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Modulation of the tumour 
microenvironment in hepatocellular carcinoma 
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Abstract 

Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide. Tyrosine kinase inhibitors (TKIs) 
remain the backbone of systematic therapy for advanced hepatocellular carcinoma. Sorafenib and lenvatinib are 
currently approved as first-line therapeutic drugs, and regorafenib and cabozantinib are applied as second-line treat-
ments. With inhibition of angiogenesis as the main target, TKIs exert a profound effect on the tumour microenviron-
ment (TME). The TME is a complex mixture of cellular and noncellular components surrounding the tumour mass, and 
is associated with tumour progression partially through the epithelial–mesenchymal transition. Specifically, the TME 
of HCC is characterized by profound extracellular matrix remodelling and an immunosuppressive microenvironment. 
The purpose of this review is to provide a summary of TME remodelling mediated by four Food and Drug Adminis-
tration approved TKIs in HCC and thus summarize the rationale and potential targets for combination therapy. The 
modulatory effect of TKIs on the TME of HCC was reported to enhance the antitumour effect of TKIs through pyrop-
tosis of macrophages and subsequent natural killer cell activation, T cell activation, regulatory T cell reduction in HCC. 
Meanwhile, TKIs also induce drug resistance via M2 polarization and accumulation, recruitment of tumour-associated 
neutrophils, and induction of the epithelial–mesenchymal transition. In conclusion, the effect of TKIs on TME can 
enhance its antitumour effect, but might also partially contribute to the drug resistance that hinders the progression 
of TKIs as treatment for HCC. Additionally, the effect of TKIs also provides the rationale for combination therapy, includ-
ing combining TKIs with immune checkpoint inhibitors, to facilitate increased drug efficacy of TKIs.
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Background
Hepatocellular carcinoma (HCC) remains the third lead-
ing cause of cancer deaths, but the mechanisms under-
lying tumour initiation and progression are not yet fully 
understood [1, 2]. Current therapy for HCC mainly 
includes surgery and liver transplantation, percutane-
ous ablation, transcatheter arterial chemoembolization, 
and systematic treatment. Although surgery and liver 
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transplantation are curative treatment options produc-
ing significant survival benefits, they can only be applied 
to the well-selected candidates [3, 4]. In addition, HCC is 
usually diagnosed at an advanced stage due to rapid pro-
gression and a high metastatic rate [5, 6]. Consideration 
of comorbidities, functional status, and tumour burden 
limit the use of resection, liver transplantation, percuta-
neous ablation and transcatheter arterial chemoemboli-
zation [7]. In this context, the development of systematic 
therapy for patients with advanced-stage HCC is urgently 
needed.

The application of multitarget tyrosine kinase inhibi-
tors (TKIs) is significant progress in the systematic treat-
ment of HCC, especially for patients with advanced 
disease [8]. TKIs bind to tyrosine kinase receptors and 
activate intracellular signalling via autophosphoryla-
tion of the cytoplasmic domains, leading to subsequent 
antiangiogenic effects [9]. Tumorigenesis is associated 
with genetic dysregulation involved in a variety of pro-
cesses, including angiogenesis [10]. Astonishing outpour-
ing of evidence over the previous 50  years has shown 
that tumour angiogenesis is required for tumour pro-
gression and proliferation [11–13]. Tumour angiogenesis 
has been revealed as an uncontrollable and unorganized 
process with a balance shifting towards a proangiogenic 
milieu to maintain angiogenesis [14, 15]. Multiple proan-
giogenic drivers are involved in angiogenesis, including 
vascular endothelial growth factor (VEGF), fibroblast 
growth factor (FGF)-2, platelet-derived growth factor 
(PDGF), transforming growth factors (TGFs)-beta and 
alpha, epidermal growth factors (EGF), angiopoietins, 
and hypoxia-inducible factor (HIF)-1 [15]. Among them, 

VEGF has been shown to be essential for angiogenesis 
[16]. To date, the Food and Drug Administration (FDA) 
has approved four TKIs including sorafenib, lenvatinib, 
regorafenib, and cabozantinib [17–21]. Sorafenib and 
lenvatinib are approved as first-line treatments, and 
cabozantinib and regorafenib are applied as second-line 
treatments [9, 22]. The details of other TKIs undergo-
ing clinical trials for advanced HCC patients as single 
agents are also presented (Table 1). Inhibition of vascular 
endothelial growth factor receptors (VEGFRs) serves as 
the common mechanism of TKIs, while each TKI pos-
sesses a unique profile (Fig. 1) [23].

Despite the promising future of TKIs shown in trials, 
the clinical outcomes of TKIs are limited, secondary to 
the high rate of drug resistance [24, 25]. Therefore, the 
mechanisms underlying the progression and metas-
tasis of HCC still require investigation. The tumour 
microenvironment (TME) has been shown to be asso-
ciated with drug resistance, indicating that the modi-
fication of tumour cells may be insufficient to improve 
therapeutic efficacy [26]. The TME is defined as a com-
plex mixture of cellular and noncellular compartments 
surrounding tumour mass that plays a pivotal role in 
hepatocarcinogenesis, tumour invasion, and tumour 
metastasis partially through the epithelial–mesenchy-
mal transition (EMT) [27, 28]. The cellular compartment 
includes hepatic stellate cells, fibroblasts, immune cells, 
and endothelial cells, while the noncellular compartment 
consists of extracellular matrix proteins, growth factors, 
proteolytic enzymes, and inflammatory cytokines [28]. 
Specifically, the tumour microenvironment of HCC has 
unique characteristics including extensive extracellular 

Table 1  Ongoing clinical trials of other TKIs as single agents for HCC

PFS progression free survival, DFS disease free survival, RECIST response evaluation criteria in solid tumours, CTCAE common terminology criteria for adverse events, 
TEAT treatment emergent adverse events, NCI national cancer institute, AE adverse events, SAE serious adverse events

Trial Identifier Study arm Phase Enrolment Primary endpoint State

N/A NCT02508467 Fisogatinib (BLU-554) 1 150 Safety Active, not recruiting

NTAHCC NCT03950518 Anlotinib Hydrochloride; Anlo-
tinib Hydrochloride Capsules; 
Anlotinib;Levamisole

