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Abstract

Background: Thyroid carcinoma (THCA) is the most common endocrine-related malignant tumor. Despite the good
prognosis, some THCA patients may deteriorate into more aggressive diseases, leading to poor survival. This may be
alleviated by developing a novel model to predict the risk of THCA, including recurrence and survival. Ferroptosis is
an iron-dependent, oxidative, non-apoptotic form of cell death initially described in mammalian cells, and plays an
important role in various cancers. To explore the potential prognostic value of ferroptosis in THCA, ferroptosis-related
long non-coding RNAs (FRLs) were used to construct model for risk prediction of THCA.

Methods: RNA-sequencing data of THCA patients and ferroptosis-related genes were downloaded from The Cancer
Genome Atlas (TCGA) and FerrDb, respectively. A total of 502 patients with complete data were randomly separated
into a training cohort and a validation cohort at the ratio of 2:1. The Pearson correlation coefficients were calculated
to determine the correlation between ferroptosis-related genes (FRGs) and the corresponding IncRNAs, and those
meeting the screening conditions were defined as FRLs. Gene Expression Omnibus (GEO) database and gRT-PCR
were used to verify the expression level of FRLs in THCA tissues. Univariate and multivariate cox regression analysis
were performed to construct a FRLs signature based on lowest Akaike information criterion (AIC) value in the training
cohort, then further tested in the validation cohort and the entire cohort. Gene set enrichment analysis (GSEA) and
functional enrichment analysis were used to analyze the biological functions and signal pathways related to differen-
tially expressed genes between the high-risk and low-risk groups. Finally, the relative abundance of different tumor-
infiltrating immune cells were calculated by CIBERSORT algorithm.

Results: The patients were divided into high-risk group and low-risk group based on a 5-FRLs signature (AC055720.2,
DPP4-DT, AC012038.2, LINC02454 and LINC00900) in training cohort, validation cohort and entire cohort. Through
Kaplan-Meier analysis and area under ROC curve (AUC) value, patients in the high-risk group exhibited worse prog-
nosis than patients in the low-risk group. GEO database and gRT-PCR confirmed that LINC02454 and LINCO0900 were
up-regulated in THCA. Univariate and multivariate cox regression analyses showed that the risk score was an inde-
pendent prognostic indicator. GSEA and functional enrichment analysis confirmed that immune-related pathways
against cancer were significantly activated in the low-risk THCA patients. Further analysis showed that the immune
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cells such as plasma cells, T cells CD8 and macrophages M1, and the expression of immune checkpoint molecules,
including PD-1, PD-L1, CTLA4, and LAG3, were remarkably higher in the low-risk group.

Conclusion: Our study used the TCGA THCA dataset to construct a novel FRLs prognostic model which could
precisely predict the prognosis of THCA patients. These FRLs potentially mediate anti-tumor immunity and serve as
therapeutic targets for THCA, which provided the novel insight into treatment of THCA.
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Introduction

Thyroid carcinoma (THCA) is the most common malig-
nancy of human endocrine system. The latest follow-up
prevalence study revealed that the incidence of THCA
ranked fifth in female malignancies worldwide [1]. Papil-
lary thyroid carcinoma (PTC) is the most common path-
ological subtype of THCA, accounting for 85% to 90% of
the total incidences. Due to the relatively inert biological
behavior of PTC, its overall prognosis is relatively good,
and the 10-year survival rate of patients is greater than
90% [2]. However, many cases still die of THCA due to
malignant pathological subtypes, postoperative recur-
rence and distant metastasis [3]. Therefore, finding out
novel diagnostic and prognostic markers as well as new
therapeutic targets for THCA is of great significance.

Ferroptosis is generally referred to as one type of regu-
lated cell death involving the production of iron-depend-
ent reactive oxygen species (ROS), which is distinct from
other forms of cell death regarding the morphological,
biochemical, and genetic features [4, 5]. As revealed by
more and more studies, ferroptosis plays an important
role in tumor progression and treatment [6, 7]. Besides,
various tumor types, such as lung adenocarcinoma,
hepatocellular carcinoma, and ovarian cancer, have been
demonstrated to be sensitive to ferroptosis [8, 9]. Simi-
larly, ferroptosis has been proved as an essential part in
THCA. Recent research has found that circular RNA
circ_0067934 could attenuate ferroptosis of THCA cells
by miR-545-3p/SLC7A11 signaling [10]. Another study
has reported that knockdown of ETV4 could inhibit the
PTC development by promoting ferroptosis through
downregulating SLC7A11 [11].

