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Abstract 

Purpose:  5-fluorouracil (5-FU), an effective chemotherapy drug, is commonly applied for colorectal cancer treat‑
ment. Nevertheless, its toxicity to normal tissues and the development of tumor resistance are the main obstacles to 
successful cancer chemotherapy and hence, its clinical application is limited. The use of resveratrol can increase 5-FU-
induced cytotoxicity and mitigate the unwanted adverse effects. This study aimed to review the potential therapeutic 
effects of resveratrol in combination with 5-FU against colorectal cancer.

Methods:  According to the PRISMA guideline, a comprehensive systematic search was carried out for the identifica‑
tion of relevant literature in four electronic databases of PubMed, Web of Science, Embase, and Scopus up to May 
2021 using a pre-defined set of keywords in their titles and abstracts. We screened 282 studies in accordance with our 
inclusion and exclusion criteria. Thirteen articles were finally included in this systematic review.

Results:  The in vitro findings showed that proliferation inhibition of colorectal cancer cells in the groups treated by 
5-FU was remarkably higher than the untreated groups and the co-administration of resveratrol remarkably increased 
cytotoxicity induced by 5-FU. The in vivo results demonstrated a decrease in tumor growth of mice treated by 5-FU 
than the untreated group and a dramatic decrease was observed following combined treatment of resveratrol and 
5-FU. It was also found that 5-FU alone and combined with resveratrol could regulate the cell cycle profile of colo‑
rectal cancer cells. Moreover, this chemotherapeutic agent induced the biochemical and histopathological changes 
in the cancerous cells/tissues and these alterations were synergized by resveratrol co-administration (for most of the 
cases), except for the inflammatory mediators.
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Introduction
Colorectal cancer is the third and second most frequently 
diagnosed cancer among males and females worldwide, 
respectively [1]. Furthermore, it is the second most lethal 
malignancy worldwide [2]. Colorectal cancer is affected 
by both different genetic and environmental factors, each 
to a different degree in various patients [3]. The choice 
of first-line treatment for colorectal cancer patients cur-
rently comprises a multimodal approach based on can-
cer-related features and patient-related factors [4].

One of the therapeutic modalities for colorectal cancer 
is using different chemotherapy regimens; especially, it 
is considered as the mainstay of treatment in metastatic 
colorectal cancer. There are various chemotherapeutic 
drugs for managing colorectal cancer patients, including 
5-fluorouracil (5-FU), capecitabine, oxaliplatin, cetuxi-
mab, irinotecan, bevacizumab, etc. [5, 6]. 5-FU is a com-
mon and conventional treatment for colorectal cancer 
which is used for five decades. Nevertheless, its toxicity 
to normal tissues and appearance of colorectal cancer 
chemoresistance are main obstacles to successful can-
cer chemotherapy and hence, its clinical application is 
limited [7, 8]. Therefore, identification of new therapeu-
tic agents for their potential application combined with 
5-FU during colorectal cancer treatment is warranted to 
improve patient survival and alleviate adverse effects.

The tendency to use herbal and natural products or 
their derivatives to mitigate the chemotherapy-induced 
side effects (chemo-protectors) or enhance the sensitiv-
ity of tumoral cells to chemotherapeutic agents (chemo-
sensitizers) has attracted much attention during the past 
several decades. Resveratrol (3,5,4′-trihydroxy-trans-
stilbene, Fig.  1) is a natural polyphenol which has been 
found in more than 70 plant species and its main sources 
are grapes, soy and peanuts [9–13]. Resveratrol is naturally 
able to protect herbs against fungal, ultra-violet rays, and 
other stresses [14]. It is also known that this herbal agent 
has potent anti-oxidant and anti-clastogenic properties, 
helping to protect against carcinogenesis and genomic 
instability [15, 16]. Moreover, its anti-cancer activity has 
been investigated in many cancer types, such as colorec-
tal, prostate, lung, liver, breast cancers, and so on [17–21]. 
It has been also reported that resveratrol not only acts a 
chemotherapeutic agent, but also have chemo-preventive 
properties which are related to its anti-inflammatory, anti-
oxidant, anti-apoptosis, and anti-proliferative activities 

Conclusion:  The results obtained from this systematic review demonstrated that co-administration of resveratrol 
could sensitize the colorectal cancer cells to 5-FU treatment via various mechanisms, including regulation of cell cycle 
distribution, oxidant, apoptosis, anti-inflammatory effects.
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Fig. 1  Chemical structure of resveratrol

