
Zeng et al. Cancer Cell Int          (2021) 21:511  
https://doi.org/10.1186/s12935-021-02190-6

PRIMARY RESEARCH

Single cell RNA-seq data and bulk gene 
profiles reveal a novel signature of disease 
progression in multiple myeloma
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Abstract 

Background: The development of multiple myeloma (MM) is considered to involve a multistep transformation 
process, but the role of cytogenetic abnormalities and molecular alterations in determining the cell fate of multiple 
myeloma (MM) remains unclear. Here, we have analyzed single cell RNA-seq data and bulk gene profiles to reveal a 
novel signature associated with MM development.

Methods: The scRNA-seq data from GSE118900 was used to profile the transcriptomes of cells from MM patients at 
different stages. Pseudotemporal ordering of the single cells was performed using Monocle package to feature dis-
tinct transcriptomic states of the developing MM cells. The bulk microarray profiles from GSE24080 and GSE9782 were 
applied to identify a signature associated with MM development.

Results: The 597 cells were divided into 7 clusters according to different risk levels. They were initiated mainly from 
monoclonal gammopathy of undetermined significance (MGUS), newly diagnosed MM (NDMM), or relapsed and/
or refractory myeloma (RRMM) with cytogenetically favorable t(11;14), moved towards the cells from smoldering 
MM (SMM) or NDMM without t(11;14) or t(4;14), and then finally to cells from SMM or RRMM with t(4;14). Based on 
the markers identified in the late stage, the bulk data was used to develop a 20-gene signature stratifying patients 
into high and low-risk groups (GSE24080: HR = 3.759, 95% CI 2.746–5.145; GSE9782: HR = 2.612, 95% CI 1.894–3.603), 
which was better than the previously published gene signatures (EMC92, UAMS70, and UAMS17) and International 
Staging System. This signature also succeeded in predicting the clinical outcome of patients treated with bortezomib 
(HR = 2.884, 95% CI 1.994–4.172, P = 1.89e−8). The 20 genes were further verified by quantitative real-time polymer-
ase chain reaction using samples obtained from the patients with MM.

Conclusion: Our comprehensive analyses offered new insights in MM development, and established a 20-gene 
signature as an independent biomarker for MM.
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Introduction
Multiple myeloma (MM) is a plasma cell malignancy 
characterized by a spectrum of monoclonal gammopa-
thy of undetermined significance (MGUS), smoldering 

MM (SMM), and newly diagnosed MM (NDMM), and 
ultimately progresses to a relapsed or refractory multiple 
myeloma (RRMM) [1–3]. Despite several advancements 
in the therapeutic approaches, MM remains an incurable 
disease. The heterogeneity of MM is increasingly being 
recognized, as its survival period ranges from < 6 months 
to > 10  years [4]. The gaps between our understanding 
regarding the full spectrum of cellular heterogeneity and 
the distinct cell types that comprises of human MM cells 

Open Access

Cancer Cell International

*Correspondence:  cheney@fjmu.edu.cn
1 Department of Hematology, The First Affiliated Hospital of Fujian 
Medical University, Fuzhou, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-6218-1677
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12935-021-02190-6&domain=pdf


Page 2 of 14Zeng et al. Cancer Cell Int          (2021) 21:511 

hinders our ability to explore their roles in tumorigenesis 
and its progression.

Many studies have reported the influence of the pres-
ence of cytogenetic abnormalities and molecular altera-
tions in disease progression, response to therapy, and 
prognosis during the occurrence and development of 
MM [5, 6]. However, their role in determining the fate 
of MM cells still remains unclear. So, it is imperative 
to investigate more specific expression profiles of each 
human MM cell class.

With the development of high-throughput gene detec-
tion technologies, single cell RNA sequencing (scRNA-
seq) assists in exploring cellular heterogeneity on a single 
cell level and reconstructs lineage hierarchies. Although 
several previous studies [6–8] have performed scRNA-
seq on human MM cells, no clear discussion has been 
done on the relationship between cytogenetic abnormali-
ties and MM cells differentiation trajectory. Hence, in the 
present study, a comprehensive analysis of scRNA-seq 
data and bulk gene expression profiles was performed 
to reveal the development map of human MM cells, and 
develop a novel gene signature in order to accurately pre-
dict the prognosis of MM.

