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Abstract 

MicroRNAs (miRNAs) as the members of non-coding RNAs family are involved in post-transcriptional regulation by 
translational inhibiting or mRNA degradation. They have a critical role in regulation of cell proliferation and migration. 
MiRNAs aberrations have been reported in various cancers. Considering the importance of these factors in regulation 
of cellular processes and their high stability in body fluids, these factors can be suggested as suitable non-invasive 
markers for the cancer diagnosis. MiR-216a deregulation has been frequently reported in different cancers. Therefore, 
in the present review we discussed the molecular mechanisms of the miR-216a during tumor progression. It has been 
reported that miR-216a mainly functioned as a tumor suppressor through the regulation of signaling pathways and 
transcription factors. This review paves the way to suggest the miR-216a as a probable therapeutic and diagnostic 
target in cancer patients.
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Background
Cancer is regarded as one of the leading causes of human 
deaths in the current century. High rate of the can-
cer mortality and incidence has become a global health 
challenge [1]. Despite of various therapeutic progresses 
during the recent decades, there is still a high rate of 
therapeutic resistance and tumor recurrence among 
these patients [2]. Therefore, there is an urgent require-
ment to assess the molecular mechanisms of tumor pro-
gression to suggest novel therapeutic targets. Studies 
over the past two decades have clearly demonstrated that 
microRNAs (miRNAs) have critical roles in regulation of 

physiological and pathophysiological cellular processes 
[3]. MiRNAs are involved in cell proliferation, differ-
entiation, and apoptosis [4, 5]. They may also function 
as oncogenic or tumor-suppressor, depending on their 
intracellular roles and expression levels [6, 7]. Moreo-
ver, aberrant expression of miRNAs has been associated 
with therapeutic resistance in cancer that suggests these 
factors as probable efficient therapeutic targets in tumor 
cells [8]. Combining miRNA-based therapies with other 
anticancer treatments is of interest due to the ability of 
miRNAs to target multiple target genes. Since the func-
tion of miRNAs varies according to the tumor type, it is 
highly desirable to investigate whether miRNA inhibi-
tion or replacement therapy can effectively interfere with 
the signaling pathway associated with therapeutic resist-
ance to enhance the efficacy of anticancer therapy [9, 
10]. In addition, early diagnosis can significantly improve 
treatment outcomes and prolong the survival of cancer 
patients. Given the high stability of the miRNAs in body 
fluids and blood, they may represent an excellent set of 
non-invasive biomarkers for the early cancer diagnosis 
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and prognosis [11]. Accordingly, understanding the regu-
latory role of these factors during tumor progression can 
be used for diagnostic and therapeutic purposes [12]. 
MiR-216a-3p is located on human chromosome 2p16.1 
and miR-216 region that contains the miR-216a-3p, miR-
216a-5p, miR-216b3p, and miR-216b-5p [13]. MiR-216a 
participates in various cellular processes and tumor pro-
gressions [14–17]. Therefore, in the present review we 
discussed the molecular mechanisms of miR-216a during 
tumor progression to introduce that as a reliable diagnos-
tic and prognostic factor in cancer patients (Table 1).

JAK/STAT and MAPK signaling pathways
Cytokines, interleukins, and growth factors, lead to the 
activation of the JAK/STAT signaling pathway. Associa-
tion of Cytokines with their correlative trans-membrane 
receptor subunits, causing multimerization with other 
subunits and conformational change in the receptor 
complex [18, 19]. JAK2 belongs to the Janus Kinases fam-
ily of protein tyrosine kinases that plays an important 
role during tumor progression through STAT3 phospho-
rylation [20, 21]. The JAK2/STAT3 cascade plays a key 
role in many cellular processes, including growth, divi-
sion, programmed cell death, immunological escape and 
resistance, and tumor angiogenesis [22, 23]. STAT3 is 
an inactive monomeric transcription factor in the cyto-
plasm. This transcription factor is dimerized and trans-
located into the nucleus after being phosphorylated by 
JAK2 to activate the target genes [24, 25]. STAT3 triggers 
cellular transformation and facilitates tumor initiation 
and progression by regulation of c-Myc, Bcl-xL, CCND1, 
and VEGF [26]. It has been shown that miR-216a has a 
key role during tumor progression by regulation of JAK/
STAT signaling pathway (Fig.  1). MiR-216a significantly 
suppressed cell proliferation while induced programmed 
cell death in pancreatic tumor cells by inhibiting JAK2. 
MiR-216a also suppressed STAT3 phosphorylation, 
which resulted in the down regulation of anti-apoptotic 
genes such as survivin and XIAP [27]. MiR-216a reduced 
pancreatic tumor growth via JAK2 targeting [28]. STAT3 
up regulated the miR-216a that targeted PTEN. Suppres-
sion of miR-216a reduced the cisplatin resistance in ovar-
ian tumor cells [29]. Long noncoding RNAs (lncRNAs) 
are promising therapeutic targets and diagnostic fac-
tors in a variety of disorders [30, 31]. They are involved 
in biological processes such as chromatin remodeling, 
transcriptional activation, and chromosomal inactiva-
tion [32]. LncRNAs mainly act as competing endogenous 
RNAs (ceRNAs), which compete for miRNAs to control 
various mRNA transcripts [33]. GHET1 enhanced the 
glioma cell invasion by miR-216a down regulation that 
stimulated the JAK2/STAT3 and p53/survivin signal-
ing pathways [34]. MiR-216a was considerably down 

regulated in GC tissues as compared to corresponding 
healthy tissues that was associated with poor prognosis. 
MiR-216a inhibited JAK2/STAT3 cascade as well as the 
expression of downstream targets such as Slug, Snail, and 
Twist in GC cells [35].