In recent years, immune checkpoint blockage therapy
has increasingly attracted the attention of research-
ers due to its great breakthrough in cancer immu-
notherapy. Immune checkpoint inhibitors targeting
programmed cell death protein 1 (PD-1), programmed
cell death ligand 1 (PD-L1), T cell immunoglobulin and
ITIM domain (TIGIT), T cell immunoglobulin mucin-3
(TIM-3), and cytotoxic T lymphocyte antigen 4 (CTLA4)
have been effective in treatment of various cancer types
[12]. The response to immune checkpoint blockage
therapy is closely related to the tumor microenviron-
ment (TME). Ferroptosis related damage may result

in inflammation-induced immunosuppression in the
TME, facilitating tumor development [13]. Surprisingly,
a research showed that CD8+T cells with anti-tumor
activity promote ferroptosis by down-regulating SLC3A2
and SLC7A11 [13]. However, the in-depth mechanisms
of the interaction between ferroptosis and TME are still
unclear. Therefore, exploring the relationship between
ferroptosis and TME can help us better understand the
pathogenesis of THCA and promote the development of
treatment strategies.

The long non-coding RNAs (IncRNAs) are defined
as the RNAs with over 200 nucleotides in length and
without protein-coding ability [14, 15]. Increasing stud-
ies have demonstrated that the abnormal expression of
IncRNAs exhibits both tumor-supportive or tumor-sup-
pressive effect in various cancers [16—18]. Recent stud-
ies have indicated that dysregulation of specific IncRNAs
was inextricably linked with the ferroptosis of malig-
nant tumors [19, 20]. It was reported that upregulation
of IncRNA OIP5-AS1 inhibited ferroptosis in prostate
cancer with long-term cadmium exposure through miR-
128-3p/SLC7A11 signaling [21]. Another study revealed
that upregulation of IncRNA LINC00618 promoted
vincristine-induced ferroptosis in human leukemia [22].
However, the complete role of IncRNAs in ferroptosis
process of THCA remains obscure. The prognostic value
of ferroptosis-related IncRNAs (FRLs) for THCA patients
has never been systematically evaluated.

In this study, we aimed to identify FRLs in THCA, and
provide important insight on the biological significance
of ferroptosis in THCA. Furthermore, we analyzed the
relationship between FRLs and immune microenviron-
ment in THCA. FRLs were found as both prognostic
markers and potential therapeutic targets of THCA
patients.

Materials and methods

Data acquisition

The Cancer Genome Atlas (TCGA), a database with tre-
mendous amounts of genomic and clinical data, facili-
tates relevant researches for genetic alterations and
pathways that influence tumorigenesis, tumor progres-
sion, tumor differentiation, and tumor metastasis [23].
The RNA-sequencing (RNA-seq) data of 58 adjacent
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non-tumorous tissues (N) and 502 tumor tissues (T) as
well as the corresponding clinical information of 502
THCA patients (patients with incomplete follow-up data
were excluded) were downloaded from TCGA database
(https://portal.gdc.cancer.gov/repository). The IncR-
NAs and protein-coding genes were classified by the
Ensembl human genome browser GRCh38. p13 (http://
asia.ensembl.org/index.html) [24]. FRGs were obtained
from an authoritative public database (241 FRGs were
obtained and their detailed information is provided in
Additional file 1: Table S1), FerrDb (http://www.zhounan.
org/ferrdb/), which provides the information of markers,
regulators, and inducers of ferroptosis [25]. The present
study did not require approval from an ethics commit-
tee because TCGA and FerrDb are publicly accessible
databases.

Establishment and verification of the prognostic model

The Pearson correlation coefficients were calculated to
determine the correlation between FRGs and the cor-
responding IncRNAs. The FRLs were identified with
the p value less than 0.001 (p<0.001) and the absolute
value of Pearson correlation coefficient more than 0.3
(IR|>0.3). After normalizing data from TCGA database,
the “limma” R package was used to obtain differentially
expressed IncRNAs between tumor tissues and non-
tumorous tissues based on the criteria of false discovery
rate (FDR)<0.05 and |log2FC|>1 [26]. A total of 502
patients were randomly separated into a training cohort
and a validation cohort at the ratio of 2:1 for constructing
and validating the FRLs signature. Univariate cox regres-
sion analysis was performed to identify prognostic IncR-
NAs regarding OS (p<0.05) in the training cohort. The
intersected IncRNAs of differentially expressed IncRNAs,
FRLs and prognostic IncRNAs were identified as the can-
didate IncRNAs for developing the FRLs prognostic sig-
nature. Then, multivariate cox regression analysis was
performed on the candidate FRLs to evaluate their prog-
nostic value. We identified five optimal FRLs for con-
structing the prognostic model based on lowest Akaike
information criterion (AIC) value. The risk score of
each patient was calculated according to the normalized
expression levels of FRLs and their corresponding regres-
sion coefficients. The computational formula was as fol-
lows: Risk Score = es“™ (corresponding regression coefficient x each
IncRNAS expression) Based on the median value of risk score,
we divided the patient into high-risk and low-risk groups
in the training cohort, validation cohort and entire
cohort, respectively. Kaplan—Meier (KM) survival curves
with log-rank tests were used to analyze differences in
OS between high-risk and low-risk groups. Then, time-
dependent ROC curve was generated with “survival
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ROC” R package to evaluate the predictive accuracy of
the FRLs signature.

