REVIEW

Open Access

MiR-212 value in prognosis and diagnosis of cancer and its association with patient characteristics: a systematic review and meta-analysis

Sara Raji^{1†}, Mehrdad Sahranavard^{2,3†}, Mahdi Mottaghi⁴ and Amirhossein Sahebkar^{5,6*}

Abstract

Background: Delayed cancer diagnosis and inefficient cancer prognosis determination are problems faced in cancer diagnosis and treatment. MicroRNAs (miRs), especially miR-212, have shown a promise in cancer diagnosis and prognosis. Herein, we performed a systematic review and meta-analysis to assess the prognostic and diagnostic value of miR-212 level in cancer and evaluated its association with patient characteristics.

Methods: A fully electronic literature search using related keywords was performed in PubMed, Scopus, Web of Science, Embase, and ScienceDirect databases by June 6, 2021, with no time or language restriction. Meta-analysis was performed to pool survival prognosis data using hazard ratio (HR), association using odds ratio (OR), and diagnostic data using sensitivity, specificity, and diagnostic odds ratio (DOR). Sub-group analysis and meta-regression were performed as appropriate.

Results: Results of 28 studies on 1880 patients showed a poor cancer prognosis with high levels of miR-212 in pancreatic ductal adenocarcinoma (PDAC, HR = 2.451 [1.447–4.149]), and a poor cancer prognosis with low levels of miR-212 in other cancers (HR = 2.514 [2.162–2.923]). Higher alpha-fetoprotein (AFP) level and Edmondson-Steiner grade were factors associated with miR-212 low level incidence. Diagnostic odds ratio 10.688 (3.644–31.348) and SROC AUC of 0.84 confirmed high diagnostic performance of miR-212.

Conclusion: Our systematic review and meta-analysis results confirm miR-212 high value in cancer prognosis and diagnosis. High level of miR-212 showed poor prognosis in PDAC and low level of miR-212 showed poor prognosis in other cancers. in conclusion, miR-212 could be a novel potential biomarker in cancer diagnosis and prognosis.

Keywords: miR-212, miRNA-212, microRNA-212, Prognosis, Diagnosis, Cancer, Neoplasm

Introduction

Cancer is a leading cause of death by causing about 10 million deaths in 2020 worldwide [1]. One potential

*Correspondence: sahebkara@mums.ac.ir; amir_saheb2000@yahoo.com [†]Sara Raji and Mehrdad Sahranavard sharing co-first authors and contributed equally to this work.

⁵ Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

Full list of author information is available at the end of the article

justification for this high mortality rate is the delayed diagnosis; the highest mortality rates belong to lung, colorectal, hepatic, stomach, and breast cancers, all of which usually present with vague symptoms, especially in the early stages [1, 2]. In addition to delayed diagnosis, ineffective methods to determine the cancer prognosis could cause management flaws leading to under- or over-treatment of patients, both of which impose an economic burden on the patients and health system.

© The Author(s) 2022. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/A.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

MicroRNAs (miRs) are a main member of small noncoding mRNAs; they act as modulatory tools that work post-transcriptionally to regulate mRNA translation by attaching to the 3'-untranslated region [3, 4]. Genetic codes of miR-212 are located on chromosome 17p13.3. MiR-212 can regulate the cell cycle, proliferation, differentiation, and apoptosis; thus, it can have an oncogenic function or act as a tumor suppressor gene [4]. miRs dysregulation is shown in several cancers, affects patient prognosis and treatment outcomes [2]. miR-212 is one of them which is shown to be altered in hepatocellular carcinoma (HCC), gastric carcinoma, pancreatic ductal adenocarcinoma (PDAC), colorectal carcinoma (CRC), breast cancer, prostate cancer, renal cell carcinoma (RCC), non-small cell lung cancer (NSCLC), etc. Some of these studies assessed prognostic value by finding correlations between miR-212 levels with patient survival, disease-free survival, and recurrence-free survival. Some studies proposed diagnostic power for miR-212 by calculating sensitivity, specificity, and other related factors diagnostic measures. Herein, we systematically reviewed the literature to provide a better view of its prognostic and diagnostic roles, and we powered our findings by multiple meta-analyses on data extracted from these studies.

Methods

A systematic review and meta-analysis were performed and reported according to The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement [5].

Search strategy

Without any time or language restriction, we searched Pubmed, Scopus, Web of Science, Embase, and Science-Direct on June 6, 2021, using Medical Subject Headings (MeSH), entry terms, and related keywords to miR-212 and cancer. The search was ameliorated by hand search in google scholar and references of included studies. The detailed search strategy is provided in Additional file 1.

Inclusion criteria

Original human research papers were included in this study. For prognostic evaluation papers providing hazard ratio (HR) or enough data to estimate HR of cancer death comparing patients with low and high levels of miR-212 were included, for patient characteristics association with miR-212 level evaluation papers providing odds ratio (OR) or enough data to calculate OR of patient characteristics comparing patients with low and high level of miR-212 were included, and for diagnostic evaluation papers providing numbers of true and false positive and negative samples using miR-212 level as determinant or enough data to estimate these were included in this study.

Data extraction

First author name, publication year, country of study, type of assessed miR-212, cancer type, tumor stage, Specimen, and miR-212 assay method were extracted from all studies. For articles included in the prognostic evaluation, crude and adjusted HRs were extracted, and in case of no reported HR, it was extracted from the Kaplan-Meier curve using the Guyot method [6]. For association evaluation, the number of cancer patients in each cell of 2×2 table dividing patients in two categories of each characteristic in low and high miR-212 level was extracted from studies. Finally, for diagnostic evaluation, numbers of true positive, false positive, false negative, and true negative were extracted from the articles in three types: reported by the study, obtained from the receiver operating characteristic (ROC) curve using Youden index method [7] and obtained from the ROC curve using Index of Union method [8].

Quality assessment

Quality assessment was performed using the Newcastle–Ottawa scale (NOS) for the assessment of the quality of nonrandomized studies in meta-analyses [9, 10] for studies included for prognostic and association evaluation and QUADAS-2 tool for the quality assessment of diagnostic accuracy studies [11] for studies included for diagnostic evaluation. For NOS, a score <4 was considered low quality, a score 4–6 was deemed to be medium quality, and a score of >6 was regarded as high quality. Search (S. R. and M. S.), screening and full-text assessment (S. R. and M. S.), data extraction (S. R. and M. S.), and Quality assessment (S. R. and M. M.) were all performed by two investigators separately. Disagreements were resolved through discussion or consultation from the third reviewer (A. S.).

Statistical analysis

Cochran's Q test and Higgins's I² and p-value [12, 13] were used to evaluate heterogenicity. In case of low heterogenicity defined by $I^2 < 50$ and p-value > 0.05 fixed-effects model was used to pool data; in other conditions, random-effects model was applied. In order to solve observed inconsistency in the included studies email was sent to the corresponding author.

