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Abstract 

Background:  Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Costimulatory mol-
ecules have been proven to be the foundation of immunotherapy. However, the potential roles of costimulatory molecule 
genes (CMGs) in HCC remain unclear. Our study is aimed to develop a costimulatory molecule-related gene signature that 
could evaluate the prognosis of HCC patients.

Methods:  Based on The Cancer Gene Atlas (TCGA) database, univariate Cox regression analysis was applied in CMGs to 
identify prognosis-related CMGs. Consensus clustering analysis was performed to stratify HCC patients into different subtypes 
and compared them in OS. Subsequently, the LASSO Cox regression analysis was performed to construct the CMGs-related 
prognostic signature and Kaplan–Meier survival curves as well as ROC curve were used to validate the predictive capability. 
Then we explored the correlations of the risk signature with tumor-infiltrating immune cells, tumor mutation burden (TMB) 
and response to immunotherapy. The expression levels of prognosis-related CMGs were validated based on qRT-PCR and 
Human Protein Atlas (HPA) databases.

Results:  All HCC patients were classified into two clusters based on 11 CMGs with prognosis values and cluster 2 correlated 
with a poorer prognosis. Next, a prognostic signature of six CMGs was constructed, which was an independent risk factor for 
HCC patients. Patients with low-risk score were associated with better prognosis. The correlation analysis showed that the risk 
signature could predict the infiltration of immune cells and immune status of the immune microenvironment in HCC. The 
qRT-PCR and immunohistochemical results indicated six CMGs with differential expression in HCC tissues and normal tissues.

Conclusion:  In conclusion, our CMGs-related risk signature could be used as a prediction tool in survival assessment and 
immunotherapy for HCC patients.
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Introduction
Primary liver cancer is an aggressive malignant tumor with 
high mortality worldwide [1]. Hepatocellular carcinoma 
(HCC) is the most common histological subtype and the 
fourth leading cause of cancer-related mortality, accounts 
for approximately 90% of all primary liver cancer. At present, 
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the traditional treatment methods for HCC are systemic 
chemotherapy, local ablation, TACE (Transhepatic Arterial 
Chem Otherapy and Embolization) and surgical resection 
[2]. However, the therapeutic effect of these methods is away 
from satisfactory. The effect of anti-tumor agents was not 
consistent in different clinical trials. Portal vein thrombosis 
and cholestasis or biliary fistula still needed to be addressed 
in ablation process, when the target lesion was close to ves-
sels and bile ducts [3, 4]. The recurrence rate of liver cancer 
after resection was up to 70% at 5 years [5]. In recent years, 
some clinical trials related immunotherapy showed different 
outcomes in improving the prognosis of HCC patients [6–8]. 
Therefore, it is urgently required to explore novel prognostic 
signature for HCC that can predict survival and the response 
to immunotherapy.

The component of immune microenvironment in HCC is 
the target for many therapeutic advances, including immu-
notherapy [9]. Most recently, immunotherapies targeting the 
adaptive immune system, specifically, T cells, have improved 
tumor control [10]. Activating T cells involves many signals, 
among which costimulatory molecules are important [11, 
12]. HCC could utilize immune checkpoint and evade anti-
tumor immune responses by expressing the corresponding 
costimulatory ligands [13]. B7-CD28 superfamily is a piv-
otal signal in co-stimulation of T cell activation, and PD-1/
PD-L1 also belong to it, which demonstrated the critical 
effect of costimulatory molecules in HCC [14, 15]. Besides, 
accumulating evidence has shown that TNF superfamily, 
another costimulatory signals, plays a central role in cancer 
immune regulation [16]. The OX40-OX40L axis, a member 
of the TNF superfamily, has been shown to improve anti-
tumor effects of immune cells and effect for cancer immu-
notherapy [17–19]. Previous studies also have shown that 
costimulatory molecules can regulate the tumor immune 
microenvironment (TME), mainly affecting the activation 
and proliferation of T cells [20]. Thus, these molecules possi-
bly could provide novel insights in TME. However, the func-
tions of costimulatory molecules in HCC remain unclear.

In this systematic study, we evaluated the expression levels 
of costimulatory molecules genes in HCC tissues and normal 
tissues from The Cancer Genome Atlas (TCGA) database. 
Then a costimulatory molecules-related prognostic signature 
was constructed for HCC patients and we explored the asso-
ciations between the prognostic signature and clinicopatho-
logical features. Furthermore, we also analyzed the potential 
roles of this prognostic signature in the immune microenvi-
ronment, tumor mutation analysis and response to immuno-
therapy in different subgroups.

Materials and methods
Data collection
The transcriptomic data and corresponding clinical informa-
tion of HCC were downloaded from the public The Cancer 

Genome Atlas (TCGA) data portal (https://​portal.​gdc.​can-
cer.​gov/). A total of 50 normal samples and 374 HCC sam-
ples were obtained. Patients with incomplete overall survival 
(OS) information were excluded. Subsequently, the TCGA 
cohort was randomly divided into training set (n = 186) and 
test set (n = 184). There were no significantly differences in 
clinical characteristics between two sets (Table 1). Further-
more, a total of sixty costimulatory molecules genes (CMGs) 
were collected from prior reviews [21, 22].