Sample collection

Eight pairs of THCA tissues and corresponding adja-
cent non-cancerous tissues were obtained from patients
undergoing thyroidectomy at the Xijing Hospital from
2018 to 2020. All samples were immediately dissected,
placed on ice, snap-frozen in liquid nitrogen, then stored
at — 80°C until use. The patient tissue samples were con-
firmed by histopathological examination to be PTC tis-
sues and adjacent non-cancerous tissues. None of the
patients had received preoperative local or systemic
treatment. All procedures involving human participants
in the study were in accordance with the ethical stand-
ards of the Research Ethics Committee of The Air Force
Medical University as well as the 1964 Helsinki declara-
tion and its later amendments.

Total RNA isolation and quantitative real-time PCR
(qRT-PCR)

Total RNA was isolated from frozen tissue and cell sam-
ples by RNAiso (Takara, Dalian, China). A reverse tran-
scription kit (RR036A, Takara, Shiga, Japan) was used to
transcribe total RNA and produce complementary DNA.
For the analysis of gene expression, qRT-PCR was per-
formed using SYBR Premix Ex Taq II (Takara) and the
LightCycler 480 system (Roche, Indianapolis, IN, USA).
The relative expression levels were calculated using the
274 method (Ct, cycle threshold). ACt indicates the
difference in the Ct value between a target gene and the
endogenous reference. GAPDH was used as the internal
control. Each PCR was performed in triplicate to verify
the stability and repeatability of the results. The primer
sequences are available in Additional file 3: Table S3.

Construction of the IncRNA-mRNA co-expression network
In order to demonstrate the correlation between the
FRLs and their corresponding FRGs, the IncRNA-mRNA
co-expression network was constructed and visualized
using the Cytoscape software (version 3.7.2, http://www.
cytoscape.org/). Then, the Sankey diagram was plotted
to further demonstrate the correlation degree between
FRLs and their corresponding FRGs.

Gene set enrichment analysis and functional enrichment
analysis

The “edgeR” R package was used to identify the differen-
tially expressed genes between the high-risk and low-risk
groups with the criteria of FDR<0.05 and |log2FC|> 1.
The identified differentially expressed genes were ana-
lyzed by gene set enrichment analysis (GSEA; http://
www.broadinstitute.org/gsea) to explore the molecular
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and biological differences between the two groups. The
gene sets were filtered based on the minimum and maxi-
mum sizes of 10 and 500 genes, respectively. In addition,
Gene Ontology (GO) enrichment analysis was per-
formed to determine the biological processes, molecular
functions, and cellular components related to the FRLs
signature. And the Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis was performed to
identify the signaling pathways associated with the FRLs
signature.

Estimation of tumor-infiltrating immune cells

The relative abundance of different tumor-infiltrating
immune cells were calculated by CIBERSORT algorithm
[27]. The normalized gene expression data were uploaded
to the CIBERSORT web portal (http://cibersort.stanford.
edu/), and the algorithm was based on LM22 gene signa-
ture and 1,000 permutations. The samples were filtered
based on a p value <0.05.

Statistical analysis

Wilcox-test was used to compare relative abundance of
tumor-infiltrating immune cells and expression levels of
immune checkpoint molecules between high-risk and
low-risk groups. Spearman correlation analysis was used
to analyze the correlation between tumor-infiltrating
immune cells. The proportions of patients with different
clinical characteristics between groups were analyzed by
the Chi-squared test. Univariate Cox regression analysis
and multivariate Cox regression analysis were performed
to identify independent prognostic factors. The predic-
tive accuracy of the prognostic model regarding OS was
evaluated by time-dependent ROC curve. All statisti-
cal analyses were conducted by SPSS (Version 21.0) or R
software (Version 3.5). Statistical significance was defined
as a p value <0.05, and all tests were two-tailed.

Results

The clinical characteristics of patients in the training
cohort, validation cohort and entire cohort

A total of 502 THCA patients from the TCGA database
were defined as the entire cohort. They were randomly
divided into a training cohort and a validation cohort
at a ratio of 2:1 (n=334 and 168, respectively). The
detailed clinical characteristics of patients are presented
in Table 1. There was no significant difference in clinical
characteristics of patients between the training cohort
and the validation cohort (Fig. 1).