For prognostic evaluation, Comprehensive Meta Analysis software (Version 3.3.070, November 20, 2014) was used to calculate pooled HR. For studies not reporting HR, we digitized the Kaplan–Meier curve using Web Plot Digitizer [14] and estimated HR using coxph function of survival package (Version 2.42-3) using R (Version 4.1.1) in RStudio (Version 1.4.1717) on estimated individual patient data provided by R code in R studio based on the algorithm published by Guyot et al. [6]. For overall survival sub-group analysis and meta-regression were used to find the source of heterogenicity. Sensitivity analysis was performed through one-study-removed analysis, which calculates the pooled effect size of studies after omitting one study each time. Publication bias was assessed using Begg's funnel plot [15] and Begg's [15] and Eager's [16] tests. Nonsignificant p-value of Begg's and Eager's tests shows no publication bias. Also, due to the observed different effect of pancreatic cancer on miR-212, publication bias assessment was also performed on studies after removing studies on pancreatic cancer.

For association evaluation of patient characteristics and low miR-212 level incidence, OR calculation and pooling from the number of patients based on characteristics in low miR-212 and high miR-212 was performed using Comprehensive Meta-Analysis software.

For diagnostic evaluation, the numbers of true positive, false positive, false negative and true negative were extracted from articles or calculated using article-provided sensitivity and specificity. To lower the heterogenicity and threshold effect induced by various optimal cut-off determination methods used in different studies, sensitivity and specificity and number of true and false positive and negative were also extracted based on the numbers obtained by Web Plot Digitizer from ROC curves utilizing two methods: higher Youden Index [7], which is the most commonly used method to determine optimal cut-off leading to the point that has the highest summation of sensitivity and specificity, and lower Index of Union [8] which selects the point where sensitivity and specificity are both most near to area under the curve (AUC) and thus to each other [8]. Meta-analysis of Diagnostic and Screening Tests (Meta-DiSc®) software (Version 1.4, Madrid, Spain) was used to pool the studies [17]. Pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) and 95% confidence intervals were calculated using the DerSimonian-Laird method. ROC plane and summary ROC (SROC) curve were drawn. The Moses-Shapiro-Littenberg model was used to investigate the constancy of DOR. Not significant p-value of the Moses-Shapiro-Littenberg model shows a constant DOR; thus, symmetrical curve in SROC curve is the preferred curve; otherwise, asymmetrical curve is preferred. SROC AUC curve was drawn applying the exponential of the constant of the Moses-Shapiro-Littenberg model. To investigate the threshold effect, which mainly happens on account of applying different cut-offs in different studies, "Spearman correlation coefficient between the logit of sensitivity and logit of 1-specificity" was calculated [17].

No significant and considerable positive Spearman correlation shows no threshold effect. For further assessment of miR-212 diagnostic value in cancer, Fagan's nomogram was applied using function nomogram in UncertainInterval package (Version 0.7.0), considering pretest probability of 0.2. Results of Fagan's nomogram show probability of disease for an individual with a positive test in a population with a prevalence of 20% and probability of disease for an individual with negative test in the same population. To assess publication bias among studies included in the diagnostic evaluation, Deek's funnel plot was drawn and assessed using metabin, metabias, and funnel functions of meta package (Version 4.19-1) in RStudio.

Results

Performed search provided 874 records, including 173 articles from Pubmed, 295 from Scopus, 187 from Web of Science, 192 from Embase, and 27 from Science Direct. After the removal of duplicate records, 521 articles were left. Title and abstract of articles were screened, resulting in the exclusion of 470 studies. The full textes of 51 remaining articles were assessed resulting in exclusion of 21 articles (12 articles due to not reporting OR and HR or clinical signifance of miR-212, 8 articles investigated a set of microRNAs but not miR-212 solely, and one study investigated diagnosis of the presence of metastasis instead of cancer). Ultimately 28 studies were included in the systematic review and meta-analysis.

Totally 1880 patients from 28 studies were included in this systematic review and meta-analysis. Pooled analysis of prognostic dimension of miR-212 on cancer survival was performed on 1479 patients from 18 studies, pooled analysis of the association between low miR-212 level incidence and patient characteristics were performed on 1438 patients from 19 studies, and pooled analysis of the diagnostic value of miR-212 in cancer diagnosis was performed on 416 patients from 8 studies.

Studies included in the prognostic evaluation Fig. 1 were performed in China between 2013 and 2020. Five studies were performed on HCC, three on CRC, two on PDAC, two on gastric cancer, and six on other cancers. Studies included in the diagnostic evaluation were performed between 2013 and 2020. Three studies were performed in China, two in Iran, two in the USA, and one in the UK. Each study was performed on a particular organ tumor, and the biofluid samples of plasma, serum, tissue, urine, and bile were used to examine miR-212 levels.

The prognostic dimension of miR-212 in cancer patients was investigated using HR, showing higher mortality of low miR-212 patients compared to high miR-212 patients (Table 2A). HR for overall survival (OS) was 2.081 (1.593, 2.717) based on the data of 1479 patients from 18 studies showing higher mortality in low miR-212

patients (Fig. 2A). The source of heterogenicity observed by $I^2 = 68.884$ was investigated through sub-group analysis (Table 2A and Additional file 2: Figures S5–S13). In the analysis sub-grouped by cancer type, I^2 was 0 for HCC, CRC, and PDAC. In all studies, lower miR-212 showed poorer prognosis, but in two studies on PDAC; so, another sub-group analysis was performed dividing studies in PDAC and other cancers where I^2 was 0 for both sub-groups and pooled HR was 0.408 (0.241, 0.691) for PDAC and 2.514 (2.162, 2.923) for other cancers (Fig. 2B). In meta-regression analysis, significant regression was observed when studies were tagged by cancer type and sample size. Larger sample size was associated with higher mortality. Also, pooled HR for adjusted overall survival, disease-free survival (DFS), adjusted disease-free survival, and recurrence-free survival (RFS) were all higher than 1.8 and significant (Table 2A and Additional file 2: Figures S14–S17). Sensitivity analysis did not

show a considerable difference in pooled effect size after removing any study; however, omitting studies on PDAC resulted in a slight increase in HR (Fig. 2C). NOS results showed high quality of all included studies in prognostic and association evaluation (Table 1). To investigate publication bias, Begg's funnel plot (Fig. 2D) was drawn, and Begg's and Eager's tests were performed. Publication bias was rejected by no significant p-value at Begg and Mazumdar rank correlation (p-value=0.850) and Eager's regression intercept (p-value = 0.261). To have a broader investigation of publication bias Begg's and Eager's tests were performed on studies after removing studies on PDAC, resulting in p-values of 0.242 and 0.909 for Begg's and Eager's tests respectively (Additional file 2: Figure S4). Also, Duval and Tweedie's trim and fill was performed on studies after removing studies on PDAC, confirming study results in cancers other than PDAC by an effect size of 2.514 (2.162–2.923) (Additional file 2: Figure S4).