Identification of differentially expressed genes (DEGs)
We utilized “limma” package in R software (version 4.0.4) to 
identify the differentially expressed genes (DEGs) between 
all HCC specimens and normal specimens according to the 
criteria of P-value < 0.05 and |log2 (fold change) |> 1. The 
DEGs were notated with *** if P < 0.001, ** if P < 0.01 and * 
if P < 0.05. A PPI network was constructed using the Search 
Tool for the Retrieval of Interacting Genes (STRING) data-
base (http://​www.​string-​db.​org/) to explore the interactions 
between these DEGs.

Consensus clustering of prognosis‑related CMGs
Univariate Cox regression analysis was performed to screen 
the CMGs with prognostic values in HCC with the cutoff 
value of P < 0.05. To further elucidate the biological charac-
teristics and prognostic values of CMGs, we employed the 
“ConsensusClusterPlus” package to cluster the HCC patients 
into different subgroups [23]. Principal Component Analy-
sis (PCA) was performed using R package to assess the dis-
tribution of gene expression among different subtypes. The 
OS difference between different clusters was verified by the 
Kaplan–Meier curves. Gene set enrichment analysis (GSEA) 
was conducted in gene set “h.all.v7.2.symbols.gmt” using 
Java GSEA software (version 4.1.0) to identify the potential 
biological processes among different clusters. An enrich-
ment pathway with the normalized P < 0.05 and the false dis-
covery rate (FDR) value < 0.05 were considered as statistically 
significant.

Construction of costimulatory molecule‑related prognostic 
signature
Patients with HCC were randomly divided into a training 
set and a test set. The training set was used to construct a 
prognostic costimulatory molecule-related risk signature 
of HCC, and the test set and total set were used to validate 
the prognostic power of this risk signature. The least abso-
lute shrinkage and selection operator (LASSO) penalized 
Cox proportional hazards regression was performed to 
narrow down the candidate genes and construct the risk 
model based on the prognosis-related costimulatory mol-
ecule genes using the R package “glmnet” [24]. The penalty 
parameter (λ) was determined by the minimum criteria. The 
risk score was calculated with the following formular for 
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each patient: Risk score = expression of gene 1 * coefficient 
1 + expression of gene 2 * coefficient 2 + expression of gene 
3 * coefficient 3 + … + expression of gene n * coefficient n 
[25]. Patients were divided into high- and low-risk groups 
according to the median cutoff of the risk score. The area 
under the curve (AUC) was calculated between high- and 
low-risk groups with R package “survivalROC” to validate 
the prognostic capability. The Kaplan–Meier survival curves 
of the high- and low-risk groups were plotted using R pack-
age “survival” and “survminer” to demonstrate the OS of the 
patients.

Construction and validation of a nomogram
The nomogram and calibration curves were constructed 
with R package “rms”. The consistency between the predicted 
and actual survival of the calibration curves was used to eval-
uate the accuracy of the nomogram. Meanwhile, the nomo-
gram was examined using the ROC curves.

Functional enrichment analysis
HCC patients were stratified into high- and low-risk groups 
based on the median risk score. To explore the poten-
tial molecular mechanisms of the risk model genes, DEGs 
between the high- and low-risk groups were identified with 
the criteria of |log2FC|≥ 1 and FDR < 0.05. Gene Ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses were conducted using the 

“clusterProfler” package in R software according to the 
DEGs.

Assessment of immune cell infiltration
The Cell-type Identification by Estimating Relative Subsets 
of RNA Transcripts (CIBERSORT) analysis were performed 
to estimate the proportions of immune cells infiltration using 
R package “CIBERSORT” from RNA-sequencing data in 
TCGA [26]. Wilcoxon rank-sum test was used to examine 
the differences of infiltrating immune cells in high- and low-
risk groups. The tumor microenvironment score was calcu-
lated using R package “ESTIMATE” [27].

Mutation analysis
The mutation data for HCC patients were downloaded from 
the TCGA data portal (https://​portal.​gdc.​cancer.​gov/). Muta-
tion data were further analyzed using the “maftools” package 
[28]. We calculated the tumor mutation burden (TMB) score 
for each HCC patient as follows: (total mutation/total cov-
ered bases) × 10^6 [29].

Immunophenoscore analysis
Immunophenoscore (IPS) could well predict the response of 
immune checkpoint inhibitors (ICIs). The immunogenicity 
is determined by four major categories of genes, including 

Table 1  The clinical information in training set, test set and total set

Characteristic Type Total set Test set Training set P value

Age  ≤  65 232 (62.7%) 116 (63.04%) 116 (62.37%) 0.9782

 > 65 138 (37.3%) 68 (36.96%) 70 (37.63%)

Gender Female 121 (32.7%) 61 (33.15%) 60 (32.26%) 0.9422

Male 249 (67.3%) 123 (66.85%) 126 (67.74%)

Grade G1–2 232 (62.7%) 116 (63.04%) 116 (62.37%) 0.9214

G3–4 133 (35.95%) 65 (35.33%) 68 (36.56%)

Unknown 5 (1.35%) 3 (1.63%) 2 (1.08%)

Stage Stage I-II 256 (69.19%) 130 (70.65%) 126 (67.74%) 0.2024

Stage III-IV 90 (24.32%) 38 (20.65%) 52 (27.96%)

Unknown 24 (6.49%) 16 (8.7%) 8 (4.3%)