[22–24]. Indeed, resveratrol targets some components of 
intracellular signaling pathways such as tumor angiogenic 
and metastatic switches, pro-inflammatory mediators, and 
cell survival and apoptosis regulators by modulating a dis-
tinct set of transcription factors (including p53, aryl hydro-
carbon receptor, nuclear factor-erythroid 2-related factor 2 
(Nrf2), forkhead box subgroup O, activating transcription 
factor 3, nuclear factor kappa B (NF-κB), etc.), upstream 
kinases (including mitogen-activated protein kinases 
(MAPKs), protein kinase C, and Akt, etc.) and their regula-
tors (including early growth response-1, Krüppel-like fac-
tor-4, IκBα kinase (IKK), cyclooxygenase (COX)‐2, vascular 
endothelial growth factor (VEGF), Bcl2, matrix metallo-
proteinase (MMP)-9, etc.) [25–29].

In the current study, a systematic search was carried out 
on the potential therapeutic role of resveratrol during colo-
rectal cancer chemotherapy by 5-FU. Additionally, we tried 
to answer the following issues: (1) the underlying mecha-
nisms of toxicities induced by 5-FU chemotherapeutic 
agent on colorectal cancer cells, (2) the role of resveratrol 
on 5-FU‐induced toxicities on colorectal cancer cells, and 
3) the underlying mechanisms related to the chemo-sensi-
tization role of resveratrol on colorectal cancer cells during 
5-FU chemotherapy.

Methods
Search strategy
According to the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) guideline 
[30], we performed a systematic search to assess all rel-
evant studies on “the effects of resveratrol in combination 
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with 5-FU against colorectal cancer” in both medical 
subject heading (MeSH) or advance at four electronic 
databases including Web of Science, Embase, PubMed, 
and Scopus up to May 2021 using the keywords “Res-
veratrol” AND “Chemotherapy” OR “5-Fluorouracil” OR 
“5Fluorouracil” OR “5-FU” OR “5FU” OR “Fluorouracil” 
OR “Adrucil” OR “Carac” AND “Colorectal cancer” OR 
“Bowel cancer” OR “Colon cancer” OR “Rectal cancer” 
OR “Rectum cancer” OR “Colorectal malignancy” OR 
“Bowel malignancy” OR “Colon malignancy” OR “Rectal 
malignancy” OR “Rectum malignancy” OR “Colorectal 
neoplasm” OR “Bowel neoplasm” OR “Colon neoplasm” 
OR “Rectal neoplasm” OR “Rectum neoplasm” OR “Colo-
rectal carcinoma” OR “Bowel carcinoma” OR “Colon car-
cinoma” OR “Rectal carcinoma” OR “Rectum carcinoma” 
OR “Colorectal tumor” OR “Bowel tumor” OR “Colon 
tumor” OR “Rectal tumor” OR “Rectum tumor” in key-
words, titles or abstracts.

Study selection
The inclusion criteria considered for this systematic 
review were full-text articles with (1) English language, 
(2) our per-defined purpose on the role of resveratrol 
during colorectal cancer chemotherapy by 5-FU (based 
on the aforementioned keywords), (3) sufficient infor-
mation, (4) no restriction on publication year, and (5) no 
restriction in publications with clinical, in-vivo, or in-
vitro studies. For exclusion criteria, we excluded (1) not 
related papers, (2) review articles, (3) oral presentations, 
(4) posters, (5) case reports, (6) editorials, (7) letters to 
the editors, and (8) book chapters.

Data extraction
Each eligible study was reviewed by two researchers and 
the following data were then extracted: (a) author name 
and year of publication, (b) models (clinical, in-vivo or/
and in-vitro), (c), 5-FU dosage and route of administra-
tion type, (d) outcomes of colorectal cancer chemother-
apy, (e) resveratrol dosage and route of administration 
type, and (f ) resveratrol co-administration outcomes.

Results
Literature search and screening
Figure 2 shows the process of study selection.

