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Abstract 

The characterization of immunological and genomic differences in small-cell lung cancer (SCLC) between East Asian 
(EA) and Caucasian patients can reveal important clinical therapies for EA patients with SCLC. By sequencing and 
analyzing a molecular and immunological dataset of 98-SCLC patients of EA ancestry, immunogenicity, including DNA 
damage repair alterations and tumor mutation burden (TMB), was found to be significantly higher in the EA cohort 
than in the Caucasian cohort. The epithelial-mesenchymal transition (EMT) was the signaling signature with the 
predominant frequency of mutations across all patients in the EA cohort. Analysis of tumor-infiltrated immune cells 
revealed that resting lymphocytes were significantly enriched in the EA cohort. Compound-targeting analysis showed 
that topoisomerase inhibitors might be capable of targeting TP53 and RB1 comutations in EA SCLC patients. EA SCLC 
patients who harbored COL6A6 mutations had poor survival, while Caucasian SCLC patients with OTOF, ANKRD30B, 
and TECPR2 mutations were identified to have a shorter survival.
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Introduction
Small-cell lung cancer (SCLC) accounts for 13 ~ 20% 
of lung cancers and is characterized by rapid growth, 
expression of neuroendocrine markers, early spread and 
secondary therapeutic resistance [1–4]. Approximately 
one-third of patients diagnosed with early-stage dis-
ease are commonly cured with standard chemotherapy 
or radiotherapy, while the majority of patients have only 
a few treatment options, such as palliative care [3]. The 
5-year overall survival (OS) rate for SCLC is extremely 
low (5–10%) [5]. Several studies have characterized the 
genomic profile of SCLC and discovered therapeutic 

implications and new candidate alterations, such as 
BRAF, KIT and PI3K/AKT/mTOR [1, 5–8]. Addition-
ally, NOTCH family genes, acting as tumor suppressors, 
are capable of regulating neuroendocrine differentiation 
involving tumor pathogenesis [1]. Therefore, understand-
ing the key biological signaling pathways may stratify 
vulnerabilities and define new therapeutic targets. Addi-
tionally, previous studies indicated that the majority of 
SCLC harbors RB1/TP53 co-mutations, suggesting that 
inactivation of RB1 and TP53 is a prerequisite in SCLC 
[1, 9]. Thus, further analysis of RB1/TP53 co-mutations 
has critical value for characterizing biological features 
and designing optional treatments.

Recently, immunotherapy, particularly immune check-
point inhibitors (ICIs), has been incorporated in first-
line treatment for SCLC and substantially improves 
the median survival of SCLC [10]. In addition, ICI effi-
cacy was associated with high tumor immunogenicity, 
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inflammatory expression profiles and immune check-
point expression [11].

To date, genomic studies of SCLC have focused on a 
single ancestry (East Asian (EA) or Caucasian patients) 
[1, 4]. However, SCLC may differ substantially among EA 
and Caucasian individuals in terms of the genomic char-
acteristics, tumor microenvironment (TME), and critical 
biological pathways.

To better understand the ancestry disparities among 
the EA and Caucasian populations and to portray a com-
prehensive genomic and immunological profile of EA 
SCLC patients, we sequenced the transcriptomes (n = 59) 
and whole exomes (n = 98) of 98 EA SCLC patients from 
China. To discover new genomic targets enriched in the 
EA cohort, we compared our data to published whole-
exome sequencing (WES) data of a Caucasian cohort 
consisting of 45 patients (reported by George et  al.) [1] 
by analyzing the clinical, immunological and genomic 
features.

Methods
Sample collection, gene sequencing and public dataset 
processing
The Institutional Review Boards (IRBs) of the First Affili-
ated Hospital of Guangzhou Medical University, the Sun 
Yat-sen University Cancer Center, and the Zhujiang Hos-
pital of Southern Medical University approved this study. 
A total of 98 samples from EA SCLC patients were pro-
vided by these hospitals under IRB-approved protocols 
with informed consent. These 98 tumor samples from EA 
SCLC patients were collected retrospectively from surgi-
cal material. We used blood or adjacent normal tissues as 
a matched control. TNM stage, sex, smoking history, and 
age were collected. Detailed information is provided in 
the Additional file: Supplemental methods 16.

Processed WES data and RNA sequencing (RNA-seq) 
files of 45 Caucasian SCLC patients from a 2015 Nature 
study were downloaded from cBioPortal (https://​www.​
cbiop​ortal.​org/​study/​summa​ry?​id=​sclc_​ucolo​gne_​2015) 
[1]. The SCLC cell lines described in this study were 
derived from the Genomics of Drug Sensitivity in Cancer 
(GDSC) database [12] and had drug sensitivity and WES 
data.