3 300 PFS Recruiting

N/A NCT04985136 Camrelizumab + rivoceranib; 
sorafenib; regorafenib; rivoceranib

3 482 Stage I: ORR; stage II: OS Enrolling by invitation

N/A NCT03945799 Anlotinib hydrochloride 1/2 60 DFS Recruiting

N/A NCT01737827 INC280 2 38 Time to progression per RECIST 1.1 Active, not recruiting

JAKaL NCT04358185 Itacitinib 1 25 AE; ORR Recruiting

N/A NCT03582618 Foslinanib + sorafenib 2 40 ORR Active, not recruiting

N/A NCT03941873 Sitravatinib; sitravatinib + tislelizumab 1/2 111 AE; SAE per NCI-CTCAE 5.0 Active, not recruiting

AFHC NCT04954521 Anlotinib N/A 200 PFS Recruiting

N/A NCT05070247 TAK-500 1 106 TEAE grades per NCI CTCAE 5.0; AE; 
SAE

Not yet recruiting

N/A NCT03195699 TTI-101 1 60 Safety Recruiting
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matrix and immunosuppressive microenvironment [29–
31]. The TME was shown to account for the therapeutic 
effect of TKIs in HCC, but might also induce resistance 
attenuating the efficacy. For instance, sorafenib was 
shown to activate natural killer (NK) cells and promote 
tumour regression, whereas other researchers observed 
the induction of immunosuppression through increas-
ing the number of regulatory T (Treg) cells and Tumour-
associated neutrophils (TANs), as well as subsequent 
EMT induction leading to drug resistance [32–34]. Sum-
marizing the effects of TKIs on the TME of HCC may 
assist in improving our understanding of the resistance-
inducing mechanism and antitumour effect of TKIs.

Additionally, since TKI monotherapy showed lim-
ited clinical benefits, combination therapy has been 
extensively investigated to counteract the intrinsic 
resistance induced by TKIs through enhancing the thera-
peutic efficacy. The representative combination therapy 
is TKIs and immunotherapy. The past decade has wit-
nessed the development of immunotherapy for HCC. 

Anti-programmed cell death ligand 1 (anti-PD-1) anti-
bodies have generated impressive outcomes and have 
been approved as second-line therapies, but the clinical 
benefits generated are limited due to a low response rate 
and drug resistance. In patients with advanced HCC, 
nivolumab, an anti-PD-1 agent, produced an objec-
tive response rate (ORR) of 20% in the dose expansion 
phase of a phase 1/2 clinical trial treating 214 patients 
with 3  mg/kg nivolumab. Nineteen percent of patients 
were reported to present grade 3/4 treatment-related 
adverse events, indicating a manageable safety profile of 
nivolumab [35]. Another anti-PD-L1 agent, pembroli-
zumab produced an ORR of 17% in the phase 1/2 Key-
note-224 trial that treated 104 eligible patients and was 
reported to induce serious adverse effects in 15% of 
patients, with the most common adverse effect being 
increased level of aspartate aminotransferase (7%) [36]. 
The latest progress has shed light on combination ther-
apy to increase the ORR and overall survival (OS) of 
immune checkpoint inhibitors (ICI) in advanced HCC. 

Fig. 1  Elucidation of the mechanism of action of TKIs. Sorafenib, lenvatinib, regorafenib, and lenvatinib exert the antitumour activity through 
blockage of specific targets, subsequently inhibiting of subsequent signalling pathways and eventually inhibiting the proliferation, angiogenesis, 
migration and survival of tumour cells
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The combination of atezolizumab and an anti-VEGF anti-
body, bevacizumab was recently approved by the FDA 
as first-line therapy for unresectable HCC based on an 
improved progress-free survival and a superior OS [37]. 
The updated data has revealed a median overall sur-
vival of 15.6  months in the Atezo + Bev arm compared 
to 13.4  months in the sorafenib arm (hazard ratio 0.66, 
95% confidence intervals 0.52–0.85; P = 0.0009) and a 
superior ORR (29.8%) [38]. Based on observations of the 
immunomodulatory effect of TKSs on the TME, investi-
gations of the combination of TKIs with immunotherapy 
have become one of the future directions [39–41].

Hence, a deeper understanding of the correlation 
between TKIs and the TME enables the elucidation of the 
mechanism underlying the antitumour effect of TKIs on 
HCC, and possibly provides insights into targets that may 
reduce drug resistance. In this review, we described the 
features of the TME of HCC, indicating its role in tumour 
progression, and then summarized the TME remodelling 
effect induced by each TKI in detail. Additionally, the 
rationale for and current state of the combination of TKIs 
with anti-PD1 antibodies were highlighted in this part to 
provide an integrated understanding. We also discussed 
the progress in therapeutic approaches to combine TKIs 
with other agents related to TKI-induced TME remod-
elling. Furthermore, we provided insights into future 
directions.

The TME of HCC and its role in tumour progression
Distinguished from other malignancies, the TME of HCC 
is characterized by profound extracellular matrix remod-
elling and immunosuppressive microenvironment [29–
31]. As the inflammatory state contributes significantly to 
tumorigenesis in HCC, the immune infiltration in HCC 
is abundant. NK cells and cytotoxic T cells are involved 
in the cytotoxic effect [42]. The level of lymphocyte infil-
tration is associated with recurrence of HCC follow-
ing liver transplantation [43]. However, other abundant 
immunosuppressive cells including tumour-associated 
macrophages (TAMs), Tregs, and myeloid-derived sup-
pressive cells (MDSCs) lead to immune evasion. The 
nonimmune compartment, including cancer-associated 
fibroblasts (CAFs) and endothelial cells, forms a dynamic 
network with immune cells, which significantly amplifies 
the progression and chemoresistance of HCC through 
the induction of an immunosuppressive microenvi-
ronment (Fig.  2) [44–46]. Additionally, inhibitory pro-
grammed cell death protein 1 (PD-L1) molecules and 
PD-1 upregulation on CD8+ cytotoxic cells are observed 
in patients with HCC [47, 48]. Characteristics of the 
TME in HCC provide significance for investigating TME 
remodelling caused by therapy.