T T1–2 274 (74.05%) 140 (76.09%) 134 (72.04%) 0.2946

T3–4 93 (25.14%) 41 (22.28%) 52 (27.96%)

Unknown 3 (0.81%) 3 (1.63%) 0 (0%)

M M0 266 (71.89%) 128 (69.57%) 138 (74.19%) 0.573

M1 4 (1.08%) 3 (1.63%) 1 (0.54%)

Unknown 100 (27.03%) 53 (28.8%) 47 (25.27%)

N N0 252 (68.11%) 123 (66.85%) 129 (69.35%) 0.1515

N1–3 4 (1.08%) 0 (0%) 4 (2.15%)

Unknown 114 (30.81%) 61 (33.15%) 53 (28.49%)

https://portal.gdc.cancer.gov/
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effector cells, major histocompatibility complex (MHC) mol-
ecules, immunomodulators and immunosuppressive cells. 
The IPS of a patient can be derived using machine learn-
ing without bias. The scores of IPS were calculated using a 
scale ranging from 0–10 based on representative cell type 
gene expression z-scores. The IPS of every HCC patient 
was obtained from The Cancer Immunome Atlas (TCIA) 
(https://​tcia.​at/​home).

Verification of prognosis‑related CMGs expression
Total RNA was extracted from tissue samples using Trizol 
reagent (Sigma, USA), and then, RNA was reverse tran-
scribed into cDNA with the Evo M-MLV RT Premix (Accu-
rate Biotechnology (Hunan) Co.,Ltd). Quantitative real-time 
PCR (qRT-PCR) analyses were performed by SYBR Green 
premix pro Taq HS qRT-PCR kit (Accurate Biotechnology 
(Hunan) Co.,Ltd) to validate gene expression, and the level 
of β-Actin served as an internal control. The relative expres-
sion was calculated based on the comparative Ct (2−ΔΔCt) 
method. The primers’ sequences for qRT-PCR are shown in 
Table 2. The protein expression levels of 6 prognostic gene 
signatures in normal liver and HCC tissues were determined 
using the Human Protein Atlas (HPA).

Tissue collection
Forty-three matched tumorous and non-tumorous tissue 
specimens of HCC were collected from The Xijing Hospital 
of Air Force Medical University during 2017–2018. None 
of the enrolled patients had received any antitumor agents, 
such as chemotherapeutic agents, targeted agents, or immu-
notherapy, prior to surgical resection. The clinicopathologi-
cal details are shown in Table 3. The research was approved 

by the Institutional Research Ethics Committees of the Xijing 
Hospital. Informed consent for publication was obtained 
from all patients for collection of tissue samples prior to the 
surgery.

Results
Identification of DEGs between normal and HCC tissues
The flowchart of this study was illustrated in Fig.  1. The 
expression data of 59 CMGs, including 13 well-defined 
B7-CD28 family costimulatory molecules and 46 TNF fam-
ily costimulatory molecules genes, were extracted from 
The Cancer Genome Atlas (TCGA) database after exclud-
ing TNFRSF6B for its low expression. The 59 costimulatory 
molecule-related genes expression levels were compared 
between HCC tumor and normal tissues, we identified 40 
differentially expressed genes (DEGs) (P < 0.05). Among these 
DEGs, 11 genes (NGFR, TNFSF11, PDCD1LG2, CD274, 
TNFRSF1A, TNFRSF11B, TMIGD2, FAS, TNFRSF10D, 
TNFSF13 and CD86) were down-regulated while 29 genes 
(TNFRSF17, TNFRSF13B, CD276, TNFRSF12A, LTBR, 
TNFSF18, EDAR, TNFRSF14, ICOSLG, RELT, CD28, ICOS, 
LTA, TNFRSF21, TNFRSF10C, VTCN1, TNFRSF11A, LTB, 
EDA2RC, TLA4, TNFSF9, TNFRSF25, PDCD1, CD70, 
TNFSF4, TNFRSF9, TNFRSF18, TNFSF15 and TNFRSF4) 

Table 2  The primer sequences for qRT-PCR analysis

Premier Sequences (5′–3′)

β-Actin-F CTC​CAT​CCT​GGC​CTC​GCT​GT

β-Actin-R GCT​GTC​ACC​TTC​ACC​GTT​CC

TNFSF4-F CCC​TGG​GAC​CTT​TGC​CTA​TT

TNFSF4-R GGG​GTT​GGA​CCC​TTT​CCA​TC

TNFRSF4-F AAG​CCT​GGA​GTT​GAC​TGT​GC

TNFRSF4-R CCT​GTC​CTC​ACA​GAT​TGC​GT

TNFRSF11A-F GTT​GCA​GCT​CAA​CAA​GGA​CAC​

TNFRSF11A-R CAG​AGA​AGA​ACT​GCA​AAC​CGC​

TNFRSF11B-F CTG​GAA​CCC​CAG​AGC​GAA​AT

TNFRSF11B-R GCC​TCC​TCA​CAC​AGG​GTA​AC

TMIGD2-F AGA​ACA​GAA​ACC​GGA​TCG​CA

TMIGD2-R GGC​TGT​TAC​CTG​AGT​CCC​TT

CD40LG-F ATG​GGA​AAC​AGC​TGA​CCG​TT

CD40LG-R GAT​TGT​TGC​CCG​CAA​GGT​TT

Table 3  The clinical features of the HCC (n = 43)