Immune profiling analysis
The CIBERSORT algorithm [13] was supplied with 
mRNA data of EA and Caucasian SCLC patients. The 
proportion of twenty-two tumor-infiltrating immune 
cells was used in downstream analysis. Then, expres-
sion values were selected for CIBERSORT analysis using 
default parameters (perm = 1,000; QN = F). Marker genes 
[14, 15] related to immune cells, antigen presentation, 
cytotoxicity, cytokines, and immune checkpoints were 

collected from previous studies and used to evaluate the 
immune signatures of SCLC. To compare differentially 
immune cells and immune-related genes, a linear model 
of the limma package was supplied.

Mutational landscape and DDR‑related analysis
The Complexheatmap package [16] was used to visual-
ize the waterfall plot of mutations in EA and Caucasian 
SCLC patients. Nonsynonymous mutation types were 
determined using the maftools package [17]. The sum-
mary plot of the MAF files and figures of somatic inter-
actions were generated by the maftools package. Tumor 
mutation burden (TMB) values were calculated accord-
ing to a previous study [18]. A list of hallmark and DNA 
damage response (DDR) genes was collected from the 
Molecular Signatures Database (https://​www.​gsea-​
msigdb.​org/​gsea/​msigdb/​index.​jsp) [19] and used for 
signaling alteration analysis. The DDR signature scores 
were calculated using the gene set variation analysis 
(GSVA) package [20] with the single-sample gene set 
enrichment analysis (ssGSEA) method. According to the 
median age or TMB value, SCLC patients were classified 
into groups: older vs young and high TMB vs low TMB. 
Driver gene annotations were downloaded from the Net-
work of Cancer Genes (NCG) database [21].

Compound‑targeting analysis
To identify which inhibitors/compounds may be useful 
for targeting cells with TP53 and RB1 co-mutations, we 
applied the Broad Institute’s Connectivity Map (CMap) 
build 02 [22], which is a public online analytical tool 
(https://​porta​ls.​broad​insti​tute.​org/​cmap/) that allows 
the analyzer to predict potential inhibitors/compounds 
based on upregulated and downregulated genes in a gene 
expression signature.

To further discover the mechanism of action (MoA) 
[23] and inhibitors/compounds, we analyzed them using 
CMap tools (https://​clue.​io/). The CMap method is simi-
lar to the gene set enrichment analysis (GSEA) algorithm, 
which can identify similarities and connectivities (range: 
− 1 to 1) based on differential gene expression data.

Statistical analysis
All analyses were performed in R (version 3.6.1). The 
Mann–Whitney U test was used for the comparison of 
two continuous variables. Fisher’s exact test was supplied 
with two categorical variables. P values were controlled 
for false discovery rate (FDR), and an FDR less than 0.05 
was considered statistically significant; all statistical tests 
were two-sided. Survival analysis was performed using 
the Kaplan–Meier method, and the log-rank test p-value 
was calculated. A Cox regression model was used in uni-
variable analyses.

https://www.cbioportal.org/study/summary?id=sclc_ucologne_2015
https://www.cbioportal.org/study/summary?id=sclc_ucologne_2015
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://portals.broadinstitute.org/cmap/
https://clue.io/
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Results
Genomic profile of the EA and Caucasian SCLC cohorts
With the Mutect2 algorithm [24], 103,100 single-nucle-
otide polymorphisms (SNPs) and 2926 short inser-
tions/deletions (indels) were identified in the EA cohort 
(Fig.  1a), and the majority were missense mutations 
(n = 92,103). We identified 11,029 SNPs and 676 indels 
in the Caucasian cohort (Fig.  1b). In particular, C > T 
was identified predominantly in the EA cohort, whereas 

C > A was the predominant single-nucleotide variant 
(SNV) in the Caucasian cohort (Fig.  1a,b). The top 20 
mutated genes in the EA cohort are shown in Fig. 1c and 
TP53 (89%), TTN (80%), RB1 (67%), MUC16 (57%), and 
RYR2 (49%) were the most frequently mutated genes. The 
top 20 mutations in the Caucasian cohort are shown in 
Fig. 1d, and TP53 (89%), TTN (73%), RB1 (71%), LRP1B 
(49%), and MUC16 (49%) were the most frequently 
mutated genes. We observed higher co-occurrence and 