The MAPK signaling plays an important role in cell 
biology and functions through receptor tyrosine kinases 
(RTKs) that activate the RAF/MEK/ERK axis [36, 37]. 
Activated ERKs are accumulated in the nucleus or 
remain in the cytoplasm, where they can phosphoryl-
ate several substrates that modulate cell activities [38]. 
Sorafenib acts as a tyrosine kinase suppressor with mul-
tiple targets. It can inhibit tumor cell proliferation by 
suppressing the RAF/MEK/ERK cascade as well as many 
other signaling pathways. It can also suppress the VEGF 
and PDGF receptors, hence preventing tumor angio-
genesis [39]. MAPK14 activation has a crucial function 
in drug resistance in hepatocellular carcinoma (HCC) 
[40]. MiR-216a has a key role during tumor progres-
sion by regulation of MAPK signaling pathway (Fig.  1). 
There was significant MAPK14 up regulation in sorafenib 
resistant HCC tumors. MiR-216a-3p increased sorafenib 
response in xenograft HCC tumor nude mice models by 
targeting MAPK14 and suppressing the MEK/ERK and 
ATF signaling cascades [41]. KIAA1199 elevates cyto-
solic calcium through facilitating endoplasmic reticulum 
(ER) calcium leakage, which subsequently stimulates the 
PKCa-MEK1/2-ENK1/2 axis [42]. KIAA1199 promoted 
EGF-induced  EMT by EGFR stability and phosphoryla-
tion of MEK1, and ERK1/2 in cervical tumor cells [43]. 
Under expression of KIAA1199 reduced CRC cell migra-
tion and invasion. MiR-216a inhibited CRC invasion by 
KIAA1199 targeting. KIAA1199 was significantly corre-
lated with poor prognosis [44].

PI3K/AKT and TGF‑β signaling pathways
PI3K/Akt pathway is known as one of the most critical 
pathways in modulating cell survival and proliferation 
[45]. PI3K activates the AKT that induces cell prolifera-
tion by CCND1 up regulation [46]. PTEN inhibits the 
growth and dissemination of HCC cells as a negative 
regulator of PI3K/AKT pathway [47]. MiR-216a has a 
key role during tumor progression by regulation of PI3K/
AKT signaling pathway (Fig.  2). Smad7 acts as a tumor 
suppressor in HCC by inhibiting cell growth while trig-
gering programmed cell death [48]. The A1BG antisense 
RNA 1 (A1BG-AS1) was down regulated in HCC. It 
inhibited HCC cell growth, metastasis, and invasion by 
miR-216a-5p sponging and PTEN and Smad7 up regu-
lations [49]. There was CTBP1-AS2 down regulation 
in ovarian cancer (OC). CTBP1-AS2 inhibited the OC 
cell proliferation by miR-216a sponging and subsequent 
PTEN up regulation [50]. There was significant miR-216a 
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Table 1 Molecular targets of miR-216a during tumor progressions

Study Year Type Target Samples Function Clinical Application

Zhao [17] 2020 Cervical cancer ACTL6A 45 T 45N tissues
CaSki, C‐33A, HeLa, and SiHa 
cell lines

Tumor suppressor Diagnosis

Hou [28] 2015 Pancreatic cancer JAK-2 14 T 6N tissues
PANC-1, HPDE6c7, BxPC3, 
CFPAC-1, and Aspc-1 cell lines
BALB/c nude mice

Tumor suppressor Diagnosis

Jin [29] 2018 Ovarian cancer PTEN SKOV3 and OVCA433 cell 
lines

Oncogene Diagnosis

Cao [34] 2019 Glioma JAK2 U251 cell line Tumor suppressor Diagnosis

Tao [35] 2017 Gastric cancer JAK2/STAT3 90 T 90N tissues
SGC-7901, MGC-803, MKN-28, 
and BGC-823 cell lines
BALB/c nude mice

Tumor suppressor Diagnosis and prognosis

Wan [41] 2020 Hepatocellular carcinoma MAPK14 60 T tissues
Huh-7, HepG2, and PLC/
PRF/5 cell lines
BALB/c nude mice

Tumor suppressor Diagnosis and prognosis

Zhang [44] 2017 Colorectal cancer KIAA1199/CEMIP 70 T 70N tissues
HCT116, SW480, HT29, LOVO 
and SW620 cell lines
NOD/SCID mice

Tumor suppressor Diagnosis and prognosis

Bai [49] 2019 Hepatocellular carcinoma PTEN/ Smad7 HCCLM3 cell line Oncogene Diagnosis

Cui [50] 2020 Ovarian cancer PTEN 60 T 60N tissues
UWB1.289 cell line

Oncogene Diagnosis

Liu [51] 2017 Ovarian cancer PTEN/AKT 87 T 25N tissues
SKOV-3, HO-8910, A2780, 
ES-2, CAOV3, and OVCAR3 
cell lines

Oncogene Diagnosis and prognosis

Wang [53] 2021 Pancreatic cancer WT1 71 T 71N tissues
AsPC-1, BxPC-3, PANC-1, MIA 
PaCa-2, and SW1990 cell lines
BALB/c nude mice

Tumor suppressor Diagnosis and prognosis

Yang [60] 2018 Prostate cancer BCL-2 86 T 86N tissues
DU145, PC3, LNCaP, and 
22Rv1 cell lines

Tumor suppressor Diagnosis and prognosis

Yu [66] 2020 Non-small cell lung cancer Wnt A549, H1975, H1755, H1944, 
H2087, H358, H661 and 
H1299 cell lines

Tumor suppressor Diagnosis

Zhang [71] 2017 glioma LGR5 15 T 15N tissues
U251MG, U87MG, U118, and 
A172 cell lines

Tumor suppressor Diagnosis

Lu [92] 2017 Pancreatic cancer YB-1 72 T 72N tissues
Panc-1 and Miapaca-2 cell 
lines