Characteristics Samples (N = 43) Percentage (%)

Gender

 Male 31 72

 Female 12 28

Age

 ≤60 35 81

 > 60 8 19

Aetiology

 HBV 41 95

 Others 2 5

AFP, ng/ml

 < 400 37 86

 ≥ 400 6 14

T

 T1–2 39 91

 T3–4 4 9

N

 N0 42 98

 N1 1 2

M

 M0 43 100

 M1

Stage

 Stage I–II 39 91

 Stage III–IV 4 9

https://tcia.at/home
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were up-regulated in tumor tissues (Fig. 2A and Additional 
file  1: Table  S1). The correlation among CMGs were ana-
lyzed. The relationships between each two of them were 
almost positively correlated, TNFRSF13C and TNFRSF13B 

were most correlated (Cor = 0.93) (Fig. 2B). A protein–pro-
tein interaction (PPI) network was performed to further 
explore the interactions among these CMGs (Fig. 2C). The 
minimum required interaction score was set at highest 

Fig. 1  The flowchart of the study

Fig. 2  Expressions of the CMGs in HCC. A The expression levels of 59 CMGS in both HCC tissues and normal samples. *P < 0.05, **P < 0.01, 
***P < 0.001. B The correlation of the 59 CMGs by using Spearman correlation analysis. C PPI network showed the interactions of the CMGs (the 
highest confidence: 0.9)
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confidence 0.9. The result showed that TNF, CD28, CD40, 
CD80, CTLA4, LTA, TNFRSF10A and TNFSF13B were hub 
genes. 

Consensus clustering of prognosis‑related CMGs in HCC
A univariate Cox regression analysis was performed to pri-
mary selecting of the survival-related genes from 59 CMGs. 
A total of 11 CMGs were significantly linked to the prog-
nosis of HCC patients (P < 0.05). Two genes were protec-
tive genes with hazard ratio (HR) < 1, while 9 genes were 
risk factors with HR > 1 among them (Fig.  3A). To explore 
the associations between the expression of 11 prognosis-
related CMGs and HCC subtypes, we performed a consen-
sus clustering analysis to classify all HCC patients based on 
the expression patterns of 11 prognosis-related CMGs. The 
empirical cumulative density function (CDF) plot is aimed 
to determine the optimum cluster number (k) from 2 to 9 
for the sample distribution to reach an approximate maxi-
mum, which means the maximum stability. When k = 2, 

the consensus matrix showed that HCC patients could be 
divided into two non-overlapping subgroups with the high-
est consensus and the clearest cluster partition (Cluster 1: 
n = 197, Cluster 2: n = 173) (Fig.  3B and Additional file  3: 
Figure S1A). The PCA were analyzed to verify the reliabil-
ity between different subgroups, and Cluster 1 and Cluster 
2 could gather together and non-overlapped with each other 
(Fig.  3C). We compared the OS between two subtypes to 
better understand the relationships between clustering 
results and survival outcomes, the Kaplan–Meier curves 
indicated that Cluster 1 had a better prognosis than Cluster 
2 (P = 0.002, Fig. 3D). The clinical features and two clusters 
were compared with a heatmap. The majority of 11 progno-
sis-related CMGs had higher expression in Cluster 2. These 
two clusters were different in grade (P < 0.01), but not with 
tumor stage, age and gender (Fig. 3E). Furthermore, GSEA 
analysis showed that oncogenic pathways (apoptosis, G2M-
checkpoint, IL2-STAT5-signaling, IL6-JAK-STAT3-signal-
ing, inflammatory response, PI3K-AKT-MTOR-signaling, 

Fig. 3  Consensus clustering analysis for HCC patients based on the CMGs. A Univariate Cox regression analysis identified prognosis-related CMGs. B 
Consensus clustering matrix for k = 2. C Principal Component Analysis (PCA) plot for clusters. D Kaplan–Meier overall survival (OS) curves of Cluser1 
and Cluster 2. E Heatmap and clinical factors of the two clusters
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TNFA-signaling via NF-κB, unfolded protein response) were 
significantly enriched in Cluster 2 (Additional file 3: Figure 
S1B).

Construction and verification of costimulatory 
molecule‑related risk signature
To narrow down candidate genes and construct the risk 
signature, the least absolute shrinkage and selection opera-
tor (LASSO) Cox regression analysis was performed in 
the training set, and 6 of 11 prognosis-related CMGs were 
identified (Additional file  4: Figure S2). The formula to 
calculate the risk score as follows: risk score = (0.25584 
* TNFSF4) + (−0.29002 * TMIGD2) + (0.13379 * 
TNFRSF4) + (0.22009 * TNFRSF11B) + (0.40207 * 
TNFRSF11A) + (−0.78099 * CD40LG). We calculated the 
risk scores for every HCC patient in the training set accord-
ing to the above formular. Patients in the training set were 
divided into high- and low-risk groups based on their 
median risk sore. A significant difference of OS was observed 
in different subgroups. High-risk patients had a poorer OS 

than low-risk groups (P < 0.001) (Fig.  4D). Time-dependent 
receiver operating characteristic (ROC) analysis was used 
to evaluate the sensitivity and specificity of the risk signa-
ture. The areas under the curve (AUC) were 0.756 at 1-year 
survival, 0.791 at 3-year survival and 0.729 at 5-year survival 
(Fig. 4E). We ranked the risk scores of patients and analyzed 
their distribution in the training set (Fig. 4A). The survival 
status of HCC patients in the training set was showed on the 
dot plot (Fig. 4B). The heatmap displayed the expressions of 6 
prognosis-related CMGs between two risk groups (Fig. 4C).