Identification of prognostic differentially expressed FRLs

in THCA patients

Firstly, a total of 502 THCA samples and 58 normal thy-
roid tissue samples were included for analyses. A total
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of 14,062 IncRNAs were identified by analyzing the
RNA-seq data of the THCA patients in TCGA database.
According to the threshold of adjusted p value <0.05 and
|log2 FC|>1, 2,201 IncRNAs were found to be differen-
tially expressed between tumor and normal tissues. Then,
we identified 280 prognostic IncRNAs by univariate cox
regression analysis (p<0.05) in the training cohort. To
identify FRLs, 241 ferroptosis-associated genes (FRGs)
were downloaded from the ferroptosis database. We
found that 1,268 FRLs were significantly correlated
with FRGs (|R|>0.3 and p<0.001). Finally, Venn dia-
grams were used to exhibit the intersected IncRNAs of
IncRNAs, prognostic IncRNAs and FRLs. We identified
22 IncRNAs (DOCK9-DT, AC046143.1, AC022509.2,
MIR181A2HG, AF131215.7, AC055720.2, AC084375.1,
LINCO02471, DPP4-DT, AL162511.1, HMGA2-ASI,
AL031985.3, AC141930.1, AC012038.2, TBILA,
AL158206.1, FAM111A-DT, LINC02454, AC254633.1,
AC005479.2, AC007255.1 and LINCO00900) that were
shared by three IncRNA sets, and these 22 IncRNAs
were defined as prognostic differentially expressed FRLs
between normal and tumor tissues (Fig. 2A-D).

Construction of prognostic model based on frls

in the training cohort

The expression levels of the 22 FRLs were used to con-
struct a prognostic model by multivariate cox regression
analysis in the training cohort regarding the overall sur-
vival (OS). An optimal 5-IncRNAs (AC055720.2, DPP4-
DT, AC012038.2, LINC02454 and LINC00900) signature
was identified based on the lowest Akaike information
criterion (AIC) (Additional file 2: Table S2). The risk

score was calculated using the following formula: (=347
x expression level of AC055720.2 — 1.923 x expression level of DPP4—DT —

0.591 x expression level of AC012038.2 + 0.43 x expression level of LINC02454

— 091 x expression level of LINCOO900). The patients were further
divided into a high-risk group (n=167) and a low-risk
group (n=167) based on the median value of risk score.
The risk score was significantly associated with T stage
and N stage of THCA cancer patients (Table 2).

As shown in Fig. 3A, patients in the high-risk group
presented decreased survival compared with patients
in the low-risk group. And the Kaplan—Meier analy-
sis showed that patients in the high-risk group had sig-
nificantly worse OS than patients in the low-risk group
(Fig. 3G, p =0.009). The area under ROC curve (AUC)
value reached 0.969 at 1 year, 0.882 at 3 years, and 0.962
at 5 years (Fig. 3]).

To test the reliability of the FRLs signature constructed
in the training cohort, risk scores of the patients in the
validation cohort and the entire cohort were calculated as
described above. The patients in validation cohort were
divided into a high-risk group (n=84) and a low-risk
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Table 1 Clinical characteristics of patients in entire cohort, training cohort and validation cohort
Variables Entire cohort (n=502) Training cohort (n=334) Validation cohort p-value
(n=168)
No % No % No %
Age
Median(years) 46 - 46 - 46 - -
<55 335 66.7 224 67.1 11 66.1 0.823
>55 167 333 110 329 57 339
Gender
Female 367 73.1 248 74.3 119 70.8 041
Male 135 269 86 25.7 49 29.2
AJCC Stage 0.09
I 396 789 269 80.5 127 75.6
Il 84 16.7 46 13.8 38 226
Il 17 34 16 4.8 1 0.6
v 5 1 3 0.9 2 1.2
T Stage 061
T 145 289 94 28.1 51 304
T2 164 32.7 1 332 53 315
T3 170 339 11 332 59 35.1
T4 23 4.6 18 54 5 3
N Stage 0.207
NO 229 456 147 44 82 488
N1 223 444 155 464 68 40.5
Nx 50 10 32 9.6 18 10.7
M Stage 0471
MO 282 56.2 188 56.3 94 56
M1 9 18 5 15 4 24
Mx 211 42 141 422 70 416

group (n=284), and the patients in entire cohort were
also divided into a high-risk group (n=251) and a low-
risk group (n=251) based on the corresponding median
value of risk scores, respectively. Likewise, patients in the
high-risk group of validation cohort and entire cohort
were associated with worse survival outcome (Fig. 3B and
3C). And the Kaplan—Meier analysis showed that patients
in the high-risk group had worse OS than patients in the
low-risk group in both the validation cohort and the
entire cohort (Fig. 3H and 3L, p =0.023 and p<0.001,
respectively). The AUC values in the validation and entire
cohorts reached 0.921 and 0.954 at 1 year, 0.981 and
0.913 at 2 years, and 0.995 and 0.918 at 5 years, respec-
tively (Fig. 3K and L).

Then, we used three GEO databases (GSE29265,
GSE33630, GSE53157) to verify the expression differ-
ence of FRLs between THCA and normal tissues. How-
ever, due to the limitation of sequencing platform, we
can only obtain the expression of LINC00900. The results
showed that the expression of LINC00900 in THCA
was higher than that in normal tissues in all three GEO

databases (Fig. 3M). Finally, qRT-PCR was used to detect
the expression of LINC02454, LINC00900 and DPP4-DT
in 80 pairs of THCA and paired adjacent tissues, and the
expression of LINC02454, LINC00900 and DPP4-DT sig-
nificantly increased in THCA (Fig. 3N).