Pooled association between low miR-212 level incidence and patient characteristics is shown in Table 2B and Additional file 2: Figures S18–S37. Higher tumor (T), nodes (N), and metastases (M) (TNM) stage was associated with the incidence of low miR-212 level; however, larger tumor size and distant metastasis did not show any association with miR-212 level. Higher serum alphafetoprotein (AFP) level showed a significant association with lower miR-212 level. The association was significant in pooling all studies or pooling studies considered 400 mg serum AFP level as cut-off. While pooling studies considering 200 as serum AFP level cut-off did not show a significant association. Presence of venous infiltration and higher Edmondson-Steiner grade were other factors being associated with low miR-212 level incidence.

ncluded studies
y of the ir
Summary
able 1

A.Studies inclu	ded in prognos	tic evaluat	ion and/or ass	ociation evalu	ation								
Study ID	MiR-212 type	Country	Sample size	Cancer type	Stage	Specimen	Control	Follow-up (months)	Assay	Cut-off point	Experiment type	NOS score	Survival results
Meng, X. 2013 [31]	miR-212	China	180	CRC	≡	Tissue	Normal tissue	96	RT- qPCR	Median	In vitro, in vivo	10	OS, DFS
Qi, B. 2014 [32]	miR-212	China	46	EC	0-111	Tissue	Normal tissue	96	RT-qPCR	Median	I	00	OS
Dou, C. 2015 [33]	miR-212	China	95	HCC	\geq	Tissue	Normal tissue	60	RT-qPCR	Mean	In vitro, in vivo	10	OS, DFS
Li, D. 2015 [34]	miR-212	China	71	GC	0	Tissue	Normal tissue	120	RT-qPCR	Median	In vitro, in vivo	00	SO
Tu, H. 2015 [35]	miR-212	China	86	HCC	\geq	Tissue	Normal tissue	60	RT-qPCR	Median	In vitro	10	OS, DFS
Gu, C. 2017 [36]	miR-212	China	60	RCC	≥ -	Tissue	Normal tissue	60	RT-qPCR	Mean	In vitro, in vivo	6	OS, RFS
Jiang, C. 2017 [<mark>37</mark>]	miR-212	China	73	NPC	\geq	Tissue	Normal tissue	60	RT-qPCR	Median	I	10	OS, DFS
Lu, Z. 2017 [38]	miR-212-5p	China	125	TNBC	NR	Tissue	Normal tissue	136	RT-qPCR	NR	In vitro, in vivo	10	OS, DFS
Tang, T. 2017 [39]	miR-212	China	115	NSCLC	\geq	Tissue	Normal tissue	60	RT-qPCR	Median	In vitro	6	OS
Wu, Z. 2017 [40]	miR-212	China	45	PDAC	\geq	Tissue	Normal tissue	36	FISH	Median	I	Ø	OS
Zhou, Y. 2017 [41]	miR-212	China	58	PCa	NR	Tissue	Normal tissue	NA	RT-qPCR	NR	In vitro, in vivo	6	NA
Qu, H. 2018 [42]	miR-212	China	72	PCa	NR	Tissue	Other individu- als	156	RT-qPCR	Median	In vitro	6	OS
Tong, Z. 2018 [43]	miR-212	China	48	RCC	\geq	Tissue	Normal tissue	NA	RT-qPCR	Mean	In vitro	6	NA
Wang, F. 2018 [44]	miR-212	China	80	HCC	\geq	Serum	Other individu- als	36	RT-qPCR	Median	I	6	OS
Chen, J. 2019 [45]	miR-212-3p	China	83	HCC		Tissue	Normal tissue	66	RT-qPCR	Median	I	10	OS, RFS
Mou, T. 2019 [46]	miR-212	China	53	CRC	\geq	Tissue	Normal tissue	60	RT-qPCR	Median	In vitro	10	OS
Yue, H. 2019 [47]	miR-212	China	41	PDAC	> -	Tissue	Normal tissue	25	RT-qPCR	Middle of the range	In vitro	10	OS
Azar, M. 2020 [48]	miR-212	Iran	30	TSCC	>	Tissue	Normal tissue	NA	RT-qPCR	NR	I	10	NA
Kang, Y. 2020 [49]	miR-212	China	30	NPC	>	Tissue	Normal tissue	AN	RT-qPCR	NR	In vitro	10	NA
Shao, J. 2020 [<mark>50</mark>]	miR-212	China	110	gC	>	Serum	Other individu- als	53	RT-qPCR	Median	In vitro	10	SO

Study ID	MiR-212 type	Country	Sample size	Cancer type	Stage	Specimen	Control	Follow-up (months)	Assay	Cut-off point	Experiment type	NOS score	Survival results
Yuan, Z. 2020 [51]	miR-212-3p	China	06	HCC	≥⊣	Tissue	Normal tissue	60	RT-qPCR	NR	In vitro	6	OS
Zhang, L. 2020 [<mark>5</mark> 2]	miR-212-3p	China	63	HGSOC	\geq	Tissue	NR	130	RT-qPCR	Median	ī	6	os, dfs
B Studies inclue	ded in diagnost	tic evaluat	ion										
Study ID	miR-	212 type	Country	Cancer type	Stage	Normali	zer Control s	ource /	Assay	Sample typ	e De	AUC (95% CI)	Cancer
Miah, S. 2012 [53] miR-2	212	NK	BC (UCC)	pTa- pT₄	4 NR	Healthy ir	idividuals o	art-pcr	Urine		NR	Higher miR
Cote, G. 2014 [54] miR-2	212	NSA	PDAC	> -	NR	CP or BBC	-	art-pcr	Plasma		0.9	Higher miR
										Bile		0.981	Higher miR
Ramalinga, M. 20	15 [55] miR-2	212	NSA	Pca	NR	NR	Healthy ir	idividuals o	art-pcr	Serum		0.66 (0.53-0.78) Lower miR
Bagheri, A. 2016	[56] miR-2	212	Iran	NSCLC	> -	ncRNAs	Healthy ir	idividuals o	art-pcr	Sputum		0.69 (0.53–0.85) Lower miR
										Tissue		0.62 (0.47–0.7)) NR
Damavandi, Z. 20)16 [57] miR-2	212	Iran	BrC	=	5srRNA	Normal ti	ssue c	art-pcr	Tissue		0.63	Lower miR
Wang, F. 2018 [44	i] miR-2	212	China	HCC	\geq	cel-miR-3	9 Healthy ir	idividuals o	aRT-PCR	Serum		0.706 (0.63–0.7	3) Lowe r miR
Pu, X. 2020 [<mark>58</mark>]	exmil	R-212-3p	China	PC	\geq	NR	Healthy ir	idividuals 7	CLN biochi	p Peripheral b	olood plasma	0.599	NR
Shao, J. 2020 (50)	miR-2	212	China	gC	\geq	NR	Healthy ir	idividuals o	aRT-PCR	Serum		0.96	Lower miR
NR not reported, N cancer. NSCLC non-	A not applicable, -small cell lung ca	CRC colorec	tal cancer, <i>EC</i> es oancreatic duct	ophageal cancer al adenocarcinor	, HCC hep na, PCa pr	atocellular carr ostate cancer,	cinoma, GC gastrio TSCC tonque squa	cancer, <i>RCC</i> re mous cell carc	nal cell carci inoma, <i>HGS</i> C	noma, NPC nasopl XC high-grade serc	aryngeal carcinc sus ovarian cance	oma, <i>TNBC</i> triple r, <i>OS</i> overall surv	negative breast val, DFS disease-