Two hundred and eighty-two articles were acquired 
by a comprehensive search on Web of Science (n = 112), 
Embase (n = 56), PubMed (n = 60), and Scopus (n = 54) 
electronic databases up to May 2021. After removing the 
duplicated papers (n = 155), the remaining ones (n = 127) 
were screened in their titles and abstracts, and 96 of 
them were omitted. Thirty-one articles were qualified 
for assessment of their full-texts. Thirteen articles were 
included in the current systematic review in accordance 

with the inclusion and exclusion criteria. The data of each 
eligible article were extracted and listed in Table 1.

The effects of resveratrol in combination 
with 5‑fluorouracil against colorectal cancer
Cell proliferation inhibition
The results obtained from some studies showed that 
proliferation inhibition of colorectal cancer cells in the 
groups treated by 5-FU was remarkably higher than the 
untreated groups [31–38]. Additionally, the inhibited 
cell proliferation following 5-FU treatment had time- 
and dose-dependent manners. In detail, it was observed 
that the colorectal cancer cell viability increases over 
time; while, the colorectal cancer cell viability decreases 
by increasing the chemotherapy dosage [31, 33, 35, 37, 
38]. Furthermore, the type of colorectal cancer cell had 
a considerable effect on 5-FU-induced cell growth inhi-
bition. For instance, it was shown that the SW-620 cells 
were more resistant to 5-FU than the HT-29 cells [33]. In 
addition, it was reported that the parental colorectal can-
cer cells (such as HCT116 and SW480) were more sensi-
tive to 5-FU treatment than their corresponding isogenic 
FU-chemoresistant derived clones (i.e., HCT116R and 
SW480R) [35]. The resveratrol co-administration signifi-
cantly increased cytotoxicity induced by 5-FU treatment 
on the colorectal cancer cells (synergistic effect) [31–38].

Tumor volume and tumor weight changes
The in vivo results demonstrated that tumor volume and 
tumor weight of mice were decreased in the 5-FU group 
than the untreated group. When both resveratrol and 
5-FU were administered to the mice, dramatic decreases 
in the tumor volume and tumor weight were found com-
pared to the 5-FU-treated group [39].

Cell cycle distribution
The findings revealed that the use of 5-FU chemothera-
peutic agent regulated the cell cycle profile of colorec-
tal cancer cells [32, 37, 40]. Chung et  al. showed that 
upon 5-FU treatment, the HCT116 cells (%) in G0/G1 
phase decreased, while the rate of these cells in S phase 
increased compared to the control group [37]. The com-
bined treatment of resveratrol and 5-FU had a reverse 
manner on the cell cycle distribution compared with the 
chemotherapy group alone [37]. However, Mohapatra 
et  al. showed that treatment with 5-FU alone and com-
bined with resveratrol halted the cell cycle progression at 
the S phase in the HCT-116 cells [32].

It is noteworthy that the effect of combined treatment 
of 5-FU and resveratrol (compared with 5-FU alone) on 
the cell cycle distribution depends on the type of colorec-
tal cancer cell and can provide different results.
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Changes induced in biochemical markers
The biochemical changes induced by 5-FU treatment on 
colorectal cancer cells/tissues are listed in Table 1. It was 
found that intracellular reactive oxygen species (ROS), 
lipid peroxidation (LPO), malondialdehyde (MDA), 
superoxide dismutase (SOD), Bcl-2-associated X protein 
(BAX), CXCR4, MMP-9, cleaved poly (ADP-ribose) poly-
merase (PARP), phospho-JNK, phospho-p38, vimentin, 
activated nuclear factor kappa B, IκBα, IKK, interleukin 
6 (IL-6), and tumor necrosis factor alpha (TNF-α) lev-
els increased significantly in the 5-FU-treated groups 
than the untreated groups [7, 32, 33, 35, 36, 38–41]. In 
contrast, catalase, glutathione peroxidase (GPx)/SOD 
ratio, B-cell lymphoma-extra large (Bcl-xL), Bcl-2, phos-
pho-AKT, phospho-signal transducer and activator of 
transcription 3 (STAT3), phospho-extracellular signal-
regulated kinase (ERK)1/2, Sirt1, E-cadherin, claudin-2, 
aldehyde dehydrogenase isoform 1 (ALDH1), CD31, 
CD44, CD51, and CD133 levels decreased significantly 
[7, 32–35, 37, 39, 41].