To determine the stability of the risk signature, we further 
verified the predictive capability in the test set and total set. 
The risk score was calculated for each patient in the test set 
and total set by the same formular obtained from the train-
ing set and the patients were classified into high- and low-
risk groups. Similarly, Kaplan–Meier survival curve showed 
significantly difference in two risk groups among the test set. 
The OS of the high-risk groups was poorer than that of the 
low-risk groups (P = 0.019) (Fig.  4I). The 1-year AUC was 
0.728, the 3-year AUC was 0.644 and the 5-year AUC was 

Fig. 4  Construction of CMGs risk signature for HCC. A The distribution of the risk score, B survival status, C expression of 6 prognosis-related CMGs 
in high- and low-risk groups, D Kaplan–Meier survival curve, E time-dependent ROC curve analyses of the CMGs risk signature in the training set. F 
The distribution of the risk score, G survival status, H expression of 6 prognosis-related CMGs in high- and low-risk groups, I Kaplan–Meier survival 
curve, J time-dependent ROC curve analyses of the CMGs risk signature in the test set. K The distribution of the risk score, L survival status, M 
expression of 6 prognosis-related CMGs in high- and low-risk groups, N Kaplan–Meier survival curve, O time-dependent ROC curve analyses of the 
CMGs risk signature in the total set
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0.654 (Fig.  4J). The survival status, the distribution of the 
risk score and the expression heatmap of 6 prognosis-related 
CMGs in the test set were presented in Fig. 4F–H.

The results in the total set were similar to the training set 
and test set. Patients in the high-risk group had a signifi-
cantly shorter prognosis than patients in the low-risk group 
(P < 0.001) (Fig. 4N). In the total set, the AUC was 0.739 at 
1 year, 0.708 at 3 years and 0.662 at 5 years (Fig. 4O). The 
distribution of the risk score, survival status and the expres-
sion patterns of 6 prognosis-related CMGs were showed in 
Fig. 4K–M.

Independent prognostic value of the risk signature
We performed the univariate and multivariate Cox regres-
sion analyses to examine whether the risk score could act as 
an independent prognosis variable of HCC. Univariate Cox 
regression analysis showed that pathological tumor stage and 
risk score were significantly associated with the prognosis 
(Fig. 5A, C, E). Multivariate Cox regression analyses further 
identified that the risk score was an independent prognostic 
factor for OS in the training set, test set and total set (Fig. 5B, 
D, F).

Correlations between the risk signature 
and clinicopathological factors
The association between the risk model and clinical charac-
teristics were analyzed to further verify the prognostic value 

of the risk signature in HCC. The heatmap displayed the 
expressions of 6 prognosis-related CMGs and the distribu-
tion of clinicopathological characteristics in high- and low-
risk groups. The risk score was significantly correlated with 
histological grade, pathological T stage and clinical stage 
(Fig. 6A). Differences in clinicopathological factors between 
high- and low-risk groups were showed in Fig. 6B. The risk 
score of patients with stage III-IV was higher than that of 
patients with stage I-II (P = 0.0014). Patients with G3–4 
showed a remarkably higher risk score than those with G1–2 
(P < 0.001). The risk score in T3–4 patients was significantly 
higher than that observed in T1–2 patients (P = 0.0015). 
Nonetheless, there were no significant differences among 
age, gender, N stage and M stage. Furthermore, patients 
were divided into different subgroups according to the fol-
lowing clinical variables, including age (≤ 65 and > 65), gen-
der (female and male), clinical stage (stage I-II and stage 
III-IV), grade (G1–2 and G3–4), T stage (T1–2 and T3–4), 
N stage (N0 and N1–3) and M stage (M0 and M1). The cor-
relation between the risk score and clinicopathological fea-
tures on OS was explored. Survival analysis manifested that 
higher risk score were correlated with poor prognosis in age 
(age ≤ 65 with P = 0.005 and age > 65 with P < 0.001), gender 
(P < 0.001 in male), stage (stage I-II with P = 0.002 and stage 
III-IV with P = 0.026), grade (P < 0.001 in G1–2 and P = 0.029 
in G3–4), T stage (P < 0.001 in T1–2 and P = 0.01 in T3–4), 
stage N0 (P < 0.001), and stage M0 (P < 0.001) (Fig. 6C).

Fig. 5  Univariate and multivariate Cox regression analyses. Univariate and Multivariate Cox regression analysis of the correlation between the risk 
score and clinicopathological features in the training set (A, B), test set (C, D) and total set (E, F), respectively
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Construction of a novel nomogram
We constructed a nomogram to predict the survival rates 
for HCC patients based on age, gender, histological grade, 
TNM stage, tumor stage and risk score (Fig. 7A). The cali-
bration curves of the nomogram indicated good consistency 
between the predicted survival rate and actual 1-, 3- and 
5-year survival rate (Fig.  7B). The AUCs of risk score and 
tumor stage were 0.739 and 0.671 in 1-year, 0.698 and 0.680 
in 3-year, 0.638 and 0.663 in 5-year, respectively (Fig.  7C). 
These findings suggested that the risk signature might be 
reliable to predict the OS for HCC patients.