Methods
Source and analysis of scRNA‑seq data
The scRNA-seq data of MM cells was obtained from the 
GSE118900 dataset [6]. The dataset included transcripts 
of 597 individual MM cells from 15 patients (including 
MGUS, SMM, NDMM, and RRMM) with or without 
cytogenetic abnormality. The normalized scRNA-seq 
data was read as counts in the matrix and was analyzed 
by the Seurat version 3.0.2 [9]. The cells with less num-
ber of genes detected (i.e., < 200 genes) were regarded 
as outliers and therefore are excluded from the down-
stream analyses. As the increase in mitochondrial genes 
might be related to those cells experiencing stress and 
cell death, cells with a percentage of mitochondrial genes 
of less than 5% were also included. Individual cells were 
then normalized by log-normalization with a scale fac-
tor of 10,000. Variable genes were selected by FindVari-
ableFeatures function to perform principal component 
analysis (PCA). The jackstraw method was used to quan-
tify the P-value distribution of the top 20 PCAs [9]. The 
statistically significant PCAs were chosen for t-distrib-
uted stochastic neighbor embedding (t-SNE) followed by 
K-means clustering. The Find All Markers function in the 
Seurat package was used to identify the specific markers 
for each cluster. Heatmap was performed to represent the 
scaled expression data of these marker genes. Normalized 
data were illustrated as feature plots or violin plots. The 
pseudotemporal ordering of single cells using Monocle R 

package was performed to reveal the dynamic changes in 
the transcriptome of developing MM cells [10].

Functional enrichment analyses
The R package clusterProfiler were performed to analyze 
and visualize functional profiles, including Gene Ontol-
ogy (GO), Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analyses [11]. The GO terms or KEGG 
pathways with adjusted P values of less than 0.05 were 
considered to be significant. The top 10 GO terms were 
visualized by GOplot R package [12].

Identification of gene signature based on bulk gene 
expression datasets
The bulk microarray profiles and clinical characteristics 
were extracted from the GSE24080 dataset [13] (samples 
from patients with NDMM enrolled into total therapy 
of 2 and 3 trials) and GSE9782 dataset [14, 15] (samples 
from patients with RRMM enrolled into the APEX trial). 
The datasets were annotated using the platforms GPL570 
and GPL96, respectively. If there was a single gene match-
ing multiple probe sets, then its average expression was 
computed. The purpose of this analysis was to extract the 
previously unreported but meaningful information and 
provide new biological insights based on the results of 
scRNA-seq data. To establish a multi-gene signature for 
predicting the prognosis of MM patients, the markers 
identified by scRNA-seq analysis were used in univariate 
Cox proportional hazards model and the least absolute 
shrinkage and selection operator (LASSO) regression 
analysis was carried out by the R package glmnet [13]. 
Furthermore, we assessed the performance differences 
between our signature and the previously published 
prognostic gene signatures (such as EMC92, UAMS70 
and UAMS17) [16, 17], a RNA sequencing-based signa-
ture (RNAseq_signature) recently developed from The 
Cancer Genome Atlas (TCGA) MM RNA sequencing 
dataset (MMRF-CoMMpass)[18], and International Stag-
ing System (ISS) [4]. The cut-off values of published sig-
natures were used as reported in the previous studies [16, 
17].

Gene set enrichment analysis (GSEA)
GSEA is a powerful computational method to determine 
whether a set of priori genes have statistically significant 
consistency between the two biological states (e.g., high 
risk vs. low risk) [19, 20]. Gene sets ‘Hallmarks v6.2’ were 
obtained from the MSigDB. The R package clusterProfiler 
was applied for GSEA analysis.