Independent prognostic value

of the five-ferroptosis-related IncRNAs model

To determine whether the risk score was an independ-
ent prognostic factor for THCA patients, univariate
cox regression and multivariate cox regression analyses
were performed on the clinical characteristics and risk
score. The results of univariate cox regression analy-
sis showed that the risk score was significantly associ-
ated with OS in the training cohort, validation cohort
and entire cohort (training cohort: HR=1.088, 95%
CI=1.039-1.14, p<0.001; validation cohort: HR=1.148,
95% CI 1.047-1.26, p<0.001; entire cohort: HR =1.094,
95% CI 1.054-1.136, p<0.001) (Fig. 4A—C). After adjust-
ing for other confounders, the risk score remained to be
an independent predictor of OS in the multivariate cox
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RNA-seq data of 502 THCA
patients from TCGA

v v

Clinical data of 502 THCA
patients from TCGA

<—| Randomly separated in 2:1 ratio

v v v

Tumor sample Normal sample
N=502 N=58

Traning cohort Validation cohort Entire cohort
N=334 N=168 N=502

241 ferroptosis-
related genes

v

v v
1,268 ferroptosis- 2,201 differentially
related IncRNAs expresse INncRNAs

\ 4

|280 prognostc IncRNAs|

A\ 4

ferroptosis-related INcRNAs

22 prognostic differentially expresse

Multivariate Cox |=——|

\4

[5-ferroptosis-related IncRNAs signature]

v
[ Survival analysis|]  [Function analysis |

|Immune cell infiltration analysis

Fig. 1 The flow diagram of this study

regression analysis (training cohort: HR=1.067, 95%
CI=1.037-1.077, p<0.001; validation cohort: HR=1.16,
95% CI 1.031-1.206, p=10.001; entire cohort: HR=1.092,
95% CI 1.033-1.176, p<0.001) (Fig. 4D—F).

Furthermore, the ROC curve showed that the AUC
values of the FRLs prognostic signature in the training
cohort, validation cohort and entire cohort were 0.95,
0.936 and 0.951, respectively, which were higher than
the AUC values of other traditional prognostic factors
(Fig. 4G-I). Based on the analysis results of multivariate
logistic regression, the independent variables including
age, gender, stage, T stage, and risk score were screened
out for establishing a visualized nomogram to predict
survival analysis for individual THCA patients (Fig. 4]).
The decision curve analysis (DCA) showed that the

prediction ability of the nomogram was more effective
than a treat-none or treat-all strategy (Fig. 4K).

Construction of the IncRNA-mRNA co-expression network

To further explore the potential roles of FRLs in THCA,
the IncRNA-mRNA co-expression network was con-
structed using Cytoscape for elucidating the correlation
between FRLs and FRGs. The IncRNA-mRNA co-expres-
sion network included 92 pairs in total, among which 54
pairs were positively correlated and 38 pairs were nega-
tively correlated (Fig. 5A). Within the network, LncRNA
LINC02454 positively correlated with 16 FRGs (ARNTL,
TGFBR1, LAMP2, HMGB1, CHMP5, ANO6, RELA,
MAPK1, DPP4, BID, SRC, ISCU, PRDX6, ZFP69B,
HIF1A, CD44) and negatively correlated with 20 FRGs

(See figure on next page.)

Fig. 2 Identification of prognostic differentially expressed FRLs in THCA patients. A Venn diagram was established to identify the common IncRNAs
of differentially expressed IncRNAs, FRLs, and prognostic INcRNAs. B The 22 intersected IncRNAs were differentially expressed in normal and tumor
tissues. C Forest plot showing the univariate cox regression analysis on 22 IncRNAs. D IncRNA-mRNA co-expression network of candidate FRLs and
FRGs. The left indicates positive correlation between FRLs and FRGs and the right indicates negative correlation between FRLs and FRGs
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Table 2 Relationship  between risk score and clinical
characteristics of patients in the training cohort
Variables Low-risk score High-risk score p-value
(n=167) (n=167)
No % No %
Age
Median(years) 46 - 47 - -
<55 m 66.5 113 67.7 0.816
>55 56 335 54 323
Gender
Female 124 74.3 124 74.3 1
Male 43 25.7 43 257
AJCC Stage 049
| 130 77.8 139 83.2
Il 26 15.6 20 12
I 10 6 6 3.6
v 1 0.6 2 1.2
T Stage 0.034
T 58 34.7 36 21.6
T2 55 329 56 335
T3 47 28.1 64 383
T4 7 0.6 1 6.6
N Stage 0.753
NO 75 449 72 431
N1 78 46.7 77 46.1
Nx 14 84 18 10.8
M Stage 0.295
MO 87 52.1 101 60.5
M1 3 1.8 2 12
Mx 77 46.1 64 383