Fig. 1  Genomic alterations in SCLC. An overview of variant classification, variant type, SNV class, and base substitution fractions of the East Asian 
(a) and Caucasian (b) cohorts. Oncoplot summarizing mutations for the top 20 mutated genes in the East Asian (c) and Caucasian (d) cohorts. e 
Comparison of the TMB in the East Asian and Caucasian cohorts
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exclusiveness gene pairs in the top 20 mutations of the 
EA cohort than of the Caucasian cohort (Additional file 1: 
Fig. S1). Oncogenes and tumor suppressor genes (TSGs) 
play a role in cancer evolution and development. For 
example, LRP1B and MUC16 exhibited co-occurrence 
in the EA cohort (Additional file  1: Fig. S1a; Additional 
file  10: Table  S1), while there was no co-occurrence/
mutual exclusivity of oncogenes/TSGs in the Caucasian 
cohort (Additional file  1: Fig. S1b; Additional file  11: 
Table S2). The TMB was significantly higher in EA SCLC 
patients than in Caucasian SCLC patients (median 16.75 
vs 6.24 per Mb; mean 30.95 vs 7.03 per Mb; FDR < 0.0001; 
Fig. 1e).

RB1 and TP53 mutations in SCLC
Alterations in RB1 and TP53 occurred in approximately 
65% and approximately 90% of the SCLC patients, 
respectively [1]. We identified that 59% of patients in 
the EA cohort had co-occurrent TP53 and RB1 muta-
tions; 28% had only a TP53 mutation, 6% had only an 
RB1 mutation, and 7% had no alterations in TP53 or RB1 
(Fig.  2a). The Caucasian cohort harbored more patients 
with alterations in both TP53 and RB1 (67%), although 
there was no significant difference between cohorts. In 
the EA cohort (Fig.  2b), multiple missense mutations 
occurred in the DNA-rich and tetramerization domains, 
while truncating mutations in RB1 affected the DUF3452 
and RB B, RB A and RB C domains. Similarly, RB1 and 
TP53 mutations affected the same domain in the Cau-
casian cohort (Fig.  2c). Subsequently, we explored the 
association between RB1 and TP53 mutations and the 
survival of SCLC patients. In the EA cohort, TP53, RB1, 
and TP53/RB1 co-mutations exhibited no significant 
associations with a survival benefit (Fig. 2d). In addition, 
there were no correlations between survival and altera-
tions in RB1, TP53 or both RB1 and TP53 in the Cauca-
sian cohort (Fig. 2e).

Hallmark pathway alterations and significantly mutated 
drivers
For each SCLC patient, we calculated the frequency of 
patients harboring at least 1 alteration in each of the 28 
signaling pathways in both the EA and Caucasian cohorts 
(Fig.  3a–b). Epithelial-mesenchymal transition (EMT) 
was the signaling pathway that was most frequently 
mutated (10.2% of all alterations) across all patients in the 
EA cohort, followed by E2F targets, KRAS signaling, P53 
signaling, IL2/STAT5 signaling, hypoxia, adipogenesis, 
interferon-gamma response, and inflammatory response 
pathways, which were altered in 8.9%, 7.4%, 7.4%, 7.0%, 
6.6%, 6.5%, 6.4% and 6.2% of all alterations, respectively. 
In contrast, reactive oxygen species pathways harbored 
the lowest number of alterations (Fig. 3a). Alterations in 

EMT signaling were identified most predominantly in the 
Caucasian cohort, while only some genes were altered in 
the angiogenesis and reactive oxygen species signaling 
pathways. More detailed information on the mutation 
frequencies of hallmark pathways is shown in Fig.  3b. 
Subsequently, with annotations from the Network of 
Cancer Genes (NCG) database, we compared the dif-
ferences in frequencies of driver genes between the EA 
and Caucasian cohorts. Of the 42 significantly mutated 
genes between the two cohorts (all p < 0.05; Fig. 3c), TSGs 
were commonly involved (up to 54.8%). For alterations 
commonly found in the EA cohort, TSGs, such as FAT1, 
NCOR2, SMARCA4, UBR5, and CREBBP, showed higher 
alteration rates, while ARHGEF10 exhibited a lower 
alteration rate than those found in the Caucasian cohort. 
Additionally, a well-known oncogene (EGFR) had higher 
numbers of alterations (mainly missense mutations) in 
the EA cohort than in the Caucasian cohort, followed by 
other oncogenes (TRRAP, MTOR, TNC, DNMT1, and 
RET). For mutual exclusivity and co-occurrence driver 
analyses, alterations in MTOR, SPEN, NCOR1, BRCA2, 
POLE, EGFR, ARID1B, and some other genes frequently 
co-occurred in the EA cohort (Additional file  2: Fig. 
S2a; Additional file  12: Table  S3), whereas there were 
no significant mutual exclusivity gene pairs. In contrast, 
there were a few comutated gene pairs, namely, BRCA2, 
FANCA and ZMYM3, in the Caucasian cohort (Addi-
tional file 2: Fig. S2b; Additional file 13: Table S4).