TKIs‑induced TME remodeling
We have searched the PubMed and Web of Science data-
bases, and the strategies were provided (Additional file 1: 
Fig. S1). TME remodeling triggered by TKIs was catego-
rized according to the remodelled immune cells. The sub-
sequent effect on the EMT was also summarized. As the 
interaction between TKIs and TME provides a ration-
ale for their combination with immunotherapy, includ-
ing anti-PD-1 therapy, the rationale and current stage 
will also be mentioned in this section to provide a better 
understanding.

Sorafenib
Since no effective therapy for advanced HCC was avail-
able before its application, sorafenib is regarded as the 
breakthrough point in the therapy of advanced HCC [24]. 
It has been approved by the FDA based on the results of 
a phase 3, double-blind clinical trial that involved 602 
participants and generated a 3 month longer median sur-
vival (hazard ratio 0.69, 95% confidence intervals 0.55–
0.87; P < 0.001) (NCT00105443) [24]. Sorafenib achieves 
its therapeutic effect by suppressing angiogenesis mainly 
through the inhibition of VEGFR1, 2, and 3. Meanwhile, 
it also inhibits the Ras/Raf/MEK/ERK signalling path-
ways, PDGFR-β, and hepatocyte factor receptor (c-KIT) 
(Fig. 1) [49]. The adverse effects of sorafenib include con-
stitutional symptoms, dermatological events, gastrointes-
tinal symptoms, liver dysfunction, and pain [24, 50]. The 
most frequent side effects observed in the clinic are diar-
rhoea and hand-foot skin reaction [18, 24, 50]. In addi-
tion to the aforementioned effects, an understanding of 
its effect on TME modulation might provide some extra 
insights for future research.

Sorafenib has been reported to interact with immune 
cells and induce an immunomodulatory effect, yet the 
modulatory effect of sorafenib remains to be compre-
hensively clarified (Fig.  3). Among them, the interac-
tion between sorafenib and NK cells was proposed to 
be significant. NK cells serve as the key effectors in 
tumour immunosurveillance. Strategies targeting NK 
cells include natural-killer group 2, member D (NKG2D) 
ligands, NK cell engagers, NKG2A, and adoptive NK 
cell strategies [51]. Among them, NKG2D is expressed 
by NK cells and activates subsequent cytotoxic lympho-
cytes when binding to ligands, including major histo-
compatibility complex class I chain-related protein A and 
B (MICA, and MICB), on target cells [52]. Shedding of 
endogenous MICA and MICB, which plays an important 
role in immune evasion, largely depends on a disintegrin 
and metalloproteinase 9, 10 and 17 (ADAM9, ADAM10, 
and ADAM17), as well as matrix metalloprotease (MMP) 
14 [53–55].
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Sorafenib was reported to activate NK cells mainly 
through regulating the shedding of MICA, interact-
ing with macrophages, and inhibiting androgen recep-
tors. Sorafenib could inhibit the expression of ADAM9, 
a metalloproteinase that was shown to inhibit the 
shedding of MICA, subsequently increasing the NK 
sensitivity of HCC cells [56]. Activation of NK cells fol-
lowing sorafenib treatment was also suggested to be 
associated with the interaction between macrophages 
and NK cells. Sorafenib administration activated NK 
cells in C57BL/6 wildtype and tumour-bearing mice. In 
an in vitro model, NK cells were activated by sorafenib-
treated macrophages in a dose-dependent manner and 
showed increased degranulation and secretion of inter-
feron (IFN)-γ. The activation of NK cells by sorafenib-
treated macrophages was shown to depend on nuclear 
factor-kappa B (NF-κB), IL12, and IL18 [57]. A sub-
sequent study elucidated that sorafenib administra-
tion led to the pyroptosis of macrophages, which then 
activated NK cells and resulted in HCC cell death [58]. 

Consistently, decreased expression of the major histo-
compatibility complex class I has been reported in the 
sorafenib-treated HCC cells. This chance hinders rec-
ognition by T cells and favours the NK cells-mediated 
response [58]. Moreover, the androgen receptor was 
documented to suppress IL-12A expression and inhibit 
the cytotoxic effect of NK cells against cancer cells. 
Sorafenib could enhance IL-12A signals through andro-
gen receptor inhibition [59]. These results indicated 
that the therapeutic efficacy partially depended on the 
crosstalk between sorafenib and NK cells and provide a 
rationale to improve drug efficacy via combing NK cell-
based therapy with sorafenib. In contrast, some studies 
reported that sorafenib could inhibit the proliferation 
and function of NK cells [60]. For instance, sorafenib 
was stated to dose- and time-dependently decrease 
the number of NK cells, downregulate the stimulatory 
receptor CD69 in NK cells, inhibit NK cell prolifera-
tion, decrease NK cell cytotoxicity by suppressing the 
pERK1/2 pathway and blocking the PI3K/AKT pathway 

Fig. 2  Cell–cell interactions within the TME of HCC that promote tumour progression. The TME of HCC is composed of diverse cellular 
compartments that play roles in tumour progression through cellular interactions. Suppressive immune subsets infiltration, including MDSCs, TAMs, 
and Tregs and cellular interaction contribute to immune evasion. The nonimmune compartment, including CAFs and endothelial cells, forms a 
dynamic network with immune cells, which significantly amplifies the progression of HCC. Among the molecules secreted by CAFs, MMPs, FOXQ1, 
and CCL2 are associated with tumour metastasis. HGF is associated with EMT, tumour metastasis, migration, and invasion. TGF-β is suggested to 
play an immunosuppressive role, promote tumour proliferation, and regulate EMT. IL-8 is shown to promote HCC invasion. COX-2 is indicated to 
contribute to tumour angiogenesis and tumour cell proliferation
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[61–63]. Therefore, the optimized time and dosage 
must be determined when combining NK cell therapy 
with sorafenib.