Tumor suppressor Diagnosis

Li [95] 2021 Large B-Cell Lymphoma YBX1 DB, SU-DHL-10, and SU-DHL-4 
cell lines

Tumor suppressor Diagnosis

Zeng [96] 2019 Colorectal cancer YBX1 70 T 70N tissues
LoVo, SW480, HT-29, HCT-116, 
and Caco-2 cell lines

Tumor suppressor Diagnosis and prognosis

Song [98] 2019 Gastric cancer BRD4 36 T 36N tissues
AGS, BGC-823, MKN-45, MGC-
803, and SCG-7901 cell lines

Tumor suppressor Diagnosis

Sun [103] 2021 Esophageal cancer HMBG3 68 T 68N tissues
TE-1, TE-9, KYSE30, EC9706 
cell lines

Tumor suppressor Diagnosis

Wang [104] 2019 Hepatocellular carcinoma KLF12 Hep3B, HepG2, Huh7, 
SNU449, SK‐hep‐1, and LO2 
cell lines
BALB/c nude mice

Tumor suppressor Diagnosis
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Table 1 (continued)

Study Year Type Target Samples Function Clinical Application

Qu [105] 2020 Oral squamous cell carci-
noma

BCL-2/ KLF-12 86 T 86N tissues
SCC9, SCC15, SCC25, CAL27 
and Tca8113 cell lines
BALB/c nude mice

Tumor suppressor Diagnosis and prognosis

Pan [109] 2020 Osteosarcoma SOX5 45 T 45N tissues
MG-63, U2OS, 143B cell lines
BALB/C nude mice

Tumor suppressor Diagnosis and prognosis

Zhen [110] 2018 Lung cancer DANCR 32 T 11N tissues
BEAS-2B, NCI-H1299, A549, 
and NCI-H1975 cell lines
Nude mice

Tumor suppressor Diagnosis and prognosis

Zhu [114] 2018 Cervical cancer ZEB1 60 T 18N tissues
HeLa, CaSki, SiHa, and C33A 
cell lines

Tumor suppressor Diagnosis and prognosis

Zhao [115] 2020 Non-Small Cell Lung Cancer ZEB1 42 T 42N tissues
A549, H322, H1299, GLC-82, 
and SPC-A1 cell lines
BALB/c nude mice

Tumor suppressor Diagnosis and prognosis

Zhang [118] 2018 Gastric cancer RUNX1 140 T 140N tissues
AGS, MKN-45, and HGC-27 
cell lines

Oncogene Diagnosis and prognosis

Zhang [124] 2015 Pancreatic cancer beclin-1 PANC-1 cell line
BALB/c nude mice

Tumor suppressor Diagnosis

Zhao [125] 2020 Gastric cancer BCL-2 106 T 106N tissues
SGC7901 cell line
BALB/c nude mice

Tumor suppressor Diagnosis and prognosis

Wang [128] 2019 Colorectal cancer MAP1S 67 T 67N tissues
HT-29, HCT-116, SW-480, and 
SW-62 cell lines

Tumor suppressor Diagnosis

Zhang [132] 2020 Pancreatic cancer TPT1/mTORC1 40 T 40N tissues
SW1990, PANC1, Capan-2 and 
BxPC-3 cell lines
SCID mice

Tumor suppressor Diagnosis and prognosis

Zhou [135] 2021 Oral squamous cell carci-
noma

BCL2L2 30 T 30N tissues
CAL27 and SCC25 cell lines
BALB/c nude mice

Tumor suppressor Diagnosis

Sun [137] 2018 Small cell lung cancer BCL-2 NCI-H69, NCI-H69AR, NCI-
H446, and 16-HBE cell lines
BALB/c nude mice

Tumor suppressor Diagnosis

Ji [144] 2017 osteosarcoma CDK14 91 T 91N tissues
U2OS and 143B cell lines
BALB/c nude mice

Tumor suppressor Diagnosis and prognosis

Lin [148] 2021 Bladder carcinoma BTG2 21 T 21N tissues
EJ, T24, 5637, TCC-SUP cell 
lines

Oncogene Diagnosis

Roscigno  [159] 2020 Breast cancer TLR4 T47D and MDA-MB-MB-
231cell lines

Tumor suppressor Diagnosis

Wang [160] 2018 Renal cell carcinoma TRL4 27 T 27N tissues
786-O, ACHN, Caki-1, A498, 
GRC-1 and OS-RC-2 cell lines
BALB/c nude mice

Tumor suppressor Diagnosis

Wang [162] 2018 Colorectal cancer COX-2/ALOX5 42 T 42N tissues
HT29, HCT15, SW480 and 
SW1116 cell lines

Tumor suppressor Diagnosis and prognosis

Liu [168] 2018 Melanoma HK2 86 T tissues
HEK293T cell line
BALB/c nude mice

Tumor suppressor Diagnosis and prognosis
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up regulation in ovarian cancer tissues and cells that pro-
moted cell proliferation and invasion by inhibiting PTEN 
[51]. WT1 is an oncogene that has been identified to be 
overexpressed in a variety of solid tumors and blood can-
cers, making it a prospective therapeutic target for cancer 
treatment [52]. Overexpression of miR-216a or knock-
down of KRT7 inhibited PI3K and AKT phosphoryla-
tion in PC cells, whereas WT1 stimulated the PI3K/AKT 
signaling cascade. Therefore, miR-216a regulated the 
WT1/KRT7 axis and inhibited the PI3K/AKT pathway to 
prevent PC progression [53].