Functional enrichment analyses based on the risk 
signature
To explore the potential biological processes for the prog-
nostic risk signature, a total of 474 DEGs were obtained in 
high- and low-risk groups with the criteria FDR < 0.05 and 
|log2FC |≥ 1. Among them, 63 genes were downregulated 
in high-risk group, while 411 genes were upregulated (Addi-
tional file 2: Table S2). Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways analyses 
were carried out based on the DEGs. The results of GO anal-
ysis indicated that the DEGs were mainly related to nuclear 
division. KEGG analysis showed that DEGs were mostly 
enriched in cell cycle (Additional file 5: Figure S3).

Association between risk signature and tumor immune 
microenvironment
The differences of tumor-infiltrating immune cells between 
high- and low-risk groups were analyzed to explore the cor-
relations between the prognostic risk signature and tumor 
immune microenvironment (TIME). Additional file  6: Fig-
ure S4 displayed the abundance of 22 immune cells between 
high- and low-risk subgroups. Among 22 immune cell types, 
memory B cells and macrophage M0 were positively cor-
related with the risk score, while the abundance of naïve B 
cells, plasma cells and regulatory T cells (Tregs) were sig-
nificantly enriched in low-risk group (Fig. 8A). Furthermore, 
the relative proportion of naïve B cells, resting memory CD4 
T cells, activated memory CD4 T cells, regulatory T cells, 
gamma delta T cells, macrophage M1 and resting mast cells 
were significantly associated with OS (Fig. 8B).

To further explore the relationship between the risk signa-
ture and immune status, we performed the expression pro-
files of 29 immune signature gens sets (16 types of immune 
cells and 13 immune-related pathways) in high- and low-
risk groups using the single-sample gene set enrichment 
analysis (ssGSEA). The heatmap dis1layed the significant 
differences in immune status between high- and low-risk 
samples (Fig.  9A). The low-risk subgroup showed higher 
levels of infiltration of immune cells and higher activity 

Fig. 6  Clinical characteristics of CMGs prognostic signature in different subgroups. A The heatmap and clinicopathological factors of high- and 
low-risk subgroups. *P < 0.05, **P < 0.01, ***P < 0.001. B The student’s t-test was used to assessed the relationship between the CMGs prognostic 
signature and age, gender, stage, grade, TMN stage. C Kaplan–Meier survival analyses of CMGs risk model in different clinical subgroups based on 
age, gender, stage, grade, TMN stage with log-rank test
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of immune-related pathways (Fig.  9B). We found that the 
immune score and stromal score were higher in low-risk 
groups, while the tumor purity was significantly lower in 
low-risk subgroup (Fig. 9C).

Differences in molecular characteristics between high‑ 
and low‑risk groups
We evaluated the relationship between mutation characteris-
tics and the risk signature in TCGA HCC patients with avail-
able somatic mutation data. TMB was higher in high-risk 

patients in spite of no significant difference (Fig.  10B). We 
also identified the top 20 genes with the highest mutation 
rates in high- and low-risk subgroups (Fig. 10A). Addition-
ally, we explored the association between immunophe-
noscore (IPS) and risk signature to predict the potential 
clinical efficacy and the response to ICI therapy in HCC 
patient. The IPS, IPS-CTLA4, IPS-PD1-PD-L1- PD-L2, and 
IPS-PD1-PD-L1-PD-L2-CTLA4 blocker were significantly 
higher in low-risk group, implying that HCC patients with 
low-risk score could benefit more from ICI therapy than 
high-risk patients (Fig. 10C).

Fig. 7  Construction and validation of a novel nomogram. A The nomogram for predicting 1-year, 3-year and 5-year OS of HCC in total set. B The 
calibration curves for internal validation of the nomogram on consistency between predicted and observed 1-year, 3-year and 5-year OS in total set. 
C The time-dependent ROC of the nomogram and clinical factors for 1-year, 3-year and 5 year OS prediction in total set
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Verification of prognostic CMGs
We verified the expression of the CMGs (TNFSF4, 
TNFRSF4, TMIGD2, TNFRSF11A, TNFRSF11B, CD40LG) 
in 43 pairs of tumorous and non-tumorous tissue speci-
mens from patients with HCC using qRT-PCR analysis 

(Fig.  11). The results of qRT-PCR showed that the expres-
sion of TNFSF4, TNFRSF4, TNFRSF11A and CD40LG was 
higher in HCC tissues compared to normal tissues. How-
ever, the mRNA expression of TNFRSF11B and TMIGD2 
was higher in normal tissues, which was consistent with the 