The immunomodulatory effect of sorafenib on TAMs 
is quite controversial. Accumulating evidence has 
strengthened the idea that TAMs are generally clas-
sified into the pro-inflammatory subset (M1) and the 
anti-inflammatory subset (M2). Macrophage polariza-
tion is the activation state of macrophages tightly regu-
lated by the TME and metabolism [64–66]. The drug 
efficacy of sorafenib was shown to partially depend on 
its effect on TAMs through miR-101 inhibition, reduced 
VEGF expression, macrophage sensitization, and pyrop-
tosis induction [57, 67, 68]. Transfection of miR-101 
has been shown to reduce dual specificity phosphatase 
1 expression and cause subsequent down-regulation of 
ERK1/2, p38, and JNK. Sorafenib was reported to inhibit 
miR-101 expression and reduce the secretion of TGF-β 
and CD206 in M2, indicating a shift to the M1 polar-
ized state [67]. As aforesaid, sorafenib could also sensi-
tize macrophages and induce pyroptosis of macrophages 
and pro-inflammatory cytokines (IL6, TNF-α, and IL12) 
secretion, leading to subsequent NK cell activation [57, 
58]. However, an in  vitro study revealed that sorafenib 
could increase PD-L1 expression in tumour stroma and 
induce M2 accumulation through upregulating stromal 

cell-derived 1 alpha (SDF1α) [33]. Sorafenib was subse-
quently shown to induce M2 polarization in vivo but not 
in  vitro. IFN-α was also proposed to shift the M2-like 
polarization of TAMs [69]. Additionally, sorafenib was 
shown to increase the infiltration of macrophages and 
Treg cells through the HIF-α/NF-κB pathway [70]. A 
review article compared the results of different studies 
examining the impact of sorafenib on macrophage in the 
TME. It raised the consideration that the unclear func-
tional definition of TAMs, different dosages of sorafenib, 
and the impact of in  vivo and in  vitro studies may be 
responsible for discrepancy, as macrophage may experi-
ence dynamic changes after exposure to cytokines [23, 
71, 72]. Therefore, the precent review described the effect 
of sorafenib on TAM based on the dosage and the model 
used (Table 2). In contrast to the results of the published 
review mentioned above, the cancer cell type is restricted 
to HCC. These results mainly suggested that sorafenib 
promoted the pro-inflammatory cytokines secretion in 
macrophages, which partially explained its antitumour 
effect, but its effect on altering polarization remained 
controversial.

The interplay between TANs and sorafenib is also worth 
noting. TANs have been suggested to exert protumour 
effect, and TANs recruit Treg cells and macrophages 
via CCL2 and CCL17 and their receptors. Sorafenib was 

Fig. 3  Immunomodulatory effect of sorafenib on HCC. Sorafenib was shown to activate NK cells by regulating the shedding of major 
histocompatibility complex class I-related chain A (MICA), interacting with macrophages, and inhibiting androgen receptor, but was also shown 
to inhibit NK cell proliferation through the pERK1/2 pathway. Its effect on altering macrophage polarization from M2 to M1 remains controversial. 
CD4+ and CD8+ T cell infiltration remained unchanged after sorafenib treatment. Moreover, sorafenib was shown to increase the numbers of 
TANs and the levels of CCL2 and CCL17, leading to a subsequent increase in Treg cell infiltration, but other studies reported that sorafenib inhibited 
the recruitment of Treg cells in HCC. TAM polarization and increased infiltration of TAMs and TANs were proposed to be induced by hypoxia after 
sorafenib treatment
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shown to increase the numbers of TANs and the levels of 
CCL2 and CCL17 in a mouse HCC model [73]. Regard-
ing Treg cells, on the one hand, recruitment of Treg cells 
was observed through an increased number of TANs 
and increased expression of CCL2 and CCL17 [73]. On 
the other hand, other studies conducted in HCC murine 
models revealed that sorafenib inhibited the recruit-
ment of Treg cells in HCC [74, 75]. In the case of T cells, 
although a study showed an increase of CD4+ and CD8+ 
T cell infiltration in murine models in other malignancies 
after treatment with sorafenib, a recent study reported 
that the infiltration of CD4+ and CD8+ T-cells remained 
constant in HCC models [58, 76]. This finding is consist-
ent with the observation that T cells play no role in the 
therapeutic effect of sorafenib on HCC [57].

Despite the immunomodulatory effect, sorafenib also 
induces TME remodelling through interacting with 
hepatic stellate cells (HSCs). HSCs are mainly responsi-
ble for extracellular matrix production and deposition, 
and have been reported to stimulate HCC cell prolifera-
tion and vascularization [77]. In human HSCs treated 
with different concentrations of sorafenib, sorafenib was 
shown to dosage dependently inhibit ERK1/ERK2 and 
Akt phosphorylation, suppress the PDGF signalling path-
way, and down-regulated the secretion of PDGF-BB and 
TGF-β1 from HSCs. As a result, the invasion and pro-
liferation of HCC cells were inhibited [78]. Nonetheless, 
after sorafenib administration in mouse model of HCC, 
the survival of HSCs increased through the upregulation 
of stromal-derived factor 1 alpha (SDF-1α) expression 
in both tumour and stromal cells and activation of the 
SDF-1α/C-X-C receptor type 4 (CXCR4) pathway [79]. 
Meanwhile, MAPK activation was reported in HSCs and 

promoted the myofibroblast differentiation [80]. More 
evidence is still needed to verify the effect.

It is well established that the cellular interaction within 
the TME plays a pivotal role in the EMT. The EMT, the 
process characterized by a loss of apical-basal polarity 
and cell–cell adhesion in epithelial cells and a transition 
to mesenchymal cells, plays a pivotal role in malignant 
progression and drug resistance [81]. It is triggered by 
mitogen-activated protein kinase (MAPK), mTOR, and 
Wnt signalling [82]. Snail homologue 1 (SNAI1) and snail 
homologue 2 (SNAI2) have also been recognized as key 
inducers of the EMT, which predict a poor prognosis of 
HCC [83]. TGF-β, FGF, IL-6, hepatocyte growth factor, 
insulin-like growth factor-1, and epidermal growth factor 
derived from CAFs and immune cells in the TME were 
also identified as EMT inducers [84–86]. TGF-β, hepato-
cyte growth factor, epidermal growth factor, and FGF was 
shown to induce SNAIL production [84, 87, 88]. Specifi-
cally, TGF-β contributes to sorafenib resistance in HCC 
[89]. Sorafenib was postulated to inhibit the TGF-medi-
ated EMT possibly via inhibition of TGF-β and MAPK 
signalling, and SNAI1 expression in HCC, thus inducing 
antitumour effects [83, 90]. Blockade of signal transducer 
and activator of transcription 3 (STAT3) by sorafenib was 
also reported (Fig. 4) [91, 92]. According to one study, the 
inhibition of TGF-β was achieved by inducing degrada-
tion of cell-surface TβR-II and caveolae/lipid raft-medi-
ated internalization [93]. The underlying mechanism of 
the induction of the EMT during resistance acquisition 
following sorafenib administration was also suspected 
to be associated with abnormal miRNA expression [94]. 
However, long-term exposure to sorafenib was shown to 
cause drug resistance with EMT [95]. Sorafenib was also 