DNA damage repair pathway alterations and correlation 
with TMB
Mutations in DDR pathways have been identified to 
affect the efficacy of platinum-based chemotherapy and 
immunotherapy for SCLC. For each DDR pathway, we 
computed the alteration frequencies of SCLC samples 
with at least 1 mutation in each of 8 signaling pathways 
(Fig.  4a–b). Homologous recombination (HR) was the 
pathway harboring the highest alteration frequencies 
among total mutations (32.2%), followed by single-strand 
breaks (SSB; 29.5%) and nucleotide excision repair (NER; 
28.3%). However, nonhomologous end joining (NHEJ) 
pathways harbored the lowest fraction of alteration fre-
quencies in the EA cohort (Fig. 4a). Next, we applied the 
same analytic pipeline in the Caucasian cohort. Genomic 
alterations in SSB signaling were highest, while mutations 
in base excision repair (BER) were the lowest (Fig.  4b). 
Additionally, some pathways, such as SSB and NHEJ, had 
mutations distributed among each SCLC patient in either 
the EA or Caucasian cohort (Fig. 4a, b). Additionally, the 
number of alterations in each DDR signaling pathway was 
higher in the EA cohort than in the Caucasia cohort (all 
adjusted p < 0.05; Fig. 4c). Next, we discovered that there 
was a significantly positive correlation between TMB 
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Fig. 2  An overview of TP53/RB1 co-mutations in SCLC. a The proportion of TP53 mutations, RB1 mutations, TP53/RB1 co-mutations and no 
alterations in the East Asian and Caucasian cohorts. The mutation sites of TP53 and RB1 in the East Asian (b) and Caucasian (c) cohorts Kaplan–Meier 
survival analysis evaluated the relationship between the TP53/RB1/commutation statuses and OS of patients in the East Asian (d) and Caucasian (e) 
cohorts
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Fig. 3  Genomic alterations in key biological signaling pathways in the East Asian (a) and Caucasian (b) cohorts. c Significantly mutated driver genes 
in the East Asian and Caucasian cohorts
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and each DDR signaling pathway mutations (p < 0.05; 
Fig.  4d). By contrast, we discovered that only NER and 
DDR mutations were significantly related to higher TMB 
in the Caucasian cohort (Fig. 4e). Based on the ssGSEA 
method, none of the DDR signaling pathway alterations 
were significantly correlated with TMB in both the EA 
and Caucasian cohorts (Additional file 3: Fig. S3a–b).

Significantly altered genes in key pathways, driver gene 
landscape and correlation with clinical benefit
The top twenty altered driver genes of the EA and 
Caucasian cohorts are characterized in Fig.  5a–b. We 

discovered up to 60% TSGs were driver genes in the EA 
cohort (Additional file  4: Fig. S4a), especially the top 5 
altered mutations (TP53, RB1, CSMD3, and LPR1B). 
Up to 25% of oncogenes were commonly altered in the 
Caucasian cohort (Additional file  4: Fig. S4b), including 
MUC16 (50%), PREX2 (16%), ZNF521 (14%), ALK (11%), 
CTNND2 (11%) and MUC4 (11%). Particularly interest-
ing alterations across the EA and Caucasian cohorts were 
TP53 and RB1. The main alteration type of TP53 in the 
EA cohort was missense mutations (66.0%), followed by 
nonsense mutations (16.0%) and frameshift mutations 
(9.6%). In the Caucasian cohort, TP53 was commonly 