VR not reported, NA not applicable, CRC colorectal cancer, EC esophageal cancer, HCC hepatocellular carcinoma, GC gastric cancer, RCC renal cell carcinoma, NPC nasopharyngeal carcinoma, TNBC triple-negative breast
cancer, NSCLC non-small cell lung cancer, PDAC pancreatic ductal adenocarcinoma, PCa prostate cancer, 75CC tongue squamous cell carcinoma, HG5OC high-grade serous ovarian cancer, OS overall survival, DF5 disease
free survival, RFS recurrence-free survival, gRT-PCR quantitative real-time PCR, R reported by the article, C curve, BC bladder cancer, UCC urothelial cell carcinoma, BrC breast cancer, PC pancreatic cancer, CP chronic
pancreatitis, <i>BBD</i> benign biliary disorders, <i>TCLN</i> tethered cationic lipoplex nanoparticle biochip

Raji et al. Cancer Cell International (2022) 22:163

A.Studies included in prognostic evaluation and/or association evaluation

Table 1 (continued)

Gender (male/

female)

13

1026

A. Prognostic eva	luation						
Sub-group	N of studies	N of patients	Pooled hazard ratio	o (HR) (95% CI)	<i>p</i> -value	Heterogene	ity
			Fixed	Random		²	<i>p</i> -value
Overall survival							
Overall	18	1479	2.190 (1.895–2.532)	2.081 (1.593–2.717)	< 0.001	68.9	< 0.001
Publication year					0.226	77.07	< 0.001
< 2017	5	478	2.234 (1.719–2.904)	2.234 (1.719–2.904)	< 0.001	0.00	0.947
2017	5	418	1.715 (1.277–2.303)	1.611 (0.811–3.200)	0.174	79.7	0.001
> 2017	8	583	2.463 (1.986–3.055)	2.284 (1.433–3.641)	0.001	77	< 0.001
Sample size					0.021	71.15	< 0.001
<75	9	515	1.703 (1.336–2.171)	1.722 (1.002–2.961)	0.049	79.2	< 0.001
>75	9	964	2.518 (2.102-3.016)	2.498 (2.042-3.055)	< 0.001	18.1	0.282
Cancer type					< 0.001	0.00	0.756
HCC	5	434	2.145 (1.681–2.736)	2.145 (1.681–2.736)	< 0.001	0.00	0.974
CRC	3	293	2.508 (1.622-3.878)	2.508 (1.622-3.878)	< 0.001	0.00	0.805
PDAC	2	86	0.408 (0.241-0.691)	0.408 (0.241-0.691)	0.001	0.00	0.785
Gastric	2	181	3.474 (2.450-4.927)	3.216 (1.545-6.696)	0.002	75.6	0.043
Cancer type			. , ,	, , , , , , , , , , , , , , , , , , ,	< 0.001	0.28	0.438
PDAC	2	86	0.408 (0.241-0.691)	0.408 (0.241-0.691)	0.001	0.00	0.785
Others	16	1393	2.514 (2.162–2.923)	2.514 (2.162-2.923)	< 0.001	0.00	0.660
Stage				()	0.484	80.14	< 0.001
I-IV	12	902	2 121 (1 779–2 528)	1 944 (1 304–2 898)	0.001	793	< 0.001
Others	6	577	2.346 (1.816–3.031)	2.346 (1.816-3.031)	< 0.001	0.00	0.942
Follow-up perio	d		,	,	0.484	80.14	< 0.001
< = 60	11	848	2 074 (1 735–2 478)	1 833 (1 214–2 767)	0.004	80.3	< 0.001
> 60	7	631	2.67 (1.755 2.176)	2 438 (1 900-3 1 29)	< 0.001	0.00	0.825
Cut-off point	,	001	2.150 (1.500 5.125)	2.130 (1.900 3.129)	0 389	78.91	< 0.001
Median	13	1068	2 412 (2 035–2 859)	2 320 (1 713–3 141)	< 0.001	66.5	< 0.001
Others	5	411	1 693 (1 282-2 235)	1 568 (0.915-2.690)	0.102	71.9	0.007
Specimen	5		1.055 (1.202 2.255)	1.500 (0.515 2.050)	0.097	73.08	< 0.007
Tissue	16	1289	1 973 (1 684–2 311)	1 933 (1 473–2 537)	< 0.001	64 3	< 0.001
Serum	2	1205	3 763 (2 626-5 303)	3 549 (1 996-6 308)	< 0.001	56.4	0.130
MiR-212 type	2	150	5.705 (2.020 5.555)	3.547 (1.770 0.500)	0.836	90. 4 80.34	< 0.001
miR-212 type	14	1127	2 189 (1 861-2 574)	2 001 (1 435-2 791)	< 0.001	75.2	< 0.001
miR-212-3n	3	227	2.109 (1.561 2.57 1)	2 259 (1 525-3 344)	< 0.001	12.8	0.318
miR-212-5p	1	125	2.066 (0.974-4.383)	2.235 (1.325 3.511)	_	12.0	_
Adjusted overall su	irvival	125	2.000 (0.57 1 1.505)				
Overall	5	540	2 121 (1 561-2 881)	2 121 (1 561-2 881)	< 0.001	0.00	0.618
	al	510	2.121 (1.301 2.001)	2.121 (1.501 2.001)	< 0.001	0.00	0.010
	5	550	2812 (2138_3700)	2812 (2138_3700)	< 0.001	0.00	0.807
Adjusted disease-f	roo survival	557	2.012 (2.150 5.700)	2.012 (2.150 5.700)	< 0.001	0.00	0.072
Overall	2	181	2 059 (1 360-3 115)	2 278 (1 (185-4 786)	0.030	63.1	0.100
Recurrence-free su	rvival	101	2.039 (1.300 3.113)	2.270 (1.005 1.700)	0.050	03.1	0.100
Ovorall	2	1/12	1 842 (1 240 2 727)	1 842 (1 240 2 737)	0.002	0.00	0.743
B. Association eve			1.072 (1.240-2.737)		0.002	0.00	0.742
Sub-group	N of studies	N of nationts	Pooled odds ratio (OR) (95% CI)	n-value	Hotorogene	itv
San group	it of studies		- Fived		p value	12	•• 7
			rixea	капоот		I-	<i>p</i> -value

1.012 (0.766–1.337) 0.993 (0.729–1.353)

0.931

15

0.293

Table 2 Prognostic, association, and diagnostic evaluation of miR-212

Table 2 (continued)