Patient samples
The bone marrow samples from 20 patients with 
MM, including 5 patients with t(4;14) and 15 patients 
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without t(4;14), were collected from the Department 
of Hematology, The First Affiliated Hospital of Fujian 
Medical University. Primary plasma cells were iso-
lated from bone marrow specimens using anti-CD138 
MicroBeads (Miltenyi, Germany) and immediately 
frozen in −80  °C until the subsequent extraction of 
RNA.  All procedures of samples acquirements have 
followed the tenets of the Declaration of Helsinki and 
are reviewed by the Ethics Committee of The First 
Affiliated Hospital of Fujian Medical University.

Quantitative real‑time polymerase chain reaction 
(qRT‑PCR) analysis
According to the manufacturer’s protocol, TRIzol rea-
gent (Invitrogen) was used to extract total RNA of 
enriched primary plasma cells (2–3*106). Total RNA 
(20–30  μg) of each sample was reverse transcribed 
into complementary DNA using a reverse transcrip-
tion kit (Takara Bio, Inc.). QRT-PCR was performed 
on the Thermofisher 7500 PCR machine (Applied 
Biosystems, USA) with hamQ Universal SYBR qPCR 
Master Mix (Vazyme Biotech Co.,Ltd). The thermocy-
cling conditions were as follows: initial denaturation 
at 95 ℃ for 30 s, followed by 95 ℃ for 10 s, 62 ℃ for 
30 s, for 40 cycles. All experiments were done in trip-
licate, and the results were normalized to the expres-
sion of β-actin. The specificity of amplification was 
verified by melting curve analysis. Additional file  1: 
Table  S1 presents the primer sequences of the hub 
genes. The data from qRT-PCR were analyzed by the 
 2−ΔΔCt method [21].

Statistical analysis
Kaplan–Meier curves with log-rank testing were 
applied to investigate the differences in survival 
between different groups of MM patients. Hazard ratio 
(HR) with 95% confidence interval (CI) was calculated. 
The area under the curve (AUC) was calculated by 
receiver operating characteristic (ROC) curve. The data 
are presented as the means ± standard deviation (SD). 
Differences were analyzed using the Student’s t-test. 
Statistics software SPSS 20.0 (IBM, Chicago, IL)) and 

R software version 3.6.0 were used for data analysis. A 
two-sided P < 0.05 indicated a significant difference.

Results
ScRNA‑seq profiling demonstrated gene expression 
patterns during disease development of MM
From dataset GSE118900, a total of 23,398 transcripts 
in 597 individual cells isolated from 15 MM patients at 
different stages were downloaded and pre-processed 
for scRNA-sequencing analysis. The average expression 
value of 54 duplicate genes was calculated. After filtering 
the total number of genes that are expressed in a single 
cell and the percentage of mitochondrial reads (Fig. 1a–
c), 597 cells with 16,568 expressed genes were identified. 
An unbiased PCA of the 597 cells was performed using 
highly variable genes to examine the global transcrip-
tome patterns in the scRNA-seq data. The 16 statisti-
cally significant principal components in the PCA were 
reduced to two dimensions using t-SNE (Fig. 1d). The 597 
cells were divided into 7 distinct clusters, each consisting 
of cells from MM patients at different stages (Fig. 1e). The 
expression patterns of markers in individual cells of each 
cluster were presented in Fig. 1f. A summary of clinical 
information, fluorescence in  situ hybridization (FISH) 
results and clusters were shown in Table 1.

As suggested in Table  1, a majority of the MM cells 
from the 3 MGUS patients were clustered into cluster 
1 (92%), but there were fewer cells in clusters 0, 2, or 5 
(2%, 2% and 4%, respectively). most of cells from patients 
(RRMM1, RRMM2 and SMM0) with t(4;14) translo-
cation were clustered into clusters 2, 4, and 5 (99%, 
100% and 88%, respectively). All the cells from patients 
(NDMM7 and RRMM4) with t(11;14) translocation were 
clustered into clusters 1 and 6, respectively. All cells from 
the samples (SMM2, SMM3, SMM4, NDMM3, NDMM5, 
NDMM6, and NDMM8) were mainly distributed in clus-
ters 0, 1, and 3.