Table 2  Current results for the effect of sorafenib on TAMs in HCC

Model Dosage Conclusion References

Murine HCC cell line HCA-1 50 mg/kg Sorafenib induces polarization towards a 
pro-immunosuppressive environment and M2 
accumulation

[33]

Macrophages from human HCC tissue 1.2 μg/ml Sorafenib revert the immunosuppressive effect of 
TAMs

[57]

In vivo: iAST mice 90 mg/kg
60 mg/kg
30 mg/kg
10 mg/kg

Sorafenib upregulates proinflammatory cytokine 
secretion and induce pyroptosis in macrophage

[58]

Monocyte-derived M1 and M2 macrophage 
cultures

1.2 μg/ml 2.5 μg/ml 5.0 μg/ml Sorafenib revert the alternative macrophage 
polarization

[67]

In vitro: CSF-1 (M1) or GMCSF (M2) maturated 
monocyte-derived macrophages
In vivo: patients with confirmed HCC

In vitro: 1.2 μg/ml
2.5 μg/ml 5.0 μg/ml
In vivo: 800 mg/day

Sorafenib revert the alternative macrophage 
polarization, shifting the phenotype towards the 
M1-polarized state in vitro, and partially inhibits 
macrophage activation in vivo

[68]

C57BL/6 mice bearing tumour of approximately 
50 mm3 in volume

30 mg/kg Sorafenib induces the macrophage polarization 
in vivo but not in vitro

[69]
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shown to promote the EMT, upregulate snail expression, 
and activate PI3K/AKT signalling in vitro [96]. Moreover, 
sorafenib increased the IL-6 expression in HCC cells and 
promoted metastasis and EMT progression in HCC cells. 
Knockdown of IL-6 could significantly decrease sorafenib 
resistance in HCC cells [97]. IL-6 is one of the pro-
inflammatory cytokines secreted by TAMs, and sorafenib 
was shown to induce IL-6 secretion by TAMs [57, 58]. A 
reasonable hypothesis is that the regulation of sorafenib 
on TAM contributes to induction of EMT through IL-6 
expression. The results mentioned above may suggest 
that the impact of sorafenib on EMT experience changes 
with different regimens and dosing. Current evidence has 
suggested the possibility of overcoming sorafenib sensi-
tivity by targeting processes involved in the EMT.

An important mechanism accounting for the resist-
ance-inducing effect described above is hypoxia 
caused by decreased vascularization. Hypoxia-medi-
ated TME remodelling usually depends on HIF-driven 

transcriptional responses [98]. The HIF family com-
prises of HIF-1, HIF-2, and HIF-3. The HIF-α subunits 
of HIF-1 and HIF-2 are oxygen-sensitive and correlate 
with tumour progression [99]. Hypoxia was shown to 
correlate with the EMT and is related to the formation 
of the immunosuppressive microenvironment through 
not only homing bone marrow-derived cells (BMDCs), 
TAMs, and Tregs but also shaping and inducing specific 
macrophage phenotypes. Specifically, hypoxia was shown 
to induce M2 polarization and educate PBNs into TANs 
to promote malignant progression [33, 100, 101]. Sev-
eral studies concluded that sorafenib could induce HIF-α 
accumulation and cause subsequent activation of resist-
ant-inducing pathways. NF-κB activation and increased 
stromal-derived factor 1 alpha (SDF-1α) expression 
were also observed [79]. Further research based on pho-
toacoustic imaging showed that sorafenib induced a 
decrease in oxygen saturation and an increase in HIF-α 
levels [102]. Although a previous study demonstrated 

Fig. 4  Effect of sorafenib and regorafenib on the EMT in HCC. Several signaling pathways contribute to EMT. Among them, sorafenib was shown to 
degrade the transforming growth-factor beta receptor 2 (TGFβ2), which further activates SMAD2 and SMAD3 and subsequently induces the EMT. 
Sorafenib was also suggested to inhibit STAT3 and SANI1 expression. Regorafenib has been shown to obstruct the progression of the EMT through 
STAT3 inhibition and a decrease in the expression of ID1 and SNAI1 in HCC
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that HIF-α was dose-dependently inhibited by sorafenib, 
recent evidence supports the hypothesis that sorafenib 
induces HIF-α accumulation, which partially accounts 
for the anti-angiogenic effect and resistance-inducing 
mechanism of sorafenib [79, 102, 103].

Lenvatinib
Lenvatinib is approved as a first-line TKI based on a 
phase 3 clinical trial conducted among 954 patients with 
unresectable HCC. With a Median OS of 13.6 months for 
patients in the lenvatinib arm (compared to 12.3 months 
for patients in the sorafenib arm) (hazard ratio 0.92, 
95% confidence intervals 0.79–1.06), lenvatinib was 
determined to provide an overall survival benefit 
that is not inferior to sorafenib in patients with HCC 
(NCT01761266) [18]. The most common adverse effects 
were hypertension, diarrhea, appetite decline, and loss of 
weight in patients treated with lenvatinib [18]. Similar to 
sorafenib, lenvatinib is also a multitarget TKI that targets 
VEGFR1-3, TIE2, KIT, RET, RAF-1, BRAF, BRAFV600E, 
PDGFR, and FGFR1-4 [104–107]. Compared to 
sorafenib, lenvatinib exerts a more potent effect on VEG-
FRs and FGFRs, the inhibition of which might improve 
immunity due to the immunosuppressive role of VEGFRs 
and FGFRs [108]. Hence, the current investigations of the 
effect of lenvatinib on the TME in HCC mainly focus on 
the immune microenvironment (Fig. 5).