Fig. 4  An overview of alterations in DDR signaling pathways in SCLC. Alterations in DDR signaling pathways in the East Asian (a) and Caucasian (b) 
cohorts. c Comparison of the number of mutations in each DDR pathway between the East Asian and Caucasian cohorts. The correlation between 
the number of mutations in each DDR pathway and TMB in the East Asian (d) and Caucasian (e) cohorts
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altered as missense mutations (69.0%) and frameshift 
mutations (16.7%). In the EA cohort, RB1 was frequently 
altered as frameshift mutations (31.5%), followed by 
nonsense mutations (28.8%), splice sites (23.3%), and 
missense mutations (16.4%). RB1 had nearly equal 
distribution of the three mutation types (37.5% non-
sense mutations, 31.3% spice site mutations and 28.1% 
frameshift mutations) in the Caucasian cohort. Through 
exploring significant alterations of key pathways, we 
combined several hallmark pathways and their genes to 
map nonsynonymous mutations. Multiple genes of each 
of the five pathways (DNA repair, EMT, G2M checkpoint, 
hypoxia, and KRAS signaling pathways) were significantly 
mutated in the EA and Caucasian cohorts (Additional 
file  4: Fig.  S4c). For example, in the G2M checkpoint 
signaling pathway, mutations in TSGs, including POLE 
(26% vs 10%), BRCA2 (19% vs 3%) and STAG1 (19% vs 
3%), occurred more commonly in the EA cohort than 
in the Caucasian cohort (all Fisher’s exact test p < 0.05). 
We identified EGFR, a well-known oncogene, as being 
mutated at a higher rate in EA patients than in Caucasian 
patients (25% vs 10%, Fisher’s exact test p < 0.05). IGFBP2, 
a protein in the EMT signaling pathway, was significantly 
more mutated in the Caucasian cohort than in the EA 
cohort (20% vs 4%, p < 0.05). Subsequently, we analyzed 
the potential association among driver genes, clinical 
phenotypes, and survival of SCLC patients using uni-
variable Cox regression models. In the EA cohort, altera-
tions in APC, NSD3, KDM5C, CNTRL, GRM3, CTNND1, 
FANCG, MET, and SRGAP3 were associated with a sig-
nificantly poor survival, but mutations in TP53 or RB1 
conferred no survival benefits (Additional file 5: Fig. S5a). 
Subsequently, we identified two different driver genes 
(FCRL4 and PTPRT) to stratify the Caucasian SCLC 
patients with the same analytical model (Additional file 5: 
Fig. S5b). However, alterations in TP53 or RB1 exhibited 
no potential associations with patient survival in the Cau-
casian cohort. Furthermore, we discovered four altera-
tions with totally different prognosis values in the EA and 
Caucasian cohorts. For instance, driver gene mutations 
in OTOF, ANKRD30B, and TECPR2 correlated with sig-
nificantly shorter survival in the Caucasian cohort (Addi-
tional file  5: Fig. S5c), but these mutations showed no 
survival benefits in the EA cohort (Additional file 5: Fig. 
S5d). In contrast, alterations in COL6A6 were associated 
with poor OS in EA SCLC patients (Additional file 5: Fig. 
S5d), while this mutation had no correlation with OS in 
Caucasian patients (Additional file 5: Fig. S5c).

CMap algorithm identifies potential inhibitors/compounds 
associated with co‑mutations in RB1 and TP53
We applied the CMap algorithm for identifying associa-
tions among different groups and conditions to discover 
potential inhibitors/compounds targeting signaling path-
ways correlated with co-mutations in TP53 and RB1 
(Fig.  5a; Additional file  14: Table  S5, Additional file  15: 
Table  S6). The adrenergic receptor antagonist terazosin, 
the ATP channel activator pinacidil, the topoisomerase 
inhibitors mitoxantrone and irinotecan, the heat shock 
protein (HSP) inhibitor alvespimycin, and the PARP 
inhibitor (PARPi) NU − 1025 showed significant correla-
tions with TP53 and RB1 co-mutations in the EA cohort. 
We identified two compounds, the NFκB pathway inhibi-
tor parthenolide and the ATPase inhibitor thapsigargin, 
that were significantly enriched in TP53 and RB1 co-
mutations in the Caucasian cohort, but these inhibitors 
exhibited significantly negative correlations with TP53 
and RB1 co-mutations among the EA cohort. Subse-
quently, applying CMap MoA analysis to the EA (Fig. 5b) 
and Caucasian cohorts (Fig. 5c), we discovered 17 mech-
anisms shared by 19 inhibitors/compounds in the EA 
cohort (Fig. 5b). Two compounds (irinotecan and mitox-
antrone) shared MoAs of topoisomerase inhibitor. We 
identified SC − 560 and indometacin as cyclooxygenase 
inhibitors. In the Caucasian cohort (Fig. 5c), we found 34 
mechanisms shared by 51 inhibitors/compounds, such as 
dopamine receptor antagonists (thioridazine, promazine, 
and prochlorperazine), ATPase inhibitors (proscillaridin, 
thapsigargin, ouabain, digoxin, helveticoside, and digitox-
igenin), MTOR inhibitors (sirolimus and LY-294002) and 
an NFκB pathway inhibitor (parthenolide). Additionally, 
we calculated the drug sensitivity associated with more 
than two mutations from the top 20 mutated genes in the 
EA and Caucasian cohorts (Additional file 6: Fig. S6a, b).