Fig. 8  Analysis of tumor infiltrating immune cells. A The association of CMGs prognostic signature and immune cells infiltration. Significant 
statistical differences between two risk groups were assessed by the Wilcoxon rank-sum test, *P < 0.05, **P < 0.01, ***P < 0.001. B The relationship 
between OS and immune cells infiltration (naïve B cells, resting memory CD4 T cells, activated memory CD4 T cells, regulatory T cells, gamma delta 
T cells, macrophage M1 and resting mast cells)
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Fig. 9  Comparison of the immune status in high- and low-risk groups. A The immune status of HCC patients in high- and low-risk groups. Tumor 
purity, ESTIMATE score, immune score and stromal score of every sample were showed in the heatmap. B The box plot displayed the differences 
of enrichment scores of 16 types of immune cells and 13 immune-related pathways in high- and low-risk groups using Mann–Whitney test. C The 
differences of stromal score, immune score, ESTIMATE score and tumor purity in high- and -risk groups with violin plots. *** P < 0.001

Fig. 10  Evaluation of tumor mutation burden and the response to immunotherapy among high- and low-risk groups. A Mutation profiles of 
high- and low-risk groups. B The relationship between CMGs risk signature and TMB. C The association between IPS and risk signature for HCC 
patients
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results of bioinformatic analysis. The protein expression of 
the 6 prognostic gene signatures in HCC tissues and normal 
liver tissues was verified in HPA online database (Fig.  12). 

The results showed that the expression of TNFRSF11A was 
increased and the expression of TNFRSF11B was decreased 
in HCC tissues. TNFRSF4 and TMIGD2 were not detected 

Fig. 11  Verification of prognostic genes in HCC tissues and normal tissues. A TNFSF4, B TNFRSF4, C TNFRSF11A, D TNFRSF11B, E TMIGD2, F CD40LG. 
ns: not significant,*P < 0.05,**P < 0.01

Fig. 12  Representative immunohistochemistry images of A TNFSF4, B TNFRSF4, C TNFRSF11A, D TNFRSF11B, E TMIGD2, F CD40LG in HCC and 
normal liver tissues derived from the HPA database. HCC hepatocellular carcinoma, HPA Human Protein Atlas



Page 14 of 17Hu et al. Cancer Cell International           (2022) 22:97 

in hepatocytes. In addition, the staining results of TNFSF4 
and CD40LG did not reach significant difference according 
to HPA database.

Discussion
Preliminary data from trials of ICIs in the treatment of HCC 
led to encouraging results. Nevertheless, with the rapid 
augment in the utilization of ICIs, immune-related adverse 
events of HCC arose [30, 31]. Multiple studies found that the 
usage of ICIs strategies targeting costimulatory molecules 
for HCC management was promising [32]. Therefore, it 
was necessary to improve the effect on immunotherapy by 
selecting the suitable HCC patients according to costimu-
latory molecules expression patterns. In this study, we 
analyzed the mRNA expression patterns of costimulatory 
molecules-related in HCC and selected six genes with prog-
nostic values. Then, we constructed the first costimulatory 
molecule-related prognostic signature for HCC patients. 
We found that prognostic signature was strongly associated 
with clinical characteristics. Additionally, our signature was 
significantly correlated with tumor immune microenviron-
ment and the response to immunotherapy. Univariate and 
multivariate cox regression analysis indicated our signature 
could be an independent prognostic factors for the survival 
of HCC patients. These findings suggested that CMGs risk 
signature may indicate some insights to personalized tar-
geted treatment in clinical practice.

Costimulatory molecules played an important role in 
immunotherapy [20]. Recent findings demonstrated that 
CD28 co-stimulation was necessary for responses to PD-1 
blockade in tumor rejection [33]. Thus, understanding the 
states of costimulatory molecules in HCC patients will help 
us determine which patients might benefit in immunother-
apy. To explore the expression levels of costimulatory mol-
ecules in HCC, we acquired 13 members of the B7-CD28 
family and 46 members of the TNF family for HCC patients. 
Six costimulatory molecular genes (TNFSF4, TNFRSF4, 
TMIGD2, TNFRSF11A, TNFRSF11B, CD40LG) with prog-
nostic values were selected. The TNFRSF4-TNFSF4 path-
way provided crucial co-stimulatory signals for CD4+T cell 
responses [34]. Previous study showed that TNFSF4 was 
closely related to the unfavorable prognosis of HCC patients 
[35]. In addition, TNFRSF4 was overexpressed in HCC, asso-
ciated with a more aggressive phenotype and the activation 
of multiple immunosuppressive pathways [36]. A phase I 
clinical research also supported that Ivuxolimab (a TNFRSF4 
agonist) showed well tolerance and effective anti-tumor 
capacity in locally advanced or metastatic cancers, includ-
ing HCC [37]. Consequently, treatment targeting TNFRSF4-
TNFSF4 should be considered in the future. TMIGD2 was 
mainly expressed in tissue-resident lymphocyte T cells, 