TGF-β as a growth factor is implicated in the modula-
tion of cell growth, autophagy, apoptosis, and EMT [54]. 
It principally participates in different biological processes 
in the body via two pathways: the classic SMAD-associ-
ated pathway and the non-SMAD-associated pathway. 
TGF-β  receptors mediate the SMAD-related classical 
pathway [55, 56]. The association between TGF-β  and 
TβRII can stimulate the kinase activity of TβRI and pro-
motes the phosphorylation of TβRI. Consequently, acti-
vated TβRI could phosphorylate downstream SMAD 
proteins. These activated SMAD proteins could interact 
with the chaperone protein SMAD4 and translocated to 
the nucleus and modulate the expression of TGF-β  tar-
get genes [57]. MiR-216a has a pivotal role during tumor 
progression by regulation of TGF-β signaling pathway 
(Fig.  2). Epithelial-mesenchymal transition (EMT) is a 

normal developmental process involved in tumor inva-
sion in which epithelial cells transform into mesenchy-
mal cells. Vimentin is overexpressed while cell adhesion 
molecules such as E-cadherin are under expressed during 
EMT [58]. As a member of the SMAD family of proteins, 
SMAD7 is a TGF-β superfamily ligand. By analyzing 
miRNA expression profiles in patients with HCC tissues 
with early-recurrent and non-recurrent HCC, research-
ers discovered that early HCC  recurrent disease was 
correlated with miR-216a up regulation. MiR-216a posi-
tively regulated TGF-β and the canonical pathway impli-
cated in the promotion of the PI3K/Akt cascade in HCC 
cells by inhibiting SMAD7 and PTEN, resulting in tumor 
relapse and sorafenib resistance [59]. There was HOT-
TIP up regulation in prostate cancer (PCa) tissues that 
was correlated with larger tumor size and a higher TNM 
stage. HOTTIP inhibition down regulated the Vimen-
tin and Snai1, while up regulated the CDH1. HOTTIP 
enhanced the growth and metastasis of PCa cells by miR-
216a-5p sponging [60].

Developmental signaling pathways
Wnt is a pivotal signaling pathway for tissue morpho-
genesis and regeneration that is activated by the canoni-
cal or non-canonical pathways [61]. The activation of 
the canonical pathway occurs in the presence of Wnt 
ligands. Wnt ligands could interact with the Frizzled (Fz) 

Table 1 (continued)

Study Year Type Target Samples Function Clinical Application

Pang [171] 2021 Non-small cell lung cancer RAP2B 35 T 35N tissues
A549 and NCI-H1299 cell 
lines
BALB/C nude mice

Tumor suppressor Diagnosis and prognosis

Li [174] 2022 Cervical cancer CDC42 31 T 31N tissues
SiHa, HeLa, and 293 T cell 
lines
BALB/c nude mice

Tumor suppressor Diagnosis and prognosis

Zhang [180] 2019 Breast cancer PAK2 50 T 50N tissues
BC MCF-7 cell line

Tumor suppressor Diagnosis

Cui [185] 2019 Breast cancer PKCα 10 T 10N tissues
MCF-7, MD-MB231, MDA-
MB-468, and SK-BR3 cell lines

Tumor suppressor Diagnosis

Wang [191] 2020 Lung adenocarcinoma COPB2 H1299, A549, SK-MES-1, NCI-
H23, and H1975 cell lines

Tumor suppressor Diagnosis

Peng [194] 2020 Glioma AQP4 50 T 50N tissues
U251, A172, T98G, HS683, and 
U138 cell lines
BALB/c nude mice

Tumor suppressor Diagnosis

Wang [201] 2020 Pancreatic cancer TSPAN1 PANC-1, BxPC3, and ASPC1 
cell lines

Tumor suppressor Diagnosis

Sun [206] 2020 Esophageal cancer KIAA0101 83 T 83N tissues
EC9706, EC109, KYSE150, 
KYSE450, TE1, and TE10 cell 
lines

Tumor suppressor Diagnosis and prognosis
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receptor and LRP5/6 co-receptor that finally stabilizes 
the cytoplasmic β-catenin [62, 63]. β-catenin is translo-
cated to the nucleus where it is associated with LEF/TCF 
family members to regulate the WNT target genes [64, 
65]. DANCR silencing has been shown to diminish cell 
migration, survival, and stem-like properties. DANCR 
increased β-catenin expression, which was then inhib-
ited by miR-216a in non-small-cell lung cancer (NSCLC) 
cells. DANCR promoted NSCLC stemness and chemo 
resistance by activating Wnt and Sox2 [66]. LGR5 as an 
orphan G protein-coupled receptor (GPCR) is involved in 
developmental processes [67, 68]. It regulates Wnt sign-
aling cascade via interacting with its associated ligand 
R-spondin and mediates the accumulation of nuclear 
β-catenin. LGR5 exerts as a stem cell factor and promotes 
the maintenance of cancer stem cells, self-renewal, and 
stem cell proliferation by activation of downstream Wnt/
β-catenin-signaling cascade [69]. It has been indicated 
that LGR5 could induce cell mobility, invasion, tumo-
rigenesis, and EMT in cancer cells through activation 
of the Wnt/β-catenin pathway [70]. MiR-216a markedly 

inhibited  glioma cell growth and invasion by inhibiting 
LGR5 [71].

The Sonic hedgehog (Shh) is also another develop-
mental signaling pathway that has key roles in tumor cell 
growth and differentiation. It can be activated through 
the interaction of Shh with the cell surface receptor 
Patched (PTCH) that leads to the phosphorylation of the 
SMO receptor [72]. The association between Hh ligands 
and PTCH induces GLI transcription factors [73]. The 
GLI proteins translocate into the nucleus, where they 
promote the target genes expression and also induce 
cell growth, survival, and differentiation [73]. Tectonic 
family member 1 (TCTN1) is a member of the tectonic 
trans-membrane protein family that is implicated in the 
Hedgehog (Hh) signaling pathway [74]. Bcl-2 is a nega-
tive regulator of apoptosis that is located in inner mito-
chondrial membrane [75]. Bad is capable of triggering 
programmed cell death by suppressing Bcl-2 and Bcl-
xL [76, 77]. TCTN1 knockdown was discovered to pro-
mote apoptosis in thyroid cancer cells via up regulation 
of CASP3 and PARP, while suppression of Bcl-2 [78]. 