B. Association evalu	uation						
Sub-group	N of studies	N of patients	Pooled odds ratio (OR) (95% CI)	<i>p</i> -value	Heterogene	ity
			Fixed	Random		l ²	<i>p</i> -value
Age (old/young)	18	1394	0.819 (0.652–1.028)	0.819 (0.652–1.028)	0.085	0.00	0.899
Metastasis (yes/no)	4	228	2.521 (1.417–4.486)	3.110 (0.624–15.508)	0.166	86.2	< 0.001
Lymphatic metasta- sis (yes/no)	3	195	4.614 (1.958–10.873)	4.529 (0.576–35.588)	0.151	62.3	0.071
Tumor size (large/ small)	14	1096	1.344 (1.038–1.741)	1.195 (0.635–2.249)	0.580	82.1	< 0.001
Tumor size ([> 5 or ≥ 5]/[< 5 or ≤ 5])	8	712	1.296 (0.942–1.783)	1.455 (0.630–3.364)	0.380	84.7	< 0.001
T stage (III-IV/I-II)	2	222	0.792 (0.401–1.563)	0.515 (0.082-3.212)	0.477	79.7	0.027
TNM stage (III-IV/I-II)	12	786	2.844 (2.057–3.932)	2.719 (1.674–4.415)	< 0.001	51.3	0.020
Differentiation (oth- ers/poor)	4	306	0.894 (0.557–1.435)	0.894 (0.556–1.438)	0.642	0.67	0.389
Hepatitis B virus (present/absent)	5	434	0.916 (0.576–1.456)	0.955 (0.545–1.673)	0.711	28.6	0.231
Serum AFP level (high/low)	5	434	2.319 (1.559–3.451)	2.319 (1.559–3.451)	< 0.001	0.00	0.646
Serum AFP level (> 200/ ≤ 200)	2	163	1.620 (0.862–3.047)	1.620 (0.862–3.047)	0.134	0.00	0.642
Serum AFP level (≥400/<400)	3	271	2.933 (1.759–4.889)	2.933 (1.759–4.889)	< 0.001	0.00	0.892
Number of tumor nodules (≥ 2/1)	3	264	1.216 (0.718–2.060)	1.275 (0.536–3.031)	0.583	62.4	0.070
Cirrhosis (present/ absent)	5	434	1.111 (0.748–1.649)	1.118 (0.728–1.718)	0.602	15.3	0.317
Venous infiltration (present/absent)	3	271	1.859 (1.145–3.019)	1.859 (1.145–3.019)	0.012	0.00	0.735
Edmondson-Steiner grade (III-IV/I-II)	4	354	1.757 (1.129–2.735)	1.757 (1.129–2.735)	0.013	0.00	0.532
Venous invasion (positive/negative)	4	320	2.351 (1.460–3.785)	1.772 (0.629–4.996)	0.279	76.9	0.005
Distant metastasis (M1/M0)	3	283	1.401 (0.723–2.714)	0.726 (0.102–5.183)	0.750	85.7	0.001
Histological grade (poor, moderate- well)	2	225	1.231 (0.667–2.273)	1.080 (0.415–2.808)	0.505	45.3	0.176

C. Diagnostic evaluation

Youden index							
Sub-group	N	Sen	Spe	PLR	NLR	DOR	RDOR, p-value
Overall							
Overall	8	0.72 (0.67–0.76)	0.79 (0.75–0.83)	3.25 (1.85–5.71)	0.38 (0.23–0.63)	10.69 (3.64–31.35)	
l², p-value		91.5, < 0.001	88.1, < 0.001	84.9, < 0.001	90.1, < 0.001	87.3, < 0.001	
Publication year							3.26 (0.00-1.8E5),
< 2017	5	0.63 (0.55–0.70)	0.79 (0.72–0.85)	3.01 (1.35–6.69)	0.49 (0.29–0.81)	8.69 (2.28–33.08)	0.754
>2017	3	0.78 (0.72–0.84)	0.79 (0.74–0.84)	3.64 (1.43–9.22)	0.28 (0.10–0.82)	13.41 (1.89–95.26)	
Ethnicity							0.29 (0.00-3.7E3),
Caucasian	3	0.72 (0.63–0.79)	0.74 (0.66–0.81)	2.45 (0.91–6.54)	0.28 (0.08–1.07)	12.92 (1.41– 118.79)	0.707
Asian	5	0.72 (0.66–0.77)	0.81 (0.76–0.85)	3.88 (1.88–8.01)	0.40 (0.21–0.77)	10.80 (2.78–41.86)	

Table 2 (continued)

C Disgnactic avaluation	
C. Diagnostic evaluation	
2	

Youden index							
Sub-group	Ν	Sen	Spe	PLR	NLR	DOR	RDOR, p-value
Sample size							0.41 (0.00–1.6E2),
< 50	5	0.64 (0.56–0.72)	0.84 (0.78–0.89)	3.84 (1.58–9.29)	0.46 (0.28–0.77)	9.85 (3.11–31.19)	0/56
> 50	3	0.76 (0.70–0.81)	0.75 (0.69–0.81)	2.93 (1.14–7.56)	0.30 (0.10–0.95)	10.14 (1.24–83.07)	
Sample type							1.05 (0.00-4.2E2),
Serum	3	0.83 (0.78–0.88)	0.75 (0.69–0.80)	3.07 (1.24–7.58)	0.23 (0.07–0.79)	13.90 (1.79– 108.13)	0.986 (serum vs. others)
Plasma	2	0.72 (0.61–0.82)	0.82 (0.74–0.89)	3.92 (2.09–7.34)	0.28 (0.05–1.63)	14.26 (1.63– 124.80)	
Tissue	2	0.40 (0.26–0.55)	0.94 (0.83–0.99)	6.26 (1.98–19.80)	0.65 (0.52–0.83)	9.72 (2.63–35.90)	
Index of union							
Overall							
Overall	8	0.74 (0.70–0.78)	0.73 (0.69–0.78)	2.38 (1.48–3.83)	0.37 (0.22–0.64)	7.49 (2.62–21.44)	
l ² , p-value		87.1, < 0.001	87.6, < 0.001	85.2, < 0.001	87.2, < 0.001	88.8, < 0.001	
Publication year							6.78 (0.00-6.3E5),
< 2017	5	0.66 (0.59–0.73)	0.71 (0.64–0.78)	1.84 (1.10–3.08)	0.49 (0.29–0.84)	4.67 (1.52–14.33)	0.631
>2017	3	0.81 (0.75–0.86)	0.75 (0.69–0.80)	3.13 (1.30–7.58)	0.27 (0.09–0.81)	12.11 (1.65–89.01)	
Ethnicity							0.14 (0.00-2.6E3),
Caucasian	3	0.68 (0.59–0.76)	0.76 (0.67–0.83)	2.53 (0.88–7.22)	0.36 (0.13–1.02)	10.20 (1.26-82.66)	0.570
Asian	5	0.77 (0.72–0.82)	0.73 (0.67–0.78)	2.45 (1.35–4.44)	0.37 (0.18–0.75)	6.95 (1.78–27.18)	
Sample size							0.56 (0.00-3.4E3),
< 50	5	0.71 (0.63–0.78)	0.71 (0.64–0.77)	1.94 (1.17–3.22)	0.45 (0.27–0.77)	5.30 (1.75–16.09)	0.844
>50	3	0.76 (0.70–0.81)	0.75 (0.69–0.81)	2.93 (1.14–7.56)	0.30 (0.10–0.95)	10.14 (1.24–83.07)	
Sample type							0.90 (0.00-5.5E3),
Serum	3	0.81 (0.75–0.86)	0.76 (0.69–0.81)	3.06 (1.20-7.81)	0.27 (0.08–0.84)	11.94 (1.49–95.54)	0.970
Plasma	2	0.79 (0.68–0.88)	0.73 (0.64–0.81)	3.12 (1.06–9.14)	0.26 (0.06–1.22)	12.28 (1.04– 144.29)	
Tissue	2	0.54 (0.39–0.69)	0.71 (0.56–0.83)	2.65 (0.44–16.16)	0.63 (0.45–0.89)	4.06 (0.59–27.69)	