(ABCC1, HSPA5, CARS1, PEBP1, GPT2, HERPUDI,
MAPI1LC3A, ACSF2, FH, ATG4D, NFS1, PRDX1, PGD,
SLC2A8, ATP5MC3, WIPI1, MT1G, CEBPG, MIOX,
BAP1). LncRNA DPP4-DT had positive relationship
with 12 FRGs (SAT1, ALOX15B, MAP3K5, TFAP2C,
FANCD2, RELA, MAPK1, DPP4, BID, SRC, ALOX5,
HIF1A) and negative relationship with 9 FRGs (HSPA5,
HERPUD1, MAPILC3A, ACSF2, NFS1, SLC2AS,
ATG13, BAP1, SNX4). Nine FRGs (OTUB1, HMGBI,
GABPB1, ANO6, DUOX2, MAPK14, DUOXI1, ATG13,
CD44) positively correlated with IncRNA LINC00900
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and 5 FRGs (MUCI1, FTH1, ALOX5, WIPI1, CISD1)
negatively correlated with IncRNA LINC00900, respec-
tively. LncRNA AC055720.2 positively correlated with
10 FRGs (CHMP6, OTUB1, TMBIM4, PHKG2, HMGB1,
GABPBI1, SRC, ISCU, CD44 and ELAVLI1) and nega-
tively correlated with 4 FRGs (STEAP3, WIPI1, NCOA4,
CISD1). Only IncRNA AC012038.2 was positively related
to 7 FRGs (CHMP6, EGLN2, HRAS, GPX4, SOCSI,
ISCU, HSPB1), with no negatively related FRGs being
detected.

The Sankey diagram not only demonstrated the rela-
tionship between FRLs and FRGs, but also demonstrated
the relationship between FRLs and OS of THCA patients
(Fig. 5B).

Explore cancer related pathways by gene set enrichment
analysis

To explore the biological functions and signal transduc-
tion pathways associated with the FRLs, the differen-
tially expressed genes between the high-risk and low-risk
groups were used to perform Gene Set Enrichment Anal-
ysis (GSEA). The results showed that the metabolism
pathways and cell proliferation pathways, such as pro-
panoate metabolism, valine leucine and isoleucine degra-
dation, citrate cycle tca cycle, DNA replication, fatty acid
metabolism and cell cycle, were active in the high-risk
THCA patients (Fig. 6A). While some immune-related
pathways against cancer were significantly activated in
the low-risk THCA patients, such as T cell receptor sign-
aling pathway, natural killer cell-mediated cytotoxicity,
B cell receptor signaling pathway and cytokine cytokine
receptor interaction (Fig. 6B).

Immune-Related pathways were activated in the FRLs
model

In addition to GSEA, GO enrichment analysis and
KEGG enrichment analysis were performed to deter-
mine the biological functions related to the FRLs. We
used the aforementioned differentially expressed genes
between the high-risk and low-risk groups for enrich-
ment analysis and found that the differentially expressed
genes were obviously enriched in many immune-related
pathways, such as immune response, immune response-
activating signal transduction, B cell-mediated immu-
nity in biological processes (Fig. 7A), immunoglobulin

(See figure on next page.)

Fig. 3 Prognostic analysis of the FRLs signature model in the training cohort, validation cohort and entire cohort. The distribution of the risk score
and survival status in the A training cohort, B validation cohort and C entire cohort. Heatmap of five FRLs between the high-risk and low-risk groups
in the (D) training cohort, E validation cohort and F entire cohort. Kaplan—Meier curves for the OS between the high-risk and low-risk groups in the
G training cohort H validation cohort and I entire cohort. AUC of time-dependent ROC curves verified the prognostic accuracy of the risk score in
the J training cohort, K validation cohort and L entire cohort. M LINCO0900 expression in THCA tissues and normal tissues from GEO database. N
The relative MRNA expression of LINC02454, LINCO0900 and DPP4-DT in 80 paired THCA tissues and adjacent non-cancerous tissues
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Fig. 4 Independent prognostic value of the FRLs signature. Results of the univariate cox regression analysis and multivariate cox regression analysis
regarding OS in the A and D training cohort, B and E validation cohort and C and F entire cohort. AUC of ROC curves compared the prognostic
accuracy of the risk score and other prognostic factors in the G training cohort, H validation cohort and I entire cohort. J Nomogram to predict
survival analysis for THCA patients. K Decision curve analysis (DCA) of the nomogram for predicting the overall survival (OS)

complex, immunological synapse, T cell receptor com-
plex in cellular components (Fig. 7B), immunoglobulin
receptor binding, cytokine activity in molecular func-
tions (Fig. 7C). The result of KEGG enrichment analysis

also showed that the differentially expressed genes were
enriched in cytokine-cytokine receptor interaction, T cell
receptor signaling pathway, TNF signaling pathway and
IL-17 signaling pathway (Fig. 7D).
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The immune cell infiltration landscape in THCA