The combined treatment of resveratrol and 5-FU syn-
ergized biochemical changes induced by 5-FU treatment 

alone (for most of the cases) [32–34, 36–41]. Neverthe-
less, it was observed that combination treatment of res-
veratrol and 5-FU compared to chemotherapy alone had 
a reverse manner on several biochemical markers (for 
instance, MDA, SOD, CXCR4, MMP-9, activated NF-κB, 
IκBα, IKK, vimentin, E-cadherin, claudin-2, IL-6, and 
TNF-α) [7, 35, 39, 41].

It is noteworthy that several studies have shown con-
flicting results on several biochemical markers (see 
Table 1). For instance, several studies showed decreased 
levels of cleaved caspase-3, P53 gene, transcription fac-
tor slug, and COX‐2 following 5-FU treatment alone [7, 
35, 37, 38], while other studies revealed increased levels 
for these biomarkers [32, 35, 38–40]. Nevertheless, the 
combined treatment of resveratrol and 5-FU increased 
the cleaved caspase-3 and P53 gene levels and decreased 
the transcription factor slug and COX-2 levels, compared 
with chemotherapy groups alone [7, 32, 35, 37–41].

Histological changes
The histopathological results from the colon tissues 
of rats which received methylnitrosourea (as a tumor 

Fig. 2  Flow diagram of PRISMA applied in the current systematic study for selection process
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inducer) demonstrated moderate to severe inflammation, 
epithelial hyperplasia determined by crypt injury, and 
inflammatory cell infiltration. Nevertheless, the colon 
tissue sections from methylnitrosourea-induced colon 
cancer rats treated with 5-FU alone and 5-FU combined 
with resveratrol had more intact surface epithelium, less 
inflammatory, and normal colon cells than the methyl-
nitrosourea-induced colon cancer group [7]. In another 
study, the histopathological findings obtained from mice 
with untreated colon tumors revealed blood vessels with 
a high vascular density; nevertheless, the vascular net-
work of 5-FU-treated group illustrated significantly lower 
vascular density and branches and this decreased vascu-
lar density was severe in the group treated with resvera-
trol and 5-FU [39].

Discussion
In the current systematic review, we aimed to investi-
gate the cytotoxic effects induced by 5-FU treatment on 
colorectal cancer cells/tissues. Additionally, the poten-
tial therapeutic effects of resveratrol in combined with 
5-FU were assessed. A summary of the results has been 
presented in Table 1. Moreover, the effects of resveratrol 
co-treatment during colorectal cancer treatment by 5-FU 
chemotherapeutic agent are depicted in Fig. 3.

Chemotherapy drugs is widely applied to treat differ-
ent malignant tumors, such as head and neck, breast, 
gastric, and colorectal, etc. [42–45]. These drugs are able 
to modulate cell cycle that results in apoptosis [46–48]. 
The treatment of colorectal cancer with 5-FU (especially 
advanced cases) has two major problems: severe toxicity 

Fig. 3  The molecular mechanisms of resveratrol co-treatment during colorectal cancer treatment by 5-fluorouracil (5-FU) chemotherapeutic agent. 
Resveratrol exerts the synergistic anti-tumoral effects through increments in oxidant and apoptosis activities, and reduction in inflammatory effects. 
↑↑synergistically increased by 5-FU plus resveratrol compared to 5-FU alone; ↑↑synergistically decreased by 5-FU plus resveratrol compared to 
5-FU alone; ↓decreased by 5-FU plus resveratrol compared to 5-FU alone; Bcl-xL, B-cell lymphoma-extra large; BAX, Bcl-2-associated X protein; GPx, 
glutathione peroxidase; IL-6, interleukin 6; IKK, IκBα kinase; LPO, lipid peroxidation; ROS, reactive oxygen species; NF-κB, nuclear factor-kappa B; 
COX-2, cyclooxygenase-2; TNF-α, tumor necrosis factor alpha.; MMP-9, matrix metalloproteinase-9
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to normal tissues and development of tumor resistance 
[33]. As its dose increases, the unwanted adverse effects 
of the chemotherapeutic agent also increase and resist-
ance to the agent develops frequently [8]. In addition, 
concomitant use of other chemotherapy drugs with 5-FU 
in colon cancer patients with advanced stages develops 
drug resistance against chemotherapy and these patients 
suffer from severe adverse effects [49, 50]. In view of the 
above, clinical application of 5-FU is limited during colo-
rectal cancer treatment. These limitations highlight the 
requirement for the development of novel anti-tumoral 
agents in order to enhance the chemosensitivity of colo-
rectal cancer cells and reduce unwanted adverse effects. 
In this regard, the combination treatment of 5-FU with 
less toxic substances derived from plants, such as resver-
atrol, has received more attention in recent years.