The development of human MM cells
To determine the relationship between these cell clusters 
and states, the differentiation trajectory and pseudo-time 
analysis was investigated using the Monocle2 R package 
based on the identified marker genes from each cluster 
(Fig.  2a–c). The MM cells could be divided into early, 

(See figure on next page.)
Fig. 1 Single cell RNA-seq transcriptome profiling of human multiple myeloma (MM) cells from GSE118900 dataset. a Graph showing the 
distribution of the number of expressed genes in all single cells; b graph showing the total count distribution in all single cells; c graph showing 
the distribution of mitochondrial genome in all single cells; d the jackstraw method was used on the top 20 principal components of single cells 
collected from the MM cells; e the t-SNE projection of MM cells as determined by Seurat. Each dot corresponds to one individual cell; f Heatmap 
illustrated the expression patterns of the top ten markers in individual cells of each cluster by Seurat analysis. The columns correspond to the cells; 
and the rows correspond to the genes. Cells are grouped by clusters
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Fig. 1 (See legend on previous page.)
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middle, and late stages. Based on the ordering of pseudo-
time, the MM cells appear to start principally from clus-
ters 1 and 6 (state 1, most of the cells are from MGUS, 
NDMM or RRMM patients with cytogenetically favora-
ble t(11;14) translocation), and moved towards clusters 0 
and 3 (state 2, 3, 5, 6 and 7, all the cells from SMM or 
NDMM patients were without t(11;14) or t(4;14) translo-
cation) and finally to clusters 5, 2, and 4 (state 4, most of 
the cells are from SMM or RRMM patients with cytoge-
neticly high risk t(4;14) translocation) (Fig. 2a–c). These 
results suggested that the MM cells were ordered in pseu-
dotime that was consistent with the actual developmental 
stages. The t-SNE coloured by the states showed that cells 
at late stage (state 4) and early/middle stage (other states) 
can be distinguished clearly (Fig. 2d). Venn diagram indi-
cated that there were 294 (34.7%) different marker genes 
between late stage and early/middle stage (Fig.  2e). To 
better understand the key genes that drive the ordinal 
construction of the manifold, representative genes of 
MM cells across the clusters were examined. As shown in 
Fig. 2f–g, the expression levels of CD38 were significantly 

increased and that of CD19 were markedly decreased, 
which in turn were consistent with the immunepheno-
type of malignant plasma cells. The common molecular 
cytogenetic abnormalities detected by FISH, including 
CKS1B, CDKN2C, TP53 and IgH partner genes (CCND1, 
FGFR3, MAF and MAFB), are related with the progno-
sis of patients.The expression levels of these genes were 
also detected. It is noteworthy that the MM cells during 
development showed a significantly increased expression 
levels of CCND1 in the early stage cells (cluster 1 and 6), 
but strikingly decreased expression levels in the late stage 
cells (cluster 2, 4, and 5). Furthermore, the expression 
level of FGFR3 was decreased in both early and middle 
stage cells (cluster 0, 1, 3 and 6), but was slightly or mark-
edly increased in the late stage cells (cluster 2, 4 and 5).

Functional enrichment analysis of markers of MM cells 
in the late stage
To understand the functional insights into the mark-
ers of clusters 2, 4, and 5 in the late stage as identified by 
pseudotemporal analysis, an enrichment analysis using 

Table 1 Summary of patient characteristics and clusters identified by t-distributed stochastic neighbor embedding (t-SNE)

Sample IDs Total number 
of cells 
analyzed

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cytogenetic abnormality

IgM MGUS1 24 1(4%) 21(88%) 1(4%) 0 0 1(4%) 0 Not tested

IgM MGUS3 17 0 17(100%) 0 0 0 0 0 Not tested

MGUS5 7 0 6(86%) 0 0 0 1(14%) 0 Normal

SMM0 77 0 0 76(99%) 0 0 0 1(1%) t(4;14), gain 1q21, del 13q

SMM2 16 1(6%) 15(94%) 0 0 0 0 0 t(14;20), monosomy 13

SMM3 39 36(92%) 3(8%) 0 0 0 0 0 Trisomy 7,9,11 and 15

SMM4 44 43(98%) 1(2%) 0 0 0 0 0 Trisomy 3, 7,9,11 14, & 15

NDMM3 59 10(17%) 2(3%) 0 47(80%) 0 0 0 Trisomy 3,7,& 11, trisomy/tetrasomy 
9 & 15

