tumor suppressor 2 (LATS2) [36]. 
Suppression of CRNDE attenuates proliferation and 
P-glycoprotein-induced multidrug resistance in acute 
myelocytic leukemia via Wnt/β-catenin signaling [37]. 
CRNDE contributes to the resistance to EGFR tyrosine 
kinase inhibitor in EGFR-mutant lung cancer through 
eIF4A3/MUC1/EGFR signaling [38]. Suppression of 
CRNDE heightens the sensitivity of temozolomide via 
modulating autophagy in glioblastoma [6]. Our study 
demonstrated that up-regulated CRNDE was linked to 
the increased sensitivity to Cisplatin, Erlotinib, Metho-
trexate, Paclitaxel, Camptothecin, Etoposide, Rapamy-
cin, and Doxorubicin in LGG. Additionally, CRNDE was 
identified to be associated with the sensitivity to three 
compounds (Etoposide, Valrubicin, and Daunorubicin). 
This indicated that CRNDE expression was notably in 
relation to drug sensitivity in LGG.

This study still has several limitations. Firstly, the utili-
zation of the two largest LGG databases inevitably results 
in the neglect of intratumoral heterogeneity in distinct 
databases. Secondly, identification of the optimal cutoff 
value of CRNDE expression might offer more favorable 
results compared with the median value of its expres-
sion. Thirdly, although we determined the associations 
between CRNDE expression and tumor immunity, the 
underlying mechanisms were still unclear.

Conclusion
Collectively, we conducted systematic analyses of 
CRNDE in LGG biology. CRNDE acted as a prognostic 
factor of LGG. High CRNDE expression was linked to 
more genomic variations, tumor immunity, and thera-
peutic sensitivity. Hence, quantification of CRNDE 
expression might represent a promising approach for 
predicting the therapeutic benefits of LGG patients.
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