In addition to its antiangiogenic effect, the antitumour 
effect of lenvatinib was observed to partially depend 

on the existence of CD8+ T cells, TAM modulation, a 
reduced Treg proportion, and increased IFN-γ secre-
tion by cytotoxic T cells in murine HCC models [108, 
109]. Notably, a study conducted in a murine HCC 
model reported that CD8+ T cell depletion signifi-
cantly decreased the potency of lenvatinib, but induced 
no significant change in the efficacy of sorafenib [108]. 
Moreover, lenvatinib was also observed to decrease the 
fractions of macrophage and monocyte populations but 
increase CD8+ T cell populations [108]. A recent study 
further revealed that the antitumour effect of lenvatinib 
in HCC mainly depended on its antiangiogenic effect 
and its modulation of TAMs. Lenvatinib was shown to 
decrease the population of TAMs in HCC while increas-
ing the populations of NK and cytotoxic cells in a murine 
HCC BNL model [109]. Additionally, IFN-γ and gran-
zyme B secretion from cytotoxic T cells increased [109]. 
In consistence, a study obtaining peripheral immune cells 
and cytokine profiles of patients with HCC reported that 
the administration of lenvatinib reduced the numbers 
of T helper cells and Treg cells, significantly increased 
the numbers of cytotoxic T cells, increased IL-2, IFN-γ, 
and IL-5 levels, and decreased IL-6, IL-10, TNF-α, and 
TNF-β levels, suggesting that further investigations into 
the immunomodulatory effect of lenvatinib on TME are 
needed [110].

Interestingly, overexpression of PD-1 induced exhaus-
tion of activated CD8+ cells, and inhibition of PD-1 
has been approved as a third-line therapy for advanced 

Fig. 5  Modulatory effects of regorafenib and lenvatinib on the HCC TME. Regorafenib was shown to revert M2 to M1 polarization, activate 
TANs, and inhibit EMT, while its effect on activating NK cells required more evidence. Lenvatinib decreased the population of TAMs in HCC while 
increasing the populations of NK, and cytotoxic T cells



Page 10 of 18Chen et al. Cancer Cell International           (2022) 22:73 

HCC in 2017 [111, 112]. The reliance of lenvatinib on 
the existence of CD8+ T cells has shed light on combin-
ing pembrolizumab or nivolumab with lenvatinib [108, 
113]. Several animal experiments revealed that the com-
bination of lenvatinib and anti-PD-1 therapy amplified 
the antitumour effect on HCC, and amplification was 
presumed to be achieved by exerting immunomodula-
tion through a reduction in TAM infiltration, synergistic 
modulation on T cells, reversion of immunosuppressive 
effect caused by anti-PD-1 therapy, and vascular normali-
zation [109, 114, 115]. Long-term administration of PD-1 
in patients was reported to increase of VEGF and FGF 
expression, and lenvatinib exerts a more potent effect on 
VEGFRs and FGFRs compared to sorafenib as mentioned 
[108, 114]. In this context, reversion of the immunosup-
pressive effect caused by anti-PD-1 was proposed to be 
achieved by upregulating PD-1, cytotoxic T lympho-
cyte-associated protein-4, and TIM-3 on T cells, down-
regulating IFN-γ and granzyme B, and inhibiting T cell 
cytotoxicity [114]. The immunomodulation exerted by 
the combination of lenvatinib and anti-PD-1 was recently 
proven to be associated with TGF-β inhibition [115].

Based on these results, clinical trials combing anti-
PD-1 therapy with lenvatinib are ongoing. In patients 
with advanced gastric cancer, a single arm, phase 2 trial 
reported an ORR of 69% (NCT03609359), indicating 
potential in HCC therapy [116]. For patients with unre-
sectable HCC, an open-label, multicentre, phase Ib trial 
has shown that combining lenvatinib with pembroli-
zumab provided promising antitumour activity with a 
tolerable safety profile. The median overall survival was 
22 months and the objective response rate was reported 
to be 44.8% in the group receiving lenvatinib and pem-
brolizumab (compared with 24.1% for patients in the len-
vatinib arm of the REFLECT trial) (NCT03006926) [117]. 
A multicentre, double-blind, phase 3 trial that further 
investigates this combination is ongoing (NCT03713593).

Regorafenib
Regorafenib, a recently approved second-line TKI for 
patients with HCC who previously received sorafenib, 
has been proven to significantly prolong the time to 
progression in a clinical trial engaging 573 patients 
with HCC progression following sorafenib treatment 
(NCT01774344) [19]. The adverse events were reported 
to be hypertension, hand-foot skin reaction, fatigue, and 
diarrhoea [19]. With one hydrogen atom replaced by a 
fluorine atom, regorafenib was reported to have higher 
potency when compared to sorafenib [118, 119]. Target-
ing VEGFR, FGFR, PDGFRA, KIT, and RET, regorafenib 
also inhibits the RAF/MEK/ERK pathway [120]. ERK 
and STAT3 signalling are EMT-inducing pathways in 
HCC. The anti-HCC effect of regorafenib was shown to 

be partially induced by p-STAT3-related signaling inhi-
bition through apoptosis [121]. Compared to sorafenib, 
regorafenib was also demonstrated to exhibit more 
potent efficacy in STAT3 inhibition through a mecha-
nism mediated by SHP-1 [71].

Regorafenib was shown to modulate macrophage 
polarization, induce T cell activation, and mediate NK 
cell function, which enhanced its antitumour effects 
(Fig. 5). Reversion of M2 polarization in multiple synge-
neic liver cancer models was achieved by suppressing the 
p38 kinase/Creb1/Klf4 axis. Interestingly, the efficacy of 
adoptively transferred antigen-specific T cells increased 
after treatment of regorafenib, suggesting the poten-
tial for combination therapy [122]. Another recent find-
ing demonstrated that regorafenib treatment inhibited 
STAT3 and mediated a subsequent increase in CXCL10 
expression at both the transcript and protein levels in the 
murine model and human peripheral blood. CXCL10 is 
a ligand for CXCR3 that is expressed on tumour-infil-
trating lymphocytes and mediates CD8 T cell infiltration 
within tumour [123]. Moreover, the NK cell function is 
mediated by CD24 level, which is controlled by p-STAT3. 
As regorafenib downregulates the p-STAT3 signalling as 
mentioned above, it might enhance the antitumour effect 
of NK cells [124]. Regorafenib was also shown to inhibit 
the expression of MMP 9 as sorafenib did in liver cancer 
murine model, and thus inhibiting the shedding of MICA 
[125]. Additionally, in melanoma, the antitumour effect 
of NK cells is limited by the expression of HLA Class I. 
Regorafenib was reported to suppress HLA Class I-medi-
ated tumour progression, suggesting the possibility of a 
similar effect on HCC [126, 127]. Accumulating evidence 
suggested that regorafenib augments the efficacy of NK 
cells, but further studies are still needed to verify this 
effect.