The pooled hazard ratio (OR) of survival analysis showing mortality in low miR-212 patients compared to high miR-212 patients (**A**). The pooled odds ratio (OR) showing the association between patient characteristics with the incidence of low miR-212 level (**B**). Diagnostic variables in cancer diagnosis using miR-212 level (**C**), and meta-regression analysis of diagnostic value based on study preferences

N number, Fixed fixed-effects model, Random random-effects model, Sen sensitivity, Spe specificity, PLR positive likelihood ratio, NLR negative likelihood ratio, DOR diagnostic odds ratio, RDOR meta-regression relative diagnostic odds ratio

Evaluation of diagnostic value based on the numbers obtained preferably using Youden Index showed pooled values of sensitivity 0.716 (0.669–0.759), specificity 0.790 (0.748–0.827), positive likelihood ratio 3.249 (1.849–5.709), negative likelihood ratio 0.378 (0.226–0.631), and diagnostic odds ratio 10.688 (3.644– 31.348) and SROC AUC of 0.84 confirming high diagnostic performance of miR-212 (Table 2C and Fig. 3). Numbers preferably obtained using the Index of Union confirmed the findings (Table 2C and Additional file 2: Figures S39). Results of subgroup analysis and metaregression are provided in Table 2C. Meta-regression did not show significant regression in any considered factor. Indicated by Spearman correlation coefficient, no positive correlation between the logit of sensitivity and logit of 1-specificity concluded no threshold effect in analysis using numbers preferably obtained by Youden Index (-0.048, p-value = 0.911) and Index of Union (-0.762 p-value = 0.028). Results of QUA-DAS-2 are demonstrated in Additional file 2: Figure S40 and S41. Fagan's nomogram based on pooled sensitivity and specificity acquired by numbers preferably obtained by Youden Index showed a positive predictive value of 46.2%, meaning 0.46 probability of having cancer in an individual from a tested population with 20% cancer prevalence with a positive miR-212 cancer test

(Additional file 2: Figure S42 and S43). Also, the negative post-test result was found to be 8.25% showing an individual from the same population with a negative test result has a probability of 0.08 to be affected by cancer. Deek's funnel plot did not show any publication bias using numbers obtained preferably by Youden Index (p-value = 0.798, Fig. 3F) and Index of Union (p-value = 0.652, Additional file 2: Figure S39F).

Discussion

Timely cancer detection and accurate estimation of prognosis are crucial for appropriate patient management. The prognostic and diagnostic value of miRs is trending as they could be our potential solution. miR-212 is one of many miRs with aberrant expression in different cancer patients; Herein, we analyzed its diagnostic accuracy and prognostic value as the existing studies reported valuable but inconsistent results. Given the unique pathophysiology of each cancer and even different subtypes of particular cancer, it would be more helpful to assess miR-212 based on cancer type and subtype; however, due to relatively scarce standard studies on every single cancer, we aimed to evaluate its importance in a metanalytic overview.

Our prognostic assessment showed that the HR of low levels of miR-212 to its high levels was 2.081 (1.593, 2.717, $I^2 = 68.884$) in predicting OS. To eliminate heterogeneity, we used subgroup analysis which detected PDAC studies as the heterogeneity source. Subgroup analysis illustrated a poorer prognosis of low miR-212 levels in cancers other than PDAC (HR = 2.514); however, PDAC was an exception (HR = 0.408). But why a specific miR is increased in one cancer and decreased in another? It should be noted that one miR potentially can interact with 200 genes [4]. For instance, the Retinoblastoma (Rb)-1 tumor suppressor gene is the target of miR-212 in PDAC (increased miR-212 suppresses Rb1 that promotes cell growth), but Rb binding protein-2 (RBP2) is the target in gastric carcinoma and HCC (decreased miR-212 upregulates RBP2 which promotes cell growth) [4]. When miR-212 can target tumor suppressor genes or their products, it is theoretically plausible for them to be a cancer biomarker with diagnostic and prognostic value. About PDAC, different studies showed consistent results; Yue et al. observed increased levels of both miR-212 and hypoxia-induced factor-1 α (HIF-1 α) in PDAC patients [18]. They powered their findings via in vitro analysis of the miR-212 promoter region, which possesses five hypoxia response elements, potentially able to bind HIF-1 α . Schultz et al. and Wu et al. also found elevated miR-212 in PDAC patients [4, 19]. Several studies indicated that lower miR-212 is tied to worse outcomes in HCC patients [20-23]. Dou et al. found that HCC-related OS and DFS are predictable via miR-212 levels combined with Forkhead box protein-A1 (FOXA1), which was more reliable than each alone [21]. FOXA1 promotes cell proliferation and apoptosis with an established role in HCC development and posttranscriptionally down-regulated by miR-212-3p [21, 24]. The miR-212 also suppresses the connective tissue growth factor (CTGF) (which promotes tumoral angiogenesis) and histone-H3 lysine-4 demethylase of RBP2 (which is upregulated in HCC) [20, 22, 23]. Similarly,

some of the mentioned pathways and some other pathways are declared to be involved in breast cancer, renal cell carcinoma, prostate cancer, nasopharyngeal carcinoma, etc. The relevant targeted genes and their relative function are shown in Additional file 2: Table S1.

Significant pooled association of low miR-212 level incidence with Higher serum AFP level and higher Edmondson-Steiner grade confirm miR-212 value in HCC.

MiRs express abnormally in several cancers; they possess less complex transcriptional and translational modifications than proteins and miRs [2]. They are stable in a wide range of pH and resist degradation with several freezes and thaw procedures [3, 25]. These features make them suitable candidates for cancer diagnosis and treatment. Our diagnostic outcomes resulted from PDAC, HCC, breast cancer, gastric cancer, bladder cancer, prostate cancer, and non-small cell lung cancer studies. In diagnostic evaluation, while using the Youden index, the pooled sensitivity and specificity were 0.716 (0.669-0.759) and 0.790 (0.748-0.827), respectively. DOR is a single number that indicates the diagnostic accuracy of the intended test by dividing PLR to NLR, thus combining both sensitivity and specificity into a single number. Pooled DOR using the Youden index was 10.69 (3.64-31.35), showing that miR-212 could be a potential biomarker in cancer diagnosis. Notably, using multiple miRs as a diagnostic panel could increase diagnostic accuracy to the point that it is applicable in clinical settings, as seen in several studies [26, 27]. Of note, Bagheri et al. reported no additional benefits of using a panel of miRs (miR-223, miR-212, and SNORD37) to detect non-small cell lung cancer, emphasizing the usefulness of miRs as a compound diagnostic tool can be changed based on the type of cancer [3]. This study also encourages future experiments to assess several miRs to find an optimal panel of miRs for each cancer.