The results of GSEA, GO enrichment analysis and
KEGG enrichment analysis suggested that FRLs may be
involved in immune-related functions in THCA. There-
fore, we further explored the relationship between FRLs
and anti-tumor immunity. CIBERSORT algorithm was
used for investigating the immune cell infiltration land-
scape of the 502 THCA patients. The proportions of
tumor-infiltrating immune cells were found to be sig-
nificantly different between the high-risk group and the
low-risk group (Fig. 8A). We also showed the correlation
matrix of all tumor infiltrating immune cells (Fig. 8B).
To compare the differences of infiltrating immune cells
between the high-risk and low-risk groups, a violin plot
was generated and showed that the proportions of T cells
CD4+ memory activated (p=0.011), T cells regulatory
(Tregs) (p=0.016), monocytes (p=0.028), macrophages
MO (p=0.0024) and macrophages M2 (p<0.001) in the
high-risk group were significantly higher than those in
the low-risk group, while the proportions of plasma cells
(p=0.027), T cells CD8 (p=0.025) and macrophages
M1 (p=0.006) in the high-risk group were lower than
those in the low-risk group (Fig. 8C). Then we compared
the expression levels of classic immune checkpoint mol-
ecules in the high-risk group and low-risk group, and
found that some common immune checkpoint molecules
such as PD-1, PD-L1, CTLA4 and LAG3 were all more
abundantly expressed in the low-risk group than in the
high-risk group. However, other immune checkpoint
molecules, such as B7H3 and TIGHT, were not differen-
tially expressed between the high-risk group and the low-
risk group (Fig. 8D).

Discussion

In this study, we systematically explored the relation-
ship between IncRNAs and FRGs in THCA. The differ-
entially expressed IncRNAs between THCA and normal
tissues, FRLs, and prognostic IncRNAs were obtained
from TCGA database and FerrDb database. Twenty-two
prognostic differentially expressed FRLs were finally
included for analyses. A novel prognostic model con-
taining five FRLs was developed by further multivariate
analysis. According to the prognostic model, we divided
the patients of the training cohort, validation cohort and
entire cohort into high-risk and low-risk groups. KM sur-
vival curves and time-dependent ROC curves between
the high-risk group and the low-risk group were com-
pared, and the differentially expressed genes between two
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groups were screened out. GSEA and functional enrich-
ment analysis both showed that immune-related path-
ways were significantly differentially enriched between
the two groups. Finally, we analyzed the infiltration
level and the correlation matrix of all tumor-infiltrating
immune cells in THCA. We also found that the expres-
sion levels of common immune checkpoint molecules in
the low-risk group were higher than those in the high-
risk group, which indicated that the low-risk group in
THCA was immunologically “hot”.

Ferroptosis is an iron-dependent oxidative form of cell
death associated with increased lipid peroxidation and
insufficient capacity to eliminate lipid peroxides. Ferrop-
tosis is distinct from other reported forms of cell death,
namely apoptosis, necroptosis, and classic necrosis [28].
After several years of study, ferroptosis has been rec-
ognized as clinically important. Preliminary evidence
suggests that ferroptosis suppresses tumor growth, pro-
gression and have potential benefits for cancer therapy
in hepatocellular carcinoma, colorectal cancer, bladder
cancer, lung cancer, thyroid cancer, pancreatic cancer,
and prostate cancer [5]. For example, the E3 ligase MIB1
promotes proteasomal degradation of NRF2 and sensi-
tizes lung cancer cells to ferroptosis [29]. Another study
showed that miR-15a-3p regulated ferroptosis by target-
ing glutathione peroxidase GPX4 in colorectal cancer
[30]. In addition, ferroptosis is also associated with exac-
erbation of other diseases, including infection, injury,
and neurological degeneration. It has been reported that
ferroptosis can exacerbate kidney injury, heart failure,
bone marrow injury, brain injury, and spinal cord injury,
and result in Huntington’s disease, rapid motor neuron
degeneration, paralysis, Parkinson’s disease, stroke, and
Alzheimer’s disease [31-33]. In these studies, many genes
and small molecules have been shown to play impor-
tant roles in the progression of ferroptosis. Zhou et al.
built FerrDb that collects genes and small molecules and
annotates them as regulators and markers of ferroptosis,
also named as FRGs. We downloaded 241 FRGs from
FerrDb as the basis of this study.

Many studies have recently found that IncRNAs can
regulate the progression of various tumors by affect-
ing ferroptosis. For example, IncRNA RP11-89 facili-
tates tumorigenesis and ferroptosis resistance through
PROM2-activated iron export by sponging miR-129-5p
in bladder cancer [34]. IncRNA LINC00336 inhibits
ferroptosis in lung cancer by functioning as a compet-
ing endogenous RNA [35]. In addition, some studies

(See figure on next page.)