Fig. 1 Role of miR-216a during tumor progression by regulation of JAK/STAT, MAPK, and Hippo signaling pathways. (Created with BioRender.com)
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Increased miR-216a-5p expression in ESCC cells was 
discovered to significantly inhibit cell growth by TCTN1 
targeting. MiR-216a-5p suppressed cell proliferation by 
PCNA down regulation. Overexpression of miR-216a-5p 
in ESCC cells resulted in a significant reduction in PCNA 
and Bcl-2 expression levels while Bad up regulation. 

MiR-216a-5p repressed esophageal squamous cell carci-
noma (ESCC) cell proliferation while promoted apoptosis 
via TCTN1 targeting [79].

Hippo signaling plays a vital role in tumor progres-
sion. Activation of the Hippo pathway leads to MST1/2 
phosphorylation and stimulates LATS1/2, which can 

Fig. 2 Role of miR-216a during tumor progression by regulation of PI3K/AKT and TGF-β signaling pathways. (Created with BioRender.com)



Page 8 of 18Hamidi et al. Cancer Cell International           (2023) 23:19 

phosphorylate YAP/TAZ, causing the YAP/TAZ sup-
pression [80]. The phosphorylation of LATS induces 
the cytoplasmic translocation of YAP proteins via asso-
ciation with 14-3-3 proteins [81, 82]. MiR-216a has a key 
role during tumor progression by regulation of Hippo 
signaling pathway (Fig. 1). Actin-like 6A (ACTL6A) is a 
component of the SWI/SNF  that regulates chromatin 
remodeling, nuclear transition, and transcription regu-
lation [83]. ACTL6A is overexpressed in progenitor and 
stem cells, and is involved in cell self-renewal [84, 85]. 
Yes-associated protein (YAP) is an essential member of 
Hippo pathway and plays a key role in the regulation of 
tissue homeostasis processes [86]. YAP is dephospho-
rylated in response to a variety of stimuli, and then it 
is transferred into the nucleus where it interacts with a 
transcriptional co-activator with a PDZ binding motif 
to increase the expression of the target gene [87]. MiR-
216a-3p reduced the cervical tumor cell growth and inva-
sion by inhibiting ACTL6A that subsequently enhanced 
YAP phosphorylation while reduced YAP/TAZ-mediated 
transcriptional activity [17].

Transcription factors
Transcription factors are the key molecular targets for 
the miR-216a during tumor progression (Fig.  3). Y-box 
binding protein 1 (YBX1) belongs to the cold-shock pro-
tein superfamily that is involved in transcriptional and 
translational regulations [88, 89]. It has different pro-
oncogenic roles in cancers, including tumor metastasis 
and chemotherapy resistance [90]. It has been demon-
strated that phosphorylation of YBX1 through numerous 
kinases such as AKT, S6K, and RSK via receptor tyrosine 
kinase and integrin-associated kinase promotes nuclear 

transportation of YBX1 in different tissues with tran-
scriptional activation of several genes containing drug 
resistance and tumor growth linked genes [91]. YB-1 
expression was shown to be elevated in pancreatic can-
cer cells and tissue samples. It has anti-metastatic activity 
in pancreatic cancer and has been recognized as a target 
of miR-216a. MiR-216a reduced pancreatic tumor cell 
invasion by YB-1 targeting [92]. The MAPK/ERK cascade 
stimulates  YBX1 and subsequently transfer  it into the 
nucleus, promoting the development of B-cell lymphoma 
[93]. YBX1 is also involved in tumor progression via the 
PI3K/Akt/mTOR signaling cascade [94]. MiR-216a sup-
pressed Diffuse Large B Cell Lymphoma (DLBCL) cell 
survival, growth, and invasion by targeting  YBX1 [95]. 
There was miR-216a-5p down regulation  in colorec-
tal cancer (CRC) tissues that was correlated with poor 
prognosis. MiR-216a-5p suppressed CRC cell growth 
and invasion by inhibiting YBX1. PVT1 overexpression 
has been proposed to overturn the anti-tumor impact 
of miR-216a-5p on CRC  cells. MiR-216a5p also caused 
CDH1 up regulation while CDH2, Vimentin, and Snail 
down regulations [96].

BRD4 enhances tumor progression and induces EMT 
tumor cells [97]. It induced the stemness characteris-
tic of gastric cancer (GC) cells by MIR216A promoter 
methylation and subsequent miR-216a-3p down regula-
tion. Wnt3a was found to be a direct downstream effec-
tor of miR-216a3p, implying that the Wnt cascade is 
required for the regulation of stemness features in GC 
cells via the BRD4/miR-216a-3p axis [98]. High mobil-
ity group box 3 (HMGB3) is involved in the regulation of 
self-renewal and cell differentiation [99]. It has an impor-
tant regulatory role in cell growth and apoptosis and its 

Fig. 3 Role of miR-216a during tumor progression by regulation of transcription factors. (Created with BioRender.com)
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deregulation can lead to malignant breast cancer [100–
102]. MiR-216a hyper methylation led to HMGB3 over-
expression via binding to the 3’UTR, which subsequently 
stimulated the Wnt/β-catenin signaling pathway and 
enhanced malignant growth and migration of esopha-
geal tumor cells [103]. There were significant DANCR up 
regulation while miR-216a-5p down regulation in HCC 
cells. DANCR suppression reduced HCC cell growth 
and division through the miR-216a-5p/KLF12 axis [104]. 
There were significant DANCR up regulation while miR-
216a-5p down regulation in Oral Squamous Cell Carci-
noma (OSCC) tissues and cells that were associated with 
a higher TNM stage, lower differentiation level, and node 
metastasis. DANCR up regulated the KLF12 by func-
tioning as a molecular sponge of miR-126-5p, facilitating 
OSCC metastasis and invasion [105].