NDMM5 32 28(88%) 4(13%) 0 0 0 0 0 Trisomy 7,9,11, &14, trisomy/tetrasomy 
3 & 15, del 13q

NDMM6 47 46(98%) 1(2%) 0 0 0 0 0 Trisomy 3, 9, 11, &15

NDMM7 54 0 54(100%) 0 0 0 0 0 t(11;14)

NDMM8 60 59(98%) 1(2%) 0 0 0 0 0 Trisomy 3, 8, 9, &14, trisomy/tetrasomy 
7, tetrasomy 11, gain 1q21

RRMM1 46 0 0 0 0 46(100%) 0 0 t(4;14), monosomy 13, del 17p

RRMM2 42 1(2%) 2(5%) 2(5%) 0 0 37(88%) 0 t(4;14), trisomy 11 & 15, monosomy 
9 & 13

RRMM4 33 0 0 0 0 0 0 33(100%) t(11;14) and tetraploid

Total 597 225(38%) 127(21%) 79(13%) 84(14%) 46(8%) 2(0%) 34(6%)

Fig. 2 The development of human multiple myeloma (MM) cells. a Pseudotemporal trajectory of human MM cells assigned to clusters 0–6 using 
the Monocle 2 algorithm; b Pseudotime ordering of MM cells was shown in a gradient from dark to light blue; c Developmental pseudotime 
reflecting the cell state transition of MM cells; d t-SNE coloured by the different states; e Venn diagram of different marker genes between early/
middle stage and late stage; f Violin plots of the expression patterns of representative genes of the MM cells; g The expression patterns of 
representative genes of the early and late MM cells mapped on t-distributed stochastic neighbor embedding (t-SNE) plot

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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the clusterProfiler in R was performed. The top 10 GO 
biology processes (BP) and the top 9 KEGG terms are 
shown in Fig. 3. The results showed that the markers of 
clusters 2, 4, and 5 demonstrated significant enrichment 
in protein localization to endoplasmic reticulum, protein 
targeting, and RNA catabolic process. The significantly 
enriched KEGG pathways of the markers belonging to 
clusters 2, 4, and 5 showed protein processing in endo-
plasmic reticulum, ribosomes, lysosomes, and phago-
somes. Taken together, these markers were mainly 
involved in protein processing, which might be associ-
ated with the characteristics of excessive accumulation of 
abnormal proteins in myeloma cells.

Identification and validation of gene signature associated 
with MM progression
GSE24080 was used as the training set to explore the 
prognostic value of 463 marker genes from MM cells 
in the late stage (clusters 2, 4, and 5) using univari-
ate Cox regression analysis. All 90 genes that showed 
significant association with OS in MM patients were 
screened for LASSO regression. Eventually, the score 
formula comprised of 20 optimal genes that was devel-
oped by LASSO: risk score = 0.302*(expression level 
of B4GALT3) + 0.085*(expression level of EDEM3)  
+ 0.083*(expression level of MTX1) + 0.061*(expres-
sion level of STK17B) + 0.047*(expression level of 
GGH) + 0.046*(expression level of YBX1) + 0.04*(expres-