Apart from the immune microenvironment, 
regorafenib has been shown to obstruct the progres-
sion of the EMT by inhibiting of ERK and STAT3 (Fig. 4) 
[128]. Another study proposed that regorafenib inhib-
its the EMT by suppressing inhibitor of differentiation 
1 (ID1) expression, which downregulates SNAI1 and 
promotes the EMT [129]. Research in colorectal cancer 
has described the inhibitory effect of regorafenib on the 
TGF-β1-induced EMT via enhancement of SHP-1 activ-
ity [130]. Interestingly, the effect of regorafenib on the 
EMT counteracts with sorafenib resistance induced by 
hepatocyte growth factor, suggesting the rationale for its 
application in sorafenib resistant patients [131].

Cabozantinib
Approved by FDA based on a clinical trial, cabozantinib 
achieved a median OS of 10.2  months in 470 patients 
with HCC (compared to 8  months in 237 patients who 
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received the placebo) (hazard ratio 0.76, 95% confi-
dence intervals 0.36–0.52; P = 0.0005) (NCT01908426) 
[20]. The side effects were reported to be hand-foot skin 
reaction, hypertension, increased level of aspartate ami-
notransferase, fatigue, and diarrohea [20]. Cabozantinib 
is a second-line TKI for HCC that targets VEGFR1-3, 
MET, AXL, and c-KIT. It was reported to exert its anti-
tumour effect mainly by inhibiting VEGFR and cellu-
lar-mesenchymal epithelial transition factor (c-MET). 
C-MET was proven to induce hepatocarcinoma initia-
tion in mice in cooperation with Wnt/β-catenin or Akt/
mTOR cascades [132, 133].

Cabozantinib was proposed to exert an immunomodu-
latory effect by stimulating the neutrophil infiltration and 
reducing the macrophage infiltration [134, 135]. Previ-
ous results from a PTEN/p53-deficient murine prostatic 
carcinoma model showed that the administration of 
cabozantinib amplified the secretion of neutrophil chem-
otactic factors, including CXCL12 and HMGB1, leading 
to neutrophil infiltration [134]. It was also observed to 
downregulate M1 macrophages to prevent bone metas-
tasis in prostate cancer cells, whereas it potentiated the 
growth of prostate carcinoma-associated fibroblasts 
at the same time [136]. In MC-38-CEA tumour cells 
derived from murine colon adenocarcinoma, cabozan-
tinib was observed to alter the cell subception in the 
immune microenvironment, reducing macrophage infil-
tration [135]. Although evidence has accumulated for 
other malignancies, a recent study of HCC indicated 
no significant alteration in immune cells was observed 
in both c-Met/β-catenin or Akt/c-Met murine models. 
Interestingly, the combination of cabozantinib with a 
PD-1 inhibitor increased the numbers of spleen CD3+ 
CD8+ and CD3+ CD4+ PD-1+ cells in Akt/c-Met 
mouse [137]. Notably, cabozantinib was shown to have a 
limited effect on the macrophages, tumour-infiltrating T 
cells, CAFs, and fibrosis, which differs from the hypoth-
esis proposed before the research [137]. The expression 
of PD-1 remained unchanged after cabozantinib treat-
ment, and combining cabozantinib with an anti-PD-
L1 antibody showed no increase in survival benefit in a 
nonclinical study [137]. However, a recent clinical trial 
reported that the combination of nivolumab, ipilimumab, 
and cabozantinib generated an ORR of 26% for patients 
with HCC (ORR = 17% in the nivolumab + cabozantinib 
arm), but the adverse events increased [138].

Combination therapy based on TKI‑induced TME 
remodelling: current state and future perspectives 
in advanced HCC
Although liver transplantation and liver regeneration 
are actively studied, systematic therapy is still commonly 
used in treating advanced HCC [139, 140]. TKIs remain 

the backbone for systematic treatment for advanced 
HCC, but toxicity, resistance, and relapse continuously 
hinder the clinical use of TKIs in HCC. TKIs are cur-
rently gradually being replaced by the combination of 
atezolizumab and bevacizumab. Accumulating evidence 
has indicated the promising future of remodelling the 
TME with combination therapy to overcome the TKI 
resistance of HCC. For instance, adding sorafenib to 
MnO2 with nanoparticles to alleviate hypoxia in the TME 
effectively overcomes sorafenib resistance [141]. Moreo-
ver, treatments targeting the EMT process plus sorafenib 
were also reported to enhance the clinical response 
compared to sorafenib alone [142]. SNAI1 and the pro-
teins that stabilize it were shown to be upregulated in 
sorafenib-resistant HCC cells. Knockdown of SNAI1 
and the proteins stabilizing SNAI1 restore sensitivity to 
sorafenib [143]. Combination therapy of sorafenib and 
strategies blocking the EMT, including SB431542 (TGF-β 
mediated EMT), valproic acid (anti-epileptic drug), cur-
cumin, thioredoxin inhibitors, urinastatin, anti-CDK1, 
ADAM17 inhibitors, C2-ceramide, ATM-inhibitors, anti-
human IL-17A monoclonal antibody, destruxin B, snail 
signalling inhibitors or IL‑6/STAT3 signalling inhibitors 
have shown potential as novel strategies to combat drug 
resistance through EMT downregulation [143–155]. 
Likewise, the combination of lenvatinib with c-MET 
inhibitors or histone deacetylase was also suggested 
to downregulate the EMT and improve the system-
atic therapeutic effect [156, 157]. Furthermore, a recent 
study conducted in the human cell line observed that the 
combination of the PI3K/mTOR inhibitor BEZ235 with 
regorafenib inhibited the expression of EMT-related pro-
teins namely Slug, MMP-9, MMP-2, and Vimentin [158]. 
The combination of regorafenib with Pin1 inhibitors that 
interact with EMT regulators has also been suggested as 
a potential strategy [159]. Nonetheless, randomized clini-
cal trials are still needed to test the therapeutic efficacy 
and safety profile.