Autophagy is a mechanism within the cell that elimi-
nates and recycles defective organelles and proteins [106, 
107]. SRY-related high-mobility-group box 5 (SOX5) is a 
developmental transcription factor that promotes tumor 
progression in a variety of cancers [108]. There was 
DANCR up regulation in osteosarcoma tissues that was 
positively correlated with the grade of tumor. DANCR 
inhibition suppressed osteosarcoma cell growth and 
invasion while induced apoptosis via miR-216a-5p/SOX5 
axis [109]. There was DANCR up regulation in lung 
cancer tissues that was correlated with poor prognosis. 
DANCR promoted lung tumor cell invasion via miR-216a 
targeting [110].

Zinc finger E-box binding homeobox 1 (ZEB1) is also 
a critical mediator of EMT activation and self-renewal. 
ZEB1 could directly interact with the promoter regions of 
epithelial genes to inhibit their transcription and induce 
EMT through regulating the transcription of mesen-
chymal genes [111, 112]. ZEB-1 regulates the inhibition 
of CDH1 which promotes the EGFR/ERK axis in tumor 
cells [113]. There was SNHG16 up regulation in cervical 
cancer tissues that was correlated with advanced FIGO 
stage, larger tumor size, and lower differentiation. It was 
involved in cervical cancer progression by regulation of 
miR-216-5p/ZEB1 axis [114]. SNHG3 was found to be 
up regulated in NSCLC tissues and cells. SNHG3 inhibi-
tion reduced NSCLC cell growth and invasion while pro-
moted apoptosis through miR-216a/ZEB1 axis [115].

RUNX1 is a transcription factor that has key role in 
hematopoiesis [116]. It reduces the tumor sphere forma-
tion and directly declines ZEB1 expression and also sup-
press the stem cell phenotype [117]. RUNX1 has been 
demonstrated to suppress NF-kB pathway by interact-
ing with the IkB kinase. MiR-216a-3p may function as a 
tumor promoter in GC via inhibiting RUNX1 and stimu-
lating the NF-kB signaling pathway. MiR-216a-3p was 
markedly up regulated in GC tissues that were associated 

with the prognosis. MiR-216a-3p significantly up regu-
lated the CCND1, Bcl-2, MMP2, and MMP9 [118].

Autophagy, apoptosis, and cell cycle regulation
Autophagy is a catabolic process that degrades cytosolic 
proteins and organelles in response to cellular stress. 
This process is assumed to be the underlying cause of 
cancer cell radiation resistance [119]. In autophagy 
as a self-proteolytic cellular degradation mechanism, 
defective proteins and organelles are transported to lys-
osomes for destruction [120]. MiR-216a has a key role 
during tumor progression by regulation of autophagy 
and apoptosis (Fig.  4). This process removes highly 
toxic chemicals, preserves tissue homeostasis, and pro-
motes cancer cell survival. Nevertheless, highly active 
autophagy results in apoptosis [121]. The production 
of autophagosomes is induced by class III phospho-
inositide 3-kinase and beclin-1 during autophagy [122]. 
Beclin-1 is an autophagosome-forming factor that is up 
regulated in autophagy [123]. MiR-216a was discovered 
to markedly inhibit  beclin-1 and autophagy processes 
in radio resistant pancreatic tumor cells, resulting in 
increased sensitivity to radiotherapy [124]. HOTTIP 
was strongly associated with GC recurrence in patients 
who received cisplatin treatment. HOTTIP increased 
cisplatin resistance and suppressed autophagy and 
apoptosis in GC cells through miR-216a-5p sponging 
and Bcl-2/Beclin1 axis regulation [125]. Microtubule 
associated protein 1S (MAP1S) plays a key regulatory 
role in promoting autophagy flux [126]. There is also a 
relationship between  TGF-β/MAP1S-pathway-medi-
ated autophagy and carcinogenesis inhibition [127]. 
There were miR-216a down regulations in CRC tissues 
and cells. MiR-216a inhibited autophagy by disrupting 
the TGF-β/MAP1S  cascade in CRC cells [128]. Trans-
lationally controlled tumor protein (TCTP) is a highly 
conserved protein participated in cell proliferation 
and apoptosis [129]. It is also known as a modulator of 
tumor recurrence that reduces the expression level of 
p53 [130]. TPT1 has also been demonstrated to oper-
ate as a negative regulator of autophagy via BECN1 and 
the mTORC1-mediated pathway [131]. There was miR-
216a-5p down regulation in pancreatic cancer (PC) 
tissues that was correlated with poor prognosis and 
increased tumor cell migration. MiR-216a-5p inhib-
ited pancreatic tumor cell growth and motility by TPT1 
targeting. LINC01133 was also reported to enhance 
PC  cell growth, division, and migration  via inhibiting 
miR-216a-5p [132]. B cell lymphoma-2-like 2 protein 
(BCL2L2) is a member of the BCL2 family that plays 
a crucial role in human malignancies [133]. BCL2L2 
enhances tumor progression by facilitating cell growth 
and division [134]. Circ-0011946 inhibition reduced 



Page 10 of 18Hamidi et al. Cancer Cell International           (2023) 23:19 

OSCC cell growth and metastasis while induced apop-
tosis via the miR-216a-5p/BCL2L2 axis [135]. HOT-
TIP induced chemo resistance in small cell lung cancer 
through the miR-216a/BCL-2 axis [136]. MiR-216a-5p 
reduced cell growth, division, and metastasis  in lung 

cancer through regulating Bcl-2/Bax/Bad protein 
expression [137].