Additionally, using miRs based on clinical data (family history, social history, medication history, etc.) and assessing them in specific biofluids (sputum, saliva, bile, urine, etc.) can remarkably increase clinical diagnostic accuracy [25, 27]. Cote et al. showed that miR-212 levels in bile had higher sensitivity, specificity, and DOR than plasma levels for PDAC [27]. Another solution to clinically optimize the diagnostic accuracy of miR-212 is to use it in a high-risk population for each specific cancer [27]. Recently, the diagnostic value of other miRs like miR-375, miR-21, miR-34a, and miR-155 have been studied with relatively similar diagnostic values [28–30]. Future diagnosis of cancer can be revolutionized by proper use of miRs, which accordingly could guide us toward more efficient treatment. The present review has some limitations: all prognostic articles were from China; thus, more studies are needed in other races to generalize the reported findings. Also, miR-212 diagnostic accuracy and prognostic value differ by type of cancer and even cancer subtypes.

In conclusion, miR-212 can help us diagnose cancers with a prolonged latency period and determine cancer prognosis.

Supplementary Information

The online version contains supplementary material available at https://doi. org/10.1186/s12935-022-02584-0.

Additional file 1: Detailed search strategy.

Additional file 2: Table S1, S2 and Figure S1–S43.

Acknowledgements

Not applicable.

Author contributions

Conceptualization: SR, MS, AS; literature search: SR, MS, MM. Analysis: SR, MS; writing-original draft: SR, MS, MM; writing-review and editing: AS. Approval: all authors. All authors read and approved the final manuscript.

Funding

No financial support was received for this study.

Availability of data and material

Not applicable.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication

Not applicable.

Competing interests

Authors claim no competing interest.

Author details

¹Persian Cohort Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. ²School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. ³Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. ⁴Kidney Transplantation Complications Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. ⁵Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. ⁶Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.

Received: 30 March 2022 Accepted: 11 April 2022 Published online: 26 April 2022

References

- WHO. Cancer Fact-sheet Geneva [updated 21 Sep 2021]. https://www. who.int/news-room/fact-sheets/detail/cancer. Accessed 17 Oct 2021.
- Wang Y, Gao X, Wei F, Zhang X, Yu J, Zhao H, et al. Diagnostic and prognostic value of circulating miR-21 for cancer: a systematic review and meta-analysis. Gene. 2014;533(1):389–97.

- Wu Z, Zhou L, Ding G, Cao L. Overexpressions of miR-212 are associated with poor prognosis of patients with pancreatic ductal adenocarcinoma. Cancer Biomark. 2017;18(1):35–9.
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clin Res Ed). 2021;372:n71.
- Guyot P, Ades AE, Ouwens MJ, Welton NJ. Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan-Meier survival curves. BMC Med Res Methodol. 2012;12:9.
- 7. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32-5.
- Unal I. Defining an optimal cut-point value in ROC analysis: an alternative approach. Comput Math Methods Med. 2017;2017:3762651.
- Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.
- Modesti PA, Reboldi G, Cappuccio FP, Agyemang C, Remuzzi G, Rapi S, et al. Panethnic differences in blood pressure in Europe: a systematic review and meta-analysis. PloS ONE. 2016;11(1):7601.
- Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–36.
- 12. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.
- Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ (Clin Res Ed). 2003;327(7414):557–60.
- 14. Rohatgi A. Webplotdigitizer: version 4.4. 2020. https://www.automerisio/ WebPlotDigitizer
- Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.
- Egger M, Davey Smith G, Schneider M, Minder C. Bias in metaanalysis detected by a simple, graphical test. BMJ (Clin Res Ed). 1997;315(7109):629–34.
- Zamora J, Abraira V, Muriel A, Khan K, Coomarasamy A. Meta-DiSc: a software for meta-analysis of test accuracy data. BMC Med Res Methodol. 2006;6:31.
- Yue H, Liu L, Song Z. miR-212 regulated by HIF-1a promotes the progression of pancreatic cancer. Exp Ther Med. 2019;17(3):2359–65.
- Schultz NA, Andersen KK, Roslind A, Willenbrock H, Wøjdemann M, Johansen JS. Prognostic microRNAs in cancer tissue from patients operated for pancreatic cancer—five microRNAs in a prognostic index. World J Surg. 2012;36(11):2699–707.
- Chen J-q, Ou Y-I, Huang Z-p, Hong Y-g, Tao Y-p, Wang Z-g, et al. MicroRNA-212-3p inhibits the proliferation and invasion of human hepatocellular carcinoma cells by suppressing CTGF expression. Sci Rep. 2019;9(1):1–10.
- Dou C, Wang Y, Li C, Liu Z, Jia Y, Li Q, et al. MicroRNA-212 suppresses tumor growth of human hepatocellular carcinoma by targeting FOXA1. Oncotarget. 2015;6(15):13216.
- Tu H, Wei G, Cai Q, Chen X, Sun Z, Cheng C, et al. MicroRNA-212 inhibits hepatocellular carcinoma cell proliferation and induces apoptosis by targeting FOXA1. Onco Targets Ther. 2015;8:2227.
- Wang F, Wang J, Ju L, Chen L, Cai W, Yang J. Diagnostic and prognostic potential of serum miR-132/212 cluster in patients with hepatocellular carcinoma. Ann Clin Biochem. 2018;55(5):576–82.
- 24. Yuan Z, Ye M, Qie J, Ye T. FOXA1 promotes cell proliferation and suppresses apoptosis in hcc by directly regulating miR-212-3p/FOXA1/AGR2 signaling pathway. Onco Targets Ther. 2020;13:5231.
- Duell EJ, Lujan-Barroso L, Sala N, Deitz McElyea S, Overvad K, Tjonneland A, et al. Plasma microRNAs as biomarkers of pancreatic cancer risk in a prospective cohort study. Int J Cancer. 2017;141(5):905–15.
- Pu X, Ding G, Wu M, Zhou S, Jia S, Cao L. Elevated expression of exosomal microRNA-21 as a potential biomarker for the early diagnosis of pancreatic cancer using a tethered cationic lipoplex nanoparticle biochip. Oncol Lett. 2020;19(3):2062–70.
- Cote GA, Gore AJ, McElyea SD, Heathers LE, Xu H, Sherman S, et al. A pilot study to develop a diagnostic test for pancreatic ductal adenocarcinoma based on differential expression of select miRNA in plasma and bile. Am J Gastroenterol. 2014;109(12):1942.