related to improved tumor prognosis [38]. The different 
interaction between TMIGD2 and B7-H5 have been identi-
fied in certain cancers, such as lung cancer, osteosarcoma, 
oral squamous cell carcinoma (OSCC), colorectal cancer 
(CRC) and glioma [39]. The TMIGD2-B7-H5 interaction 
was involving in Akt-dependent signal pathway, which was 
a recognized regulation in tumor [40]. Previous study reck-
oned that HCC patients were likely to be benefited from 
Everolimus (involved in the Akt-MTOR pathway) only after 
molecular screening [41]. As such, we could make a reason-
able speculation that molecular selection was very necessary 
for the individualized treatment of HCC and our prognos-
tic signature might provide a new method in distinguishing 
suitable patients. Of note, our results firstly revealed that 
TMIGD2 was highly expressed in HCC with favorable prog-
nosis. TNFRSF11A, also known as RANK, was significantly 
up-regulated in HCC, and can lead directly to migration and 
invasion by its ligand [42]. Interestingly, genetic deletion of 
TNFRSF11A in thymic epithelial cells resulted in impaired 
thymic involution and blunted expansion of natural regula-
tory T (Treg) cells [43]. Additionally, study showed that HCC 
patients with high serum TNFRSF11B, also known as osteo-
protegerin (OPG), level had poorer survival rates compared 
with HCC patients with low OPG level [44]. CD40 ligand-
expressing dendritic cells could induce regression of HCC 
[45]. In addition, some clinical trials targeting the agonist or 
antagonist of CD40/CD40LG has showed promising results 
in different malignancies. Study showed that adenoviral vec-
tors expressing CD40 ligand (AdCD40L) were safe in  vivo 
and could reduce the number of tumor cell infiltration in 
bladder cancer [46]. Besides, AdCD40L intratumoral injec-
tion increased T-effector/T-regulatory cell ratio by improv-
ing systemic immune condition, which was related favorable 
survival in malignant melanoma patients [47]. Thus, com-
bined other scholar studies and our own bioanalysis, it was 
possible to improve the prognosis of HCC patients with 
a similar approach. Moreover, the expression levels of six 
prognostic genes were verified using qRT-PCR and immu-
nohistochemistry. However, the protein expression of prog-
nostic genes signatures was not completely similar with our 
previous results, may partly owing to different race and clini-
cal characteristics. At the same time, it also explained that 
why targeted therapy and immunotherapy did not work for 
all HCC patients and tumor heterogeneity should be con-
sidered in treatment practice. With these six costimulatory 
molecular genes elucidated in immunity, we hope that the 
signature constructed by these could predict the response to 
immunotherapy for HCC patients.

Tumors were complex ecosystems, defined by spati-
otemporal interactions among heterogeneous cell types 
[48]. Subsequently, we compared the associations between 
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our signature and tumor immune microenvironment, the 
immune cell infiltration and tumor mutation profiles in high-
risk and low-risk patients. Our results showed that naïve B 
cells, plasma cells and regulatory T cells (Tregs) were sig-
nificantly enriched in low-risk groups. Much of researches 
regarded Tregs as an immunosuppressive cell, posing anti-
tumor immunity in various cancers [49]. Nevertheless, 
some scholars stated that inhibiting the expression of PD-1 
promoted other immune checkpoints, resulting in impaired 
immune killing ability [50, 51]. Accordingly, fewer Tregs cells 
in HCC patients with poor prognosis, indicated that those 
were more likely to be inhibited by PD-1 and activated more 
immune checkpoints. Correspondingly, high-risk subgroup 
manifested lower levels of infiltration of immune cells, impli-
cating less process in immune activation.

Tumor mutation burden (TMB) is emerging as a poten-
tial biomarker, and participated in immunotherapy-related 
pathway [52, 53]. We found that the tumor mutation bur-
den (TMB) in the high-risk group was higher than that 
in the low-risk group with no significant, partly due to the 
small sample size. TP53 mutation frequency was evidently 
higher in high-risk group (frequency rate 42%) than low-
risk group (frequency rate 14%) according to our mutation 
results, suggesting more increases genomic instability and 
complicated major pathway signaling changes in HCC. 
Additionally, it was important to highlight that different 
microenvironment-based immune subtypes, based on gene 
profiling or signatures, and other molecular features, may 
help identify subgroups of patients more likely to benefit 
from specific therapies [54]. Some scholars have found that 
immune-excluded tumors in HCC were proposed to be pri-
marily resistant to ICIs [55]. IPS could predict the response 
to immunotherapy in cervical cancer and HCC. The predic-
tion of IPS has been demonstrated in different studies [56, 
57]. In the present study, we found low-risk group tended to 
have higher IPS-CTLA4, IPS-PD1/PD-L1/ PD-L2, and IPS-
PD1/PD-L1/PD-L2+CTLA4, implying that HCC patients 
with low-risk score could benefit more from immunotherapy 
than high-risk patients. Therefore, our signature was of great 
help to clinical immunotherapy decision.

However, there were some limitations in this study. Firstly, 
we did not explore the exact function of six costimulatory 
molecule genes in HCC. Thus, it was still necessary to clarify 
the mechanism of them in the future. Secondly, it was inevi-
table that there were limited clinical information for HCC 
patients in public datasets, so the values of the prognostic 
signature needed to be determined by experimental and pro-
spective studies. Moreover, the risk signature for evaluating 
the response to immunotherapy was restricted to costimula-
tory molecule genes and tumor immune microenvironment 
was highly heterogeneous. Therefore, the prognostic infor-
mation for HCC patients with immunotherapy were needed 
to validate the prediction power of our signature clinically.

Conclusion
In our study, we first elucidated the expression of costimu-
latory molecules for HCC patients, and constructed a six 
CMGs prognostic signature. The costimulatory molecular-
related signature could stratify patients into different subsets 
with adverse clinical outcomes. In addition, immunotherapy 
response prediction by our signature explained disparate 
effect on HCC patients. Consequently, we believed our 
research manifested the capacity of costimulatory molecules 
and provided clinicians with applicable treatment.
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