Cyclin-dependent kinases (CDKs) are a group of cell 
cycle related kinases that have important regulatory 
functions during cell cycle progression [138]. CDKs 

Fig. 4 Role of miR-216a during tumor progression by regulation of apoptosis and autophagy. (Created with BioRender.com)
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are important regulators of cell cycle progression and 
have been proposed as potential therapeutic targets for 
cancer therapy [139]. CDK14 is an important cell cycle 
regulator by interacting with CCND3 [140, 141]. It pro-
motes Wnt signaling by mediating LRP6 phosphoryla-
tion [140, 142]. CDK14 silencing down regulated PI3K 
and inhibited AKT phosphorylation in pancreatic cancer 
cells [143]. CDK14 was discovered to be associated with 
overall survival and prognosis in osteosarcoma patients. 
Patients with overexpressed miR-216a showed improved 
overall survival, implying that miR-216a plays a predic-
tive and prognostic function in osteosarcoma. MiR-216a 
inhibited osteosarcoma cell growth and invasion by down 
regulating CDK14. The miR-216a/CDK14 axis promoted 
Wnt pathway in osteosarcoma cells via modulating LRP6 
phosphorylation and Wnt downstream genes. MiR-216a/
CDK14 axis was also essential in the phosphorylation of 
PI3K and Akt in osteosarcoma cells. MiR-216a down reg-
ulated CDH2 while up regulated CDH1 via CDK14 tar-
geting in osteosarcoma [144]. BTG2 as a member of the 
TOB/BTG gene family is involved in G1/S cell cycle pro-
gression [145, 146]. BTG2 negatively mediates CCND1 
and reduces the expression level of FoxM1 via suppress-
ing the association of CCNB1/CDKs [147]. CircFLNA 
reduced the bladder tumor growth via miR-216a-3p/
BTG2 axis [148].

Structural factors
Various structural proteins involved in immune response, 
cell adhesion, cellular metabolism, and DNA repair can 
also be targeted by miR-216a during tumor progres-
sion (Fig.  5). The tumor  microenvironment plays a key 
role in the modulation of oncogenic events through mac-
rophages, neutrophils, mast cells, T/B lymphocytes, and 
also stromal cells [149]. There are three types of interac-
tions between tumor microenvironment components 
as well as between these components and tumor cells, 
including direct contact, paracrine, or autocrine signal-
ing [150, 151]. Cancer-associated fibroblasts (CAFs) con-
stitute the majority of tumor stroma [152]. CAFs secrete 
inflammatory cytokines, which results in the stimulation 
of pathways that promote tumor cell growth  and self-
renewal preservation [153]. Toll-like receptors (TLRs) are 
a class of cell surface recognition receptors that form a 
connection between the tumor microenvironment and 
tumor cells. They are not only implicated in the defense 
against pathogen attack, but they can also enhance tumor 
cell proliferation [154]. TLR4 activation causes a pro-
inflammatory response, which results in the synthesis 
and release of cytokines such as IL-6 and IL-8 [155, 156]. 
TLR4 is involved in tumor cell adhesion and invasion in a 
variety of human malignancies [157, 158]. MiR-216a-5p 
functioned as an inhibitor of breast tumor progression 

and promoted the secretion of IL-6 pro-inflammatory 
cytokine by TLR4 targeting [159]. There was significant 
miR-216a down regulation in renal cell carcinoma (RCC) 
tissues. It reduced RCC cell growth and invasion, while 
induced apoptosis via TLR4 targeting [160].

COX and 5-lipoxygenase (ALOX5) play a key role in 
the synthesis of prostaglandins and leukotrienes, respec-
tively. These were first recognized as being essential 
in the regulation of inflammation. Anti-inflammatory 
drugs, such as COX2 suppressors are conventional drugs 
used in the treatment of breast cancer [161]. Although, 
ALOX5 and COX2 play their roles via different cellu-
lar pathways, they have comparable  mechanisms for 
modulating cell survival. MiR-216a-3p suppressed CRC 
cell growth by negatively modulating the expression of 
COX2 and ALOX5 in CRC cells. CRC patients with T3 
and T4 stages had significantly higher levels of COX2 and 
ALOX5 expressions compared to healthy tissues. COX2/
ALOX5 up regulation was significantly correlated with 
poor prognosis. MiR-216a-3p inhibited CRC cell growth 
by suppressing COX2 and ALOX2 [162].

Aerobic glycolysis, which exhibits aberrant metabolism 
defined by excessive glycolysis despite the presence of 
sufficient oxygen, is recognized as a typical characteris-
tic of tumor cells .[163, 164] This process increases the 
lactate synthesis and glucose uptake, which stimulates 
tumor growth. Hexokinase 2 (HK2) as the first enzyme in 
glycolysis catalyzes the glucose-6-phosphate production 
[165]. HK2 up regulation has been reported in numerous 
malignancies and promotes tumor growth by the glyco-
lysis induction [166, 167]. MiR-216a-5p has been discov-
ered to reduce the glycolysis and cell growth by HK2 
targeting in uveal melanoma cancer cells [168].

RAP2B belongs to the Ras superfamily that is involved 
in the regulation of cell proliferation and migration [169, 
170]. CCAT1 promoted NSCLC proliferation while 
reduced apoptosis via the miR-216a-5p/RAP2B axis 
[171]. CDC42 is a component of the Rho GTPase family 
and is involved in cell proliferation and migration [172, 
173]. HCP5 promoted the cervical tumor initiation and 
progression via the miR-216a-5p/CDC42 axis [174].