Immune profile analysis
CIBERSORT, an algorithm to evaluate the fractions 
of 22 immune cells, was applied to characterize the 
proportion of tumor-infiltrated immune cells in the 
EA and Caucasian cohorts. In total, 16 immune cells 
among the EA and Caucasian cohorts were character-
ized to be significantly different (Fig.  6a). For exam-
ple, several immune cells, such as naïve B cells, naïve 
CD4 + T cells, resting memory CD4 + T cells, resting 
natural killer cells (NKs), monocytes, activated den-
dritic cells (DCs), eosinophils, and neutrophils, were 
significantly enriched in the EA populations, while 

(See figure on next page.)
Fig. 5  Correlation of TP53/RB1 co-mutations with drug sensitivities: CMap analysis. a Heatmap showing the enrichment score (positive in blue, 
negative in red) of each compound from CMap for each cancer type. Compounds are sorted from right to left by descending number of cancer 
types significantly enriched. Heatmap showing each compound (perturbagen) from the CMap that shares MoAs (rows) and sorted by descending 
number of compounds with shared MoAs in the East Asian (b) and Caucasian (c) cohorts
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Fig. 5  (See legend on previous page.)
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some cells, such as plasma cells, CD8 + T cells, acti-
vated memory CD4 + T cells, activated NKs, M1-type 
macrophages, M2-type macrophages, resting DCs 
and activated mast cells, accounted for significantly 
more immune cells in the Caucasian cohort than in 
the EA cohort. In addition, we compared the differ-
ences in the immune-infiltrated signature between 
the EA and Caucasian cohorts. The mean differences 
(log fold change) in the 22 immune cells between clini-
cal and genomic features in the EA and Caucasian 
cohorts are shown in Additional file 7: Fig. S7a, b. Fig-
ure  6b shows the mean differences (log fold change) 
in immune-related mRNA expression levels between 
EA and Caucasian SCLC patients. Several inhibi-
tory mediators, such as VEGFA, TGFB1, and FOXP3, 
were significantly upregulated in EA SCLC patients, 
but some antigen presentation genes, such as MICA, 
MICB, and TAP1, were significantly downregulated in 
the EA cohort. Additionally, chemokines (CXCL9 and 
CXCL10) and cytolytic activity-related genes (GZMB) 
were commonly downregulated in the EA cohort. The 
mean differences (log fold change) in the clinical and 
genomic features of immune-related genes in the EA 
and Caucasian cohorts are shown in Additional file 8: 
Fig.  S8a, b. Notably, among the immune checkpoint-
related genes in both the EA and Caucasian cohorts, 
we discovered that two genes (PDCD1 and HAVCR2) 
were significantly enriched in the Caucasian cohort 
compared with the EA cohort (Fig. 6c). The correlation 
analysis between the TMB, DDR, and immune cells in 
the EA and Caucasian cohort was shown in Additional 
file 9: Fig. S9. In the Caucasian cohort, we found that 
there was a positive correlation between the propor-
tions of the activated NK cells and the DDR mutation 
counts or TMB. Similarly, the abundance of the acti-
vated DCs was positively associated with the DDR or, 
SSB, or MMR mutation counts. The proportion of the 
follicular helper T cells was positively correlated with 
the TMB (Additional file 9: Fig. S9a). In the EA cohort, 
there was a negative correlation between the propor-
tion of the monocytes and the HR, DSB, NHEJ, FA, or 
DDR mutation counts. Additionally, we found that the 
abundance of the resting NK cells was positively corre-
lated with the BER mutation counts (Additional file 9: 
Fig. S9b).

Discussion
Here, we performed a comprehensive clinical, genomic, 
and immunological analysis based on the WES and tran-
scriptome data in EA SCLC patients and further com-
pared the results with a previously published dataset of 
Caucasian SCLC patients (reported by George et al.). We 
identified that LRP1B and MUC16 were co-occurrent in 
the EA cohort, while there was no co-occurrence/mutual 
exclusivity of oncogenes/TSG in the Caucasian cohort. 
LRP1B plays a critical role in cell adhesion, focal adhe-
sion, and tight junction disruption and further inhibits 
tumor cell migration and proliferation [25–27]. MUC16, 
a well-known mechanical barrier gene, serves as a serum 
biomarker among various cancers [28]. Ge et al. found that 
mutations in a panel of five genes, including mutations in 
LRP1B and MUC16, predicted poor survival in colorectal 
cancer, and LRP1B and MUC16 mutations may be involved 
in tumor metastasis by regulating focal adhesion and cell 
adhesion [29]. Furthermore, there were no significant dif-
ferences in the mutation frequencies of two known altera-
tions (e.g., TP53 and RB1) between the EA and Caucasian 
cohorts.