The anti-tumoral activity of resveratrol has been 
reported in some cancers, such as breast [51], skin [52], 
gastric [53], liver, and colorectal [54] cancers. More 
importantly, it has been shown that a combination of 
resveratrol and chemotherapeutic drugs not only can 
mitigate adverse drug reactions but can also reduce drug 
resistance (synergistic effect) [38, 55, 56]. Resveratrol 
exerts its anti-tumoral effects through several mecha-
nisms, including oxidant, apoptotic, anti-inflammatory 
actions, etc. In the following, the mechanistic effects of 
5-FU treatment on the colorectal cancer cells/tissues as 
well as the anti-tumoral effects of resveratrol co-treat-
ment during colorectal cancer treatment by 5-FU chemo-
therapeutic agent are discussed.

Oxidant actions
Free radicals are normally generated in the cells and sev-
eral defense mechanisms protect the cells against them 
[57, 58]. In oxidative stress conditions, a lack of balance 
between the free radical amounts and these defense sys-
tems occurs, leading to increased free radical amounts 
[59, 60]. Following the chemotherapy drug administra-
tion, the oxidative stress condition happens [61]. The gen-
erated ROS following 5-FU treatment can induce DNA 
damage either directly or indirectly, leading to cancerous 
cell death [33, 36, 62]. It was also showed that LPO levels 
were increased in both the plasma and erythrocyte sam-
ples of 5-FU-treated colorectal cancer patients, whereas 
GPx and glutathione (GSH) levels were decreased [63]. 
Additionally, 5-FU significantly inhibited the catalase 
activity and increased SOD activity [33]. These findings 
reflect that 5-FU treatment impairs hydroperoxide scav-
enging capacity in colon cancer cells. It is noteworthy that 
non-radical ROS such as H2O2 through the activity of 
GPx enzyme and consuming GSH (as an important intra-
cellular anti-oxidant agent) generates 2H2O [64]. Addi-
tionally, the catalase enzyme decomposes H2O2 to H2O 

and O2 [65]. O2− also is one of the ROS molecules and 
it is turned to H2O2 by the SOD enzyme [66]. Moreover, 
the marked increases in advanced oxidation protein prod-
ucts and MDA levels of 5-FU-treated colon cancer rats 
were observed [7]. In contrast, the colorectal cancer cell 
lines resistant to 5-FU showed increments in glutathione 
transferases (GST) level and Nrf2 expression following 
5-FU treatment [67, 68]. The activated Nrf2 also led to an 
increment in the protein expression and activity of heme 
oxygenase-1 (HO-1) [68]. Nrf2 is a transcription factor 
for several molecules involved in anti-oxidant activities, 
including NAD(P)H Quinone Dehydrogenase 1, HO-1, 
GST, and γ-glutamylcysteine synthetase (γ-GCS) [69]. 
Hence, an increased Nrf2 expression or Nrf2-regulated 
cytoprotective genes (such as GST) may play an impor-
tant role in 5-FU resistance of cancerous cells.

Resveratrol through oxidant actions increased ROS 
level in colorectal cancer cells [33, 36]. It has been also 
shown that this herbal agent through the interaction with 
the mitochondria of malignant cells is able to induce an 
imbalance in cellular anti-oxidant activities, which results 
to a remarkable increment in the levels of both intracel-
lular ROS and lipid peroxides [33]. It is noteworthy that 
free radicals are normally created in the cells, particularly 
through electrons leakage from the mitochondrial elec-
tron transport chain and this process is enhanced during 
mitochondria damage [70]. Resveratrol can also inhibit 
oxidation–reduction (redox) system in malignant cells 
[33]. Moreover, it can downregulate catalase and GPx 
expressions and upregulate MDA, SOD, and LPO levels 
in colorectal cancer cells [7, 33]. Resveratrol can also sup-
press Nrf2 activity, which may sensitize cancer cells resist-
ance to chemotherapy agents in this way [71]. Besides, it 
was found that resveratrol combined with 5-FU chemo-
therapeutic drug against colorectal cancer synergistically 
increased the generated ROS, LPO, and SOD levels and 
decreased the catalase and GPx levels [33, 36].