PAK2 is a kinase involved in a variety of intracellular 
processes, including cytoskeletal remodeling  and cell 
migration [175, 176]. The Rac and CDC42 stimulate 
PAK2 [175, 177]. The size and prognosis of malignant 
tumors have been correlated with PAK2 activation [178, 
179]. MiR-216a-5p reduced breast tumor cell growth 
and invasion via PAK2 targeting [180]. Protein kinase C 
alpha (PKCα) is a member of the PKC family [181]. PKCα 
expression is contributed with poor prognosis in ER-pos-
itive breast cancers [182, 183]. It promotes breast tumor 
cell migration via FOXC2-mediated inhibition of p120-
catenin [184]. There was significant miR-216a down 
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Fig. 5 Role of miR-216a during tumor progression by regulation of structural proteins involved in cell adhesion, metabolism, DNA repair, and 
immune response. (Created with BioRender.com)
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regulation in breast cancer cells. It promoted the breast 
tumor cell apoptosis via PKCα targeting [185].

The coatomer protein complex subunit beta 2 (COPB2) 
plays a vital role in intracellular transportation by form-
ing transport vesicles [186]. It has been indicated that 
COPB2 participates in the modulation of extracellular 
membrane transportation and stimulation of retrograde 
transport between the Golgi complex and ER [187]. 
COPB2 can mediate the growth and apoptosis of can-
cer cells by activating the RTKs- and JNK/c-Jun-signal-
ing cascades [188]. Under expression of COPB2 induces 
tumor cell apoptosis [189, 190]. COPB2 inhibition sig-
nificantly up regulated the CDH1 while down regulated 
the CDH2 and Vimentin that reduced lung tumor cell 
invasion. MiR-216a-3p reduced lung tumor cell invasion 
while promoted the apoptosis by COPB2 targeting [190, 
191].

Aquaporin-4 (AQP4) is a critical molecule in the cen-
tral nervous system that participated in preserving water 
and ion homeostasis and has been indicated to play a 
key role in tumor cell invasion [192]. AQP4 is also asso-
ciated with α-syntrophin which interacts with the actin 
cytoskeleton and β-dystroglycan. Therefore, AQP4 can 
be involved in modification of the cellular cytoskeleton 
[193]. There were LINC00461 up regulations in glioma 
tissues and cells. LINC00461 silencing inhibited glioma 
cell growth, invasion, and temozolomide (TMZ)  toler-
ance via miR-216a/ AQP4 axis [194].

Tetraspanin 1 (TSPAN1) is a small trans-membrane 
protein engaged in cell migration and proliferation [195, 
196]. Integrins as the cell adhesion receptors, directly 
bind to diverse extracellular matrix (ECM) molecules 
and regulate cell growth, apoptosis, and invasion [197]. 
Deregulation of integrin is associated with tumor pro-
gression by disrupting the cell migration [198]. Integ-
rin alpha 2 (ITGA2) is a trans-membrane receptor that 
facilitates cell adherence to the ECM that is deregulated 
in various tumor types [199, 200]. TSPAN1 has the abil-
ity to modulate methylation-related enzymes and thereby 
influence the methylation level of the ITGA2 promoter. 
TSPAN1 up regulated TET2 while down regulated 
DNMT3B and DNMT1. TSPAN1 regulated methyltrans-
ferases that resulted in ITGA2 hypo methylation in PC. 
MiR-216a/TSPAN1/ITGA2 axis was implicated in the 
regulation of PC progression [201].

KIAA0101 or proliferation cell nuclear antigen (PCNA) 
protein is implicated in the modulation of DNA repair 
and cell proliferation, cell cycle development, and migra-
tion [202]. It preserve cells from UV-associated cell death 
[203]. Down regulation of KIAA0101 suppresses tumor 
cell progression and glycolysis by inactivating the PI3K/
AKT/mTOR pathway [204]. The KIAA0101 protein has 
been deregulated  in multiple  malignancies that were 

associated with poor prognosis [202, 205]. There was 
miR-216a-5p down regulation in ESCC tissues that was 
correlated with poor prognosis. MiR-216a-5p suppressed 
ESCC  cell growth and invasion by KIAA0101 targeting 
[206].

Conclusions
Considering the importance of identifying non-invasive 
markers to facilitate early tumor detection, in the pre-
sent review we investigated the role of miR-216a during 
tumor progression. It has been reported that miR-216a 
has mainly a tumor suppressor function through the reg-
ulation of signaling pathways and transcription factors, 
which ultimately changes the cell cycle, apoptosis, and 
autophagy. This study can be an effective step towards 
introducing the miR-216a as a non-invasive marker in 
tumor detection and treatment. MiRNA-based cancer 
therapy is designed based on the miRNA function inside 
the tumor cells by the inhibition of oncogenic miRNAs or 
induction of tumor suppressor miRNAs. However, there 
are some challenges to use the miRNAs in tumor tar-
geted therapy including the miRNA degradation by the 
cytoplasmic nucleases and the adverse influences of the 
selected miRNAs in normal biological cellular functions. 
Therefore, the side effects can be expected following the 
miRNA targeted therapy. Optimization of the site spe-
cific and delivery methods can reduce the optimal antag-
omiRs or mimics concentrations that finally reduces the 
probable side effects of miRNA-based therapies in cancer 
patients. Since, miR-216a has mainly a tumor suppressive 
function in different tumor types, miR-216a mimics can 
be used as a method of choice in cancer patients. How-
ever, it is required to perform the in-vitro and animal 
studies to confirm the miR-216a as an efficient candidate 
for the targeted therapy in clinics. Moreover, assessment 
of the circulating miR-216a levels in different cancers is 
required to suggest that as a reliable non-invasive diag-
nostic marker in cancer patients.
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