In the EA SCLC cohort, the number of alterations in gene 
related to EMT signaling were the highest among the criti-
cal biological signaling pathways. Through the EMT mech-
anism, cancer cells can obtain a motile phenotype, mediate 
tumor cell metastasis and secondary resistance to common 
chemotherapies or targeted treatments [30]. Additionally, 
EMT is associated with poor survival in SCLC [30, 31], and 
EMT plays a key role in the activation of several oncogenic 
signaling pathways, such as TGFβ/Akt and MET signaling 
pathways [30–32]. CREBBP mutation rates were notably 
higher (27%) in the EA cohort than in the Caucasian cohort 
(8%). CREBBP acts as an ubiquitous transcriptional coacti-
vator and histone modifier [1, 33], and CREBBP inactiva-
tion can promote cell growth in SCLC [33]. Importantly, 
CREBBP is frequently mutated in SCLC [34]. Moreover, 
treatment with pracinostat, a histone deacetylase inhibitor 
(HDACi), can increase E-cadherin and acetylated H3K27, 
further reversing the function of CREBBP mutations [35, 
36]. Additionally, significantly higher mutation rates were 
identified for EGFR in EA SCLC tumors (25%) than in the 
Caucasian tumors (10%). Studies have found that EGFR 
tyrosine kinase inhibitor (TKI)-resistant tumors trans-
formed from non-small cell lung cancer (NSCLC) into 

Fig. 6  Immunological profiles in SCLC. a The difference in the contents of immune cells (CIBERSORT) between the East Asian and Caucasian 
cohorts. b Heatmap depicting the mean differences in immune-related gene mRNA expression levels between the East Asian and Caucasian SCLC 
cohorts. The y-axis indicates tumor-infiltrating leukocytes, immune signatures, or gene names. Each square represents the fold change or difference 
in each indicated tumor-infiltrating leukocyte, immune signature, or immune-related gene between the East Asian and Caucasian SCLC cohorts. 
Red indicates upregulation, while blue indicates downregulation. c The expression levels of immune checkpoints in the East Asian SCLC cohort 
versus the Caucasian SCLC cohort (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001)

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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SCLC and were sensitive to standard therapies for SCLC 
[37–39].

This study is interesting given the critical role of 
TP53/RB1 co-mutations in SCLC tumors. Compared to 
the TP53/RB1 co-mutations in the Caucasian cohort, 
an 8% decrease in TP53/RB1 co-mutations was identi-
fied in the EA cohort (67% vs 59%), which is consist-
ent with results from other studies [1, 4, 40]. However, 
mutations, such as TP53, RB1, and TP53/RB1 comuta-
tion, were not found to be significantly associated with 
clinical benefits in both the EA and Caucasian cohorts. 
A mutation in OTOF, a calcium-sensing protein trigger-
ing cell membrane fusion and regulating exocytosis, was 
significantly associated with poor OS in the Caucasian 
cohort [41, 42]. APC mutations were significantly cor-
related with shorter OS in the EA cohort, meditating 
faster tumorigenesis [43]. Mondaca et al. found that APC 
alterations were associated with the clinical outcomes of 
colorectal cancer patients [44]. Evidence has indicated 
that NSD3 has crucial effects on cancer cell proliferation 
and invasion via multiple signaling pathways [45–47]. In 
the EA cohort, NSD3 mutations were detected to be cor-
related with poor OS. Consistent with the previous study, 
KDM5C mutations had prognostic implications in EA 
SCLC patients [48]. A GRM3 mutation was previously 
shown to upregulate MAPK pathway activity [49], and its 
presence was correlated with shorter survival. CTNND1 
was previously identified to bind and stabilize cadher-
ins, further regulating Wnt/β-catenin signaling path-
way activity during tumor progression [50, 51], and the 
CTNND1 mutation was associated with adverse OS in 
the EA cohort. FANCG was shown to play an important 
role in the activation of the Fanconi anemia (FA) pathway 
with the localization of the nuclear FA complex (includ-
ing FANCG) [52], and it can also interact with FANCD1 
(BRCA2) [53, 54]. In our findings, we identified that a 
FANCD1 mutation was associated with unfavorable OS 
in the EA SCLC cohort. In lung cancer, MET altera-
tions have been suggested to be associated with a poor 
prognosis [55], and their presence was associated with 
shorter OS in the EA SCLC cohort. Long et.al reported 
that COL6A6 interacted with P4HA3 to suppress the 
growth and metastasis of pituitary adenoma via block-
ing the PI3K-Akt pathway [56]. Additionally, Qiao et.al. 
Indicated that that COL6A6 was a tumor suppressor gene 
in NSCLC and was involved in NSCLC tumorigenesis by 
regulating the JAK signalling pathway [57].