Apoptotic actions
Apoptosis is a physiological pathway which is needed 
to eliminate the harmed or transformed cells [72, 73]. 
It can happen during oxidative stress conditions and 
enormous DNA damage [74, 75]. Among the impor-
tant medicators involved in the apoptosis process are 
caspase enzymes, Bcl-2, p53, BAX, Bcl-XL, ceramide, 
PARP, nuclear factor of activated T cells 5 (NFAT5), and 
so on [76–87]. One of the characteristics of most can-
cerous cells is the evasion of apoptosis; as any reduction 
or irregularity of this pathway invariably accompanies 
tumorigenesis and maintains malignant progression 
[88]. Some chemotherapeutic agents are able to induce 
apoptosis in tumoral cells [89, 90]. Several studies have 
reported an increased apoptosis level in 5-FU-treated 
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colorectal cancer cells than untreated groups [32, 35, 41]. 
When colorectal cancer cells were treated to 5-FU, Bcl-
XL expression was decreased compared to the untreated 
group [32]. In contrast, it was found that BAX, cleaved 
caspase-3, caspase-8, caspase-9, and PARP product levels 
were increased following 5-FU treatment [32, 38]. p53, 
tumor suppressor protein, has pro-apoptotic activities 
and 50–70% of colorectal tumors contain p53 mutation 
[91]. It was shown an increased level of P53 expression 
following 5-FU treatment [92]. These indicate that colo-
rectal cancer cells are moving towards apoptosis. PARP 
is a nuclear enzyme and, as a pro-apoptotic factor, can 
be activated by chemotherapeutic agents [32, 93–95]. 
It has been also reported that 5-FU damages DNA and 
takes the colon cancer cells to apoptosis by activating 
the MAPK pathway [96]. In this regard, it was found 
that 5-FU activates (phosphorylates) phospho-JNK and 
phospho-p38 (major MAPK signaling components) [32]. 
MAPKs may also affect NFAT5 [97–100] and p53 [101] 
activities. NFAT5 is a transcription factor which plays 
a critical role in apoptosis [86]. Moreover, it was shown 
that 5-FU induces apoptosis through suppression of the 
MAPK/ERK1/2 signaling pathway in colon cancerous 
cells [34].

Some studies have reported that resveratrol can induce 
apoptosis in various malignant tumor cells, such as gli-
oma [102], prostate [103], gastric [104], breast [105], head 
and neck [106], and ovarian [107] cancer cells. The apop-
totic activation of resveratrol is linked to induce ROS 
production, various caspases activation, mitochondrial 
membrane permeability, BAX and p53 activation, etc. 
[108–113]. It has been reported that colorectal cancer 
cells treated with resveratrol revealed an increased apop-
tosis level compared to untreated groups [32, 35, 114, 
115]. The use of resveratrol decreased Bcl-XL expression 
in the cancerous cells, while it led to increased levels of 
BAX, cleaved caspase-3, caspase-6, caspase-8, caspase-9, 
and PARP product [32, 35, 38]. It was also result to 
increase p53, phospho-JNK, and phospho-p38 levels in 
colorectal cancer cells [7, 32, 38]. Additionally, resvera-
trol suppressed the MAPK/ERK1/2 signaling pathway in 
colon cancerous cells, leading to increase apoptosis [34]. 
Moreover, the results represented in this study showed 
that the use of resveratrol could synergize 5-FU-induced 
apoptosis in colorectal cancer cell lines [32, 35, 37].

Inflammatory actions
The inflammatory process is a biological phenomenon 
which occurs in response to tissue damage induced from 
several harmful stimuli such as chemotherapy, radia-
tion, microbial pathogen  infection, and/or  wounding 
[116–121].  Among the characteristics of inflammation 
are: elevation in leukocyte migration to injured area, 