- Hou Y, Wang J, Wang X, Shi S, Wang W, Chen Z. Appraising microRNA-155 as a noninvasive diagnostic biomarker for cancer detection: a metaanalysis. Medicine. 2016;95(2):e2450.
- Imani S, Zhang X, Hosseinifard H, Fu S, Fu J. The diagnostic role of microRNA-34a in breast cancer: a systematic review and meta-analysis. Oncotarget. 2017;8(14):23177.
- Yan J, She Q, Shen X, Zhang Y, Liu B, Zhang G. Potential role of Micro-RNA-375 as biomarker in human cancers detection: a meta-analysis. BioMed Res Int. 2017. https://doi.org/10.1155/2017/1875843.
- Meng X, Wu J, Pan C, Wang H, Ying X, Zhou Y, et al. Genetic and epigenetic down-regulation of microRNA-212 promotes colorectal tumor metastasis via dysregulation of MnSOD. Gastroenterology. 2013;145(2):426-36 e1-6.
- Qi B, Liu SG, Qin XG, Yao WJ, Lu JG, Guo L, et al. Overregulation of micro-RNA-212 in the poor prognosis of esophageal cancer patients. Genet Mol Res. 2014;13(3):7800–7.
- Dou C, Wang Y, Li C, Liu Z, Jia Y, Li Q, et al. MicroRNA-212 suppresses tumor growth of human hepatocellular carcinoma by targeting FOXA1. Oncotarget. 2015;6(15):13216–28.
- 34. Li D, Li Z, Xiong J, Gong B, Zhang G, Cao C, et al. MicroRNA-212 functions as an epigenetic-silenced tumor suppressor involving in tumor metastasis and invasion of gastric cancer through down-regulating PXN expression. Am J Cancer Res. 2015;5(10):2980–97.
- Tu H, Wei G, Cai Q, Chen X, Sun Z, Cheng C, et al. MicroRNA-212 inhibits hepatocellular carcinoma cell proliferation and induces apoptosis by targeting FOXA1. Onco Targets Ther. 2015;8:2227–35.
- Gu C, Wang Z, Jin Z, Li G, Kou Y, Jia Z, et al. MicroRNA-212 inhibits the proliferation, migration and invasion of renal cell carcinoma by targeting X-linked inhibitor of apoptosis protein (XIAP). Oncotarget. 2017;8(54):92119–33.
- Jiang C, Wang H, Zhou L, Jiang T, Xu Y, Xia L. MicroRNA-212 inhibits the metastasis of nasopharyngeal carcinoma by targeting SOX4. Oncol Rep. 2017;38(1):82–8.
- Lv ZD, Yang DX, Liu XP, Jin LY, Wang XG, Yang ZC, et al. MiR-212-5p suppresses the epithelial-mesenchymal transition in triple-negative breast cancer by targeting Prrx2. Cell Physiol Biochem. 2017;44(5):1785–95.
- Tang TT, Huan LT, Zhang SJ, Zhou H, Gu L, Chen XH, et al. MicroRNA-212 functions as a tumor-suppressor in human non-small cell lung cancer by targeting SOX4. Oncol Rep. 2017;38(4):2243–50.
- Wu ZR, Zhou LJ, Ding GP, Cao LP. Overexpressions of miR-212 are associated with poor prognosis of patients with pancreatic ductal adenocarcinoma. Cancer Biomark. 2017;18(1):35–9.
- Zhou Y, Ji Z, Yan W, Zhou Z, Li H. The biological functions and mechanism of miR-212 in prostate cancer proliferation, migration and invasion via targeting Engrailed-2. Oncol Rep. 2017;38(3):1411–9.
- Qu HW, Jin Y, Cui ZL, Jin XB. MicroRNA-212 participates in the development of prostate cancer by upregulating BMI1 via NF-κB pathway. Eur Rev Med Pharmacol Sci. 2018;22(11):3348–56.
- Tong Z, Meng X, Wang J, Wang L. MicroRNA-212 inhibits the proliferation and invasion of human renal cell carcinoma by targeting FOXA1. Mol Med Rep. 2018;17(1):1361–7.
- 44. Wang F, Wang J, Ju LL, Chen L, Cai WH, Yang JL. Diagnostic and prognostic potential of serum miR-132/212 cluster in patients with hepatocellular carcinoma. Ann Clin Biochem. 2018;55(5):576–82.
- Chen JQ, Ou YL, Huang ZP, Hong YG, Tao YP, Wang ZG, et al. MicroRNA-212-3p inhibits the proliferation and invasion of human hepatocellular carcinoma cells by suppressing CTGF expression. Sci Rep. 2019;9(1):9820.
- Mou TY, Zhang RR, Wang YN. MiRNA-212 acts as a tumor-suppressor in colorectal carcinoma through targeting SOX4. Eur Rev Med Pharmacol Sci. 2019;23(24):10751–60.
- Yue H, Liu L, Song ZG. miR-212 regulated by HIF-1 promotes the progression of pancreatic cancer. Exp Ther Med. 2019;17(3):2359–65.
- Azar M, Shanehbandi D, Mansouri M, Sarand SP, Asadi M, Akbari M, et al. Altered expression levels of miR-212, miR-133b and miR-27a in tongue squamous cell carcinoma (TSCC) with clinicopathological considerations. Gene Rep. 2020;19:6.
- Kang Y, Yanfei CUI, Ming TAN. MicroRNA-212 suppresses cell proliferation in nasopharyngeal carcinoma by targeting ELF3. Oncol Lett. 2020;19(4):2902–8.

- Yuan Z, Ye M, Qie J, Ye T. FOXA1 promotes cell proliferation and suppresses apoptosis in HCC by directly regulating miR-212-3p/FOXA1/AGR2 signaling pathway. Onco Targets Ther. 2020;13:5231–40.
- Zhang L, Zhang Y, Wang SS, Tao L, Pang LJ, Fu RT, et al. MiR-212-3p suppresses high-grade serous ovarian cancer progression by directly targeting MAP3K3. Am J Transl Res. 2020;12(3):875–88.
- Miah S, Dudziec E, Drayton RM, Zlotta AR, Morgan SL, Rosario DJ, et al. An evaluation of urinary microRNA reveals a high sensitivity for bladder cancer. Br J Cancer. 2012;107(1):123–8.
- Cote GA, Gore AJ, McElyea SD, Heathers LE, Xu H, Sherman S, et al. A pilot study to develop a diagnostic test for pancreatic ductal adenocarcinoma based on differential expression of select miRNA in plasma and bile. Am J Gastroenterol. 2014;109(12):1942–52.
- 55. Ramalinga M, Roy A, Srivastava A, Bhattarai A, Harish V, Suy S, et al. Micro-RNA-212 negatively regulates starvation induced autophagy in prostate cancer cells by inhibiting SIRT1 and is a modulator of angiogenesis and cellular senescence. Oncotarget. 2015;6(33):34446–57.
- Bagheri A, Khorram Khorshid HR, Mowla SJ, Mohebbi HA, Mohammadian A, Yaseri M, et al. Altered miR-223 expression in sputum for diagnosis of non-small cell lung cancer. Avicenna J Med Biotechnol. 2017;9(4):189–95.
- Damavandi Z, Torkashvand S, Vasei M, Soltani BM, Tavallaei M, Mowla SJ. Aberrant expression of breast development-related MicroRNAs, miR-22, miR-132, and miR-212, in breast tumor tissues. J Breast Cancer. 2016;19(2):148–55.
- Pu X, Ding G, Wu M, Zhou S, Jia S, Cao L. Elevated expression of exosomal microRNA–21 as a potential biomarker for the early diagnosis of pancreatic cancer using a tethered cationic lipoplex nanoparticle biochip. Oncol Lett. 2020;19(3):2062–70.
- Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):097.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