TKIs induce immunomodulatory effects, and no 
overlap has been observed between the major toxicity 
profiles of TKIs and ICIs. Thus, a great rationale exists 
for the combination of TKIs and ICIs [160]. Theoreti-
cally, the efficacy of antiangiogenic treatment might 
also be augmented by ICI application through the relief 
of the immunosuppressive microenvironment, and 
TKIs may complement ICI regarding the low ORR of 
ICIs [161, 162]. Clinical trials conducted in patients 
with other malignancies, including metastatic renal cell 
carcinoma and melanoma, have shown a manageable 
toxic profile for the combination of TKIs and ICIs [163, 
164]. Exciting results have been generated in the other 
malignancies. A phase 3 trial of renal cell carcinoma 
showed that the combination of TKI (axitinib) with 
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pembrolizumab significantly prolongs overall survival 
and progression-free survival compared to sunitinib 
alone [165]. Combining lenvatinib with anti-PD1 as a 
treatment for advanced gastric cancer has also shown 
satisfactory results in a phase 2 clinical trial [166].

Regarding HCC, the outcomes of clinical trials com-
bining TKIs with immunotherapy differ for different 
TKIs. Clinical trials that combined 200  mg sorafenib 
bid (days 1–28) with 2.5  mg/kg bevacizumab (days 1 
and 15) were discontinued at phase 2 due to low effi-
cacy and excessive toxicity (NCT00867321) [167]. 
The immunosuppressive effect of sorafenib and the 
comparison of the profile between sorafenib and len-
vatinib might partially explain the failure of the com-
bination of sorafenib with PD-L1 [108]. In addition, 
unlike lenvatinib, which partially depends on T cells, 
the therapeutic effect of sorafenib was shown to be 
mainly mediated by macrophage and NK cell responses 
[57]. The interaction between NK cells and sorafenib 
may provide the rationale for the further combina-
tion of NK cell-based therapy with sorafenib (Fig.  3). 
Agents developed to target MICA and MICA B shed-
ding and increasing the NKG2D ligands expression 
include matrix metalloproteases, antibodies target-
ing the MICA/B α3 domain, and histone deacetylase 
inhibitors [168, 169]. NK cell therapy ongoing trials for 
HCC includes allogenic NK therapy (NCT04162158), 
adoptive transfer of iNKT cells (NCT04011033), FATE-
NK100 (NCT03319459), and FT500 (NCT03841110, 
NCT04106167). Their combination with sorafenib still 
needs verification. Targeting the androgen receptor 
that is involved in the regulation of sorafenib on the NK 
cells might also act as a novel therapeutic strategy in 
synergistic with sorafenib.

For the other TKIs listed, recent research has shown a 
promising future for combination strategies. The com-
bination of ICIs with lenvatinib or cabozantinib in HCC 
has shown promising results [116, 138]. Currently, many 
ongoing clinical trials focuses on the combination of len-
vatinib with other anti-PD-1 agents including toripali-
mab (NCT04523493), camrelizumab (NCT04443309), 
and HX008 (NCT04741165), and a summary of ongoing 
trials up to 2020 has been reported by Huang et al. [170]. 
TME remodelling induced by lenvatinib has provided the 
rationale for its combination with immunotherapy, while 
the results for cabozantinib remain unclear. Trials inves-
tigating the combination of immunotherapy with other 
TKIs including anlotinib (NCT04172571) and apatinib 
(NCT03764293) are also ongoing. Evidence for TME 
remodeling by other TKIs is still limited. Meanwhile, the 
fact that regorafenib was shown to enhance the efficacy 
of adoptively transferred T cells is also worth noting for 
future progress.

Conclusion
This review outlined the modulation of the TME of HCC 
by TKIs. The microenvironment of HCC is characterized 
by immunosuppressive microenvironment and profound 
extracellular matrix remolding. Currently, four TKIs are 
approved by FDA as HCC therapy, the other TKIs ongo-
ing trials are also described in the review. Based on cur-
rent evidence, the effect of sorafenib on the TME of HCC 
remains controversial. Generally, sorafenib was shown 
to activate NK cells by regulating the shedding of MICA, 
interacting with macrophages, and inhibiting androgen 
receptors. Sorafenib was also shown to interact with 
TAMs, cytotoxic T cells, Tregs, and HSCs in HCC. Len-
vatinib, regorafenib, and cabozantinib also exert immu-
nomodulatory effects, contributing to the rationale for 
combining lenvatinib and cabozantinib with anti-PD1 as 
treatment for HCC. Additionally, sorafenib was shown 
to inhibit the TGF-mediated EMT, while regorafenib 
obstructed the EMT through ERK and STAT3. Based 
on the understanding of the effect of TKIs on the TME, 
combination therapy based on TKI-induced TME 
remodeling is worth further investigation.

We provide a summary of TME-induced remodelling 
specifically in HCC and thus summarize the rationale 
and potential target for combination therapy in HCC. 
However, insufficient evidence is available for the modu-
latory effects of cabozantinib, regorafenib, and lenvatinib. 
Further investigations of the following aspect are needed: 
(1) Exploration of the unidentified effects and underlying 
mechanism by which TKIs modulate HCC. More specifi-
cally, the roles of HSCs and endothelial cells in the TME 
modulation process have not been fully investigated. As 
current research has proven the efficacy of combining 
cabozantinib and anti-PD1, further investigations of the 
immunomodulatory effect of cabozantinib are also sug-
gested. (2) Identification and verification of strategies 
designed to overcome resistance and combination ther-
apy related to the TME of HCC. Potential targets of EMT 
in combination with TKIs have been listed, while their 
translation to the clinic requires more effort. Addition-
ally, the combination of NK cell therapy with sorafenib 
must be validated in clinical trials and determine the 
optimal dosage and time. With the success of the com-
bination of lenvatinib and anti-PD1, investigations exam-
ining cabozantinib and other TKIs, including apatinib, 
anolotinib, and those currently being analyzed in clinical 
trials, should be emphasized.
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