upregulation of pro-inflammatory cytokines, and leuko-
cyte chemotaxis [122, 123]. The chemotherapy-induced 
inflammation has a main role in tumor resistance and the 
incidence of various adverse effects. Additionally, chronic 
inflammation may develop second cancer during years 
after treatment [124]. Moreover, inflammatory mediators 
play an important role in angiogenesis and tumor growth. 
For instance, NF‐κB is considered as one of the most sig-
nificant links between inflammation, tumor resistance, 
and cell death [124]. It was found chemotherapy by 5-FU 
increases NF‐κB phosphorylation in colorectal cancer 
cells [7, 35, 41, 124]. In addition, 5-FU markedly induced 
phosphorylation of IκBα subunit, expression of MMP-9, 
and activation of IKK [35, 41, 125]. The MMP-9, as an 
enzyme involved in the inflammatory pathway, is regu-
lated by NF-κB [125]. IkB inhibits nuclear translocation 
of NF-κB and also activation of IKK induces phospho-
rylation of NF-κB and IκB [85]. NF‐κB can also stimulate 
the release of prostaglandins and resistance of cancer-
ous cells to apoptosis through upregulation of COX‐2 
[124]. The findings obtained from 5-FU-treated mice 
also showed an increased expression of COX-2 than the 
control group [39]. COX‐2 is a pro-inflammatory enzyme 
that is overexpressed at the inflammatory site of cancer 
[126]. It is a marker representing a worse prognosis and 
a stimulator for various cancers through multitasking 
roles (recently discussed in detail by Hashemi Goradel 
et al. [127]). It is noteworthy that suppression of NF‐κB 
and COX‐2 by novel therapeutic agents could provide a 
promising approach for cancer treatment, particularly 
when they are applied as an adjuvant with appropriate 
chemotherapy drugs. It has been also reported that the 
phosphorylated STAT3 level decreases in response to 
5-FU treatment than the control levels of colorectal can-
cer cells [33, 37]. One of the reasons for the resistance of 
cancerous cells is the upregulation of transcription fac-
tors such as STATs [16]. These enzymes are considered 
as transcription factors for cytokine signaling which are 
constitutively activated in many cancer types [128–131]. 
STAT3, as one of the subfamilies, involves in the modu-
lation of angiogenesis and metastasis, suppression of 
apoptosis, and regulation of cell cycle progression via 
stimulation of VEGF, MMP-2, MMP-9, and IAP-1 [16, 
132]. Of note, targeting the STATs by chemotherapy 
agents can be considered as a strategy for overcoming 
tumor resistance. Moreover, the increased levels of IL-6 
and TNF-α following 5-FU-treated colorectal cancer cells 
have been reported [39].

As mentioned earlier, inflammation is an inducer of 
carcinogenesis and can significantly affect the therapeu-
tic outcome of chemotherapy [127, 133]. In this regard, 
resveratrol, through its anti-inflammatory activities, can 
increase therapeutic efficiency and reduce the resistance 
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of cancer cells to chemotherapy drugs. According to 
the findings obtained from combined treatment of res-
veratrol and 5-FU, it was found that resveratrol reduces 
phosphorylated NF‐κB, IκBα, and IKK levels as well as 
MMP-9, COX-2, IL-6, and TNF-α levels in colorectal 
cancer cells [7, 35, 39, 41]. Resveratrol also synergistically 
reduced phosphorylated STAT3 levels in 5-FU-treated 
colorectal cancer cells [33, 37].

Perspective of future research
In addition to its anti-tumoral effects, resveratrol is able 
to mitigate chemotherapy-induced toxicities in normal 
cells/tissues. Resveratrol exerts the chemo-protective 
effects through anti-oxidant, anti-apoptotic, anti-inflam-
matory actions. Hence, it is proposed to conduct studies 
on the chemo-protective effects of resveratrol in normal 
cells/tissues during colorectal cancer chemotherapy by 
5-FU.

It is noteworthy that the results represented in this 
systematic review are in accordance with in  vitro and 
in  vivo models. The use of resveratrol as a chemo-pro-
tector agent or/and chemo-sensitizer agent combined 
to 5-FU in colorectal cancer patients needs further stud-
ies because sometimes results are different between the 
in vitro and in vivo models and clinical studies.

Conclusion
The obtained findings revealed that combined treatment 
of resveratrol and 5-FU chemotherapeutic drug signifi-
cantly increases the effectiveness of 5-FU treatment alone 
in colorectal cancer cells through increment of chemo-
sensitizer and/or reduction of chemoresistance effects. 
Resveratrol, as an anti-tumoral agent, exerts the syner-
gistic effects through various mechanisms such as regu-
lation of cell cycle distribution, increments in oxidant 
and apoptosis activities, and reduction in inflammatory 
effects.
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