It is crucial to characterize the immunological profile 
of SCLC in the EA population, as this landscape might 
indicate the molecular mechanism of response, efficacy 
and resistance to specific immunotherapy and provide 
novel and potential implications of combination therapy. 
For example, high TMB and alterations in DDR were 

previously identified to be strongly correlated with bet-
ter survival in patients who underwent ICI treatments 
[11, 58, 59]. Through accumulating incorrect DNA dam-
age, tumors harboring higher DDR mutations commonly 
had a higher TMB level [59]. Notably, significantly higher 
TMB levels were observed in the EA cohort (median 
16.75 Mut/Mb; mean 30.95 Mut/Mb) than those in the 
Caucasian cohort (median 6.24 Mut/Mb; mean 7.03 Mut/
Mb). Additionally, the number of DDR alterations was 
significantly higher in EA SCLC tumors than in Cauca-
sian SCLC tumors. We found that high TMB was signifi-
cantly positively correlated with high DDR alterations. 
Preclinical SCLC models were sensitive to PARP inhi-
bition alone and the efficacy of chemotherapy was also 
enhanced by the addition of a PARP inhibitor [60]. Addi-
tionally, recent studies have shown that the efficacy of 
immunotherapy is related to a high TMB, high genomic 
instability, and high immunogenicity in tumor cells [61]. 
Moreover, a subset of patients responded to the anti-
PD-1 agent nivolumab or pembrolizumab when admin-
istered as the third or later treatment line (response rates 
12–20%) and experienced very prolonged responses, as 
median durations of response were 17.9 months and not-
reached (after 7.7 months of follow-up), respectively [62, 
63]. An important observation from this study is that East 
Asian SCLC patients have high mutation counts of DDR 
signaling pathways and TMB, which raises the question 
of combination approaches using PARPis and ICIs [64].

In addition to TMB and DDR alterations, the inflam-
matory gene expression profile (GEP), specific immune 
cells (e.g., CD4 + T cells, CD8 + T cells), and immune 
checkpoint expression levels played a critical role in 
SCLC treated with ICIs [11, 65]. Using the CIBERSORT 
algorithm, there were higher proportions of resting-
type immune cells, such as naïve B cells, naïve CD4 + T 
cells, resting memory CD4 + T cells, resting NKs and 
resting DCs, in the EA SCLC cohort than in the Cau-
casian cohort. TGF-β signaling, containing TGFB1, has 
been reported to disrupt the recruitment and infiltra-
tion of CD8 + T cells into the center of tumors [66]. 
Treatment with PD-(L) 1 can facilitate T-cell infil-
tration, provoke antitumor immunity and attenuate 
tumor progression [66]. FOXP3, a conventional bio-
marker for regulatory T cells (Tregs), can attenuate 
effective T cell (Teff ) activity and is associated with 
clinical benefits in several tumors [67–69]. Emerg-
ing studies have indicated that VEGFA overexpression 
tends to involve a suppressive tumor microenviron-
ment (TME) and decreased antitumor immunity [70, 
71], further mediating primary resistance to the anti-
PD-(L) 1 regimen. Here, we discovered that there was a 
high expression level of several suppressive mediators, 
such as VEGFA, TGFB1 and FOXP3, in the EA cohort. 



Page 13 of 16Lin et al. Cancer Cell International          (2022) 22:173 	

In contrast, chemokines (CXCL9 and CXCL10) and a 
cytolytic activity-related gene (GZMB) were commonly 
downregulated in the EA cohort. Chemokines, such as 
CXCL9 and CXCL10, serve as key factors that recruit 
Teffs into the center of the tumor, further promoting 
antitumor immunity and disrupting tumor cell prolif-
eration and invasion [11, 72–74].

Using the CMap algorithm, we identified potential 
inhibitors/compounds that may be capable of target-
ing TP53/RB1 co-mutations, such as the topoisomerase 
inhibitors mitoxantrone and irinotecan, the HSP inhib-
itor alvespimycin, and the PARPi NU − 1025. Altera-
tions in DDR signaling pathways have significance in 
the usage of genotoxic agents, such as platinum-based 
chemotherapy and PARPi [75–78]. Additionally, unre-
paired DNA mediates immune priming by multi-
ple molecular mechanisms and upregulates PD-(L) 1 
expression [79]. Furthermore, PARPi was involved in 
the development of the inflammatory TME and further 
promoted a productive immune response [79–81].

However, this study had certain limitations. First, due 
to the limited number of Caucasian SCLC patients, this 
finding might need a large population for validation. 
Second, intratumor heterogeneity was a crucial metric 
for tumor evolution, but our analyses were based only 
on single biopsies/samples; therefore, our findings can-
not portray the whole evolution of SCLC. Third, this 
study lacks copy number variation and proteomics 
analyses to validate our findings. Finally, animal and 
laboratory experiments are necessary to further illus-
trate and validate our findings.

Conclusions
In summary, the present findings portray the clinical, 
immunological, and genomic profile differences among 
EA and Caucasian SCLC patients and might provide 
clinical implications for EA SCLC patients with novel 
alterations, potential biological signaling pathways and 
new immunological factors to target.
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