Fig. 5 Construction of the FRLs—FRGs co-expression network A Diagram of the FRLs—FRGs network. The left indicates positive correlation between
FRLs and FRGs and the right indicates negative correlation between FRLs and FRGs. B The Sankey diagram showing the connection degree
between the FRLs and FRGs. The left indicates positive correlation between FRLs and FRGs and the right indicates negative correlation between

FRLs and FRGs
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Fig. 6 GSEA of high-risk and low-risk groups based on the FRLs prognostic signature. A GSEA results showing significant enrichment of metabolism
pathways and cell proliferation pathways in the high-risk THCA patients. B GSEA results showing significant enrichment of immue-related pathways
in the low-risk THCA patients
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constructed the FRGs signature to predict prognosis of
several cancers, such gliomas, gastric cancer and lung
adenocarcinoma [36-38]. However, prognostic mod-
els based on FRLs in THCA are still limited. Therefore,
we performed Pearson correlation analysis between
the discovered FRGs and IncRNAs to identify FRLs.
By analyzing the intersections between differentially
expressed IncRNAs between tumor and normal tis-
sues, and prognosis-related IncRNAs, 22 FRLs were
identified in THCA, which were named as prognostic
differentially expressed FRLs. Furthermore, five FRLs
(AC055720.2, DPP4-DT, AC012038.2, LINC02454 and
LINCO00900) were selected to construct a prognostic
signature based on their performance in the multi-
variate cox regression analysis. According to the five
FRLs prognostic signature, we divided the training
cohort, validation cohort, and entire cohort into high-
risk and low-risk groups. Notably, we found that the
OS of patients in the high-risk group was significantly
shorter than that in the low-risk group. Furthermore,
the ROC curve showed that the AUC values of the FRLs
prognostic signature in the training cohort, validation

cohort, and entire cohort were higher than those of
other traditional prognostic factors.

Growing evidence has suggested that immune cells
in TME play vital roles in tumorigenesis. These innate
immune cells, including macrophages, neutrophils, den-
dritic cells, innate lymphoid cells, myeloid-derived sup-
pressor cells, and natural killer cells, potentially possess
tumour-inhibiting or tumour-promoting functions [39].
THCA is considered as the “inflammatory tumor” and
cancer-related inflammation could be the potential diag-
nostic and therapeutic target in THCA patients [40]. Fer-
roptosis also plays an important immunological role in
the process of tumour surveillance by affecting tumour
immunity [39, 41]. For example, CD8+T cells sup-
press tumor development by promoting tumor ferrop-
tosis (31043744). CD36-mediated ferroptosis dampens
the effector function of intratumoral CD8+T cells and
decreases their antitumor ability [42]. However, the role
of ferroptosis, especially of the FRLs, in THCA immune
microenvironment is still unclear. In our study, through
GSEA and functional enrichment analysis, immune-
related pathways, including T cell receptor signaling
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pathway, natural killer cell-mediated cytotoxicity, B cell
receptor signaling pathway and cytokine cytokine recep-
tor interaction were found to be activated and inhibited
in the high-risk and low-risk groups, respectively. There-
fore, FRLs were proposed to be closely related to anti-
tumor immunity in THCA. Subsequently, we further
analyzed the relationship between FRLs and immune cell
infiltration in THCA. CIBERSORT algorithm was used
to calculate the relative abundance of different types of
tumor-infiltrating immune cells. Compared with the low-
risk group, the proportions of infiltrating tumor-killing
immune cells, such as plasma cells, CD8+T cells and
M1 macrophages, in the THCA tissues of the high-risk
group were significantly reduced, whereas those of infil-
trating tumor-promoting immune cells, such as M2 mac-
rophages and Tregs, were significantly increased [43, 44].
Therefore, ferroptosis was concluded to significantly cor-
relate with the activity of tumor-infiltrating immune cells
in THCA.

In addition, immune checkpoint molecules, including
PD-1, PD-L1, CTLA4, and LAG3, were revealed to be
more remarkably expressed in the low-risk group. Our
study suggested that the low-risk score group is likely to
present an immunogenic TME. We inferred that THCA
patients with low-risk scores might respond better to
immune checkpoint blockage therapy, which could also
account for the promising survival outcome in this group.

Nevertheless, there were some limitations in our study.
The FRLs prognostic model was only constructed and
verified using data from TCGA public database. The uni-
versality and reliability of the prognostic model remain
to be further verified in an external prospective, multi-
center, real-world cohort. In addition, although our study
revealed the relationship between FRLs and anti-tumor
immunity, the underlying mechanisms need to be further
explored by experiments.

Conclusion

In summary, our study used the TCGA THCA dataset
to construct a novel FRLs prognostic model which could
precisely predict the prognosis of THCA patients. These
FRLs potentially mediate anti-tumor immunity and serve
as therapeutic targets for THCA, which provided the
novel insight into treatment of THCA.
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