sion level of ITM2A) + 0.035*(expression level of COPA) +  
0.031*(expression level of LGALS1) − 0.002*(expression  
level of DDX3Y) − 0.01*(expression level of ITM2C) −   
0.034*(expression level of MAP3K14) −  0.043*(expres-
sion level of TAPBPL) − 0.073*(expression level of JUNB)  
−  0.075*(expression level of CSGALNACT1) −  0.083* 
(expression level of PLEK) − 0.094*(expression level of  
NUCB2) − 0.107*(expression level of PECAM1) − 0.11* 
(expression level of ISCU) −  0.17*(expression level of 
PPCDC). The risk score of each sample in the training 
set and the optimal cut-off point of risk score (− 0.34) 
as determined by ROC analysis were calculated and was 
defined as the threshold. A total of 559 patients were 
divided into high-risk group (n = 94) and low-risk group 
(n = 465). Kaplan–Meier analysis demonstrated a signif-
icant difference in the survival rates between high-risk 
and low-risk groups (HR = 3.759 with 95% CI 2.746–
5.145, Log-rank test P < 0.001, Fig. 4a). The median OS 
of high-risk group was 34.0 months, while that of low-
risk group was not reached. Furthermore, the AUC 
obtained from the time-dependent ROC analysis for 
predicting OS was 0.751 at 3  years, demonstrating the 
performance of this signature predicting survival of 
MM patients better than those of the previously pub-
lished signatures (EMC92, UAMS70, UAMS17, and 
ISS stages) (Fig.  4b). It was worth noting that AUC of 
our 20-gene signature based on microarray dataset was 
also higher than that of RNAseq_signature recently 

Fig. 3 GO and KEGG pathway enrichment analysis of the markers in the late stage as identified by pseudotemporal analysis. a Chord plot depicting 
the relationship between the markers in the late state and the GO terms of biological process; b KEGG pathway analysis of the markers in the late 
state. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes
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developed from RNA sequencing dataset MMRF-
CoMMpass (AUC = 0.653) (Fig.  4b). The distribution 
of risk score, survival status and the heatmap of gene 
expression in patients from GSE24080 dataset were 
shown in Fig. 4c–e.

The power of the 20-gene prognostic model in predict-
ing OS in patients with MM was validated as an inde-
pendent dataset GSE9782. As shown in Fig.  5, patients 
with relapsed MM in GSE9782 dataset were divided into 
high-risk group (n = 94) and low-risk group (n = 170) by 
using the 20-gene signature as the same risk score for-
mula and threshold, which was similar in the training 
set. Patients with high-risk exhibited poorer OS than 
those with low-risk (HR = 2.612 with 95% CI 1.894–
3.603, P < 0.0001, Fig.  5a). The median OS of high-risk 
group was 11.3  months, while that of low-risk group 
was 22.8  months. As the platform GPL96 did not have 
all the probes of EMC92, UAMS70 or UAMS17, the 

performance of our 20-gene signature was unable to be 
compared with those of the published gene signatures. 
However, time-dependent ROC analysis still showed that 
the 20-gene signature achieved an AUC value of 0.743 
at 2  years of OS, which was better than that of the ISS 
and RNAseq_signature(AUC = 0.627 and AUC = 0.646), 
(Fig.  5b). The distribution of risk score, survival status 
and the heatmap of gene expression in patients belonging 
to the dataset GSE9782 were shown in Fig. 5c–e.

The 20‑gene signature is independent of conventional 
clinical factors
The univariate and multivariate Cox regression analy-
ses were performed to assess the independent predic-
tive value of the 20-gene signature in the GSE24080 and 
GSE9782 datasets. In the training dataset GSE24080, 
the 20-gene signature and the clinical covariates of 
age, C-reactive protein (CRP), serum β2-microglobulin 

Fig. 4 Prognostic evaluation of 20-gene signature in patients with newly diagnosed multiple myeloma from GSE24080 (n = 559). a Kaplan–Meier 
survival curves; b time-dependent operating characteristic curve analysis for survival prediction by using our risk model, EMC92, UAMS70, UAMS17, 
International Staging System stage (ISS), and RNAseq-based signature in the GSE24080 dataset; c the distribution of 20-gene risk scores; d patients’ 
survival status and time; e the heatmap of 20 genes expression in patients from the training set
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(β2M), serum creatinine (sCr), serum lactate dehy-
drogenase (LDH), serum albumin (ALB), hemoglobin 
(HGB) and bone marrow plasma cells (BMPC) dem-
onstrated some prognostic value with the univariate 
Cox regression analysis (Table  2). The results revealed 
that HR calculated by the 20-gene risk fraction model 
(HR = 4.337, 95% CI 3.206–5.868, P = 1.83e−21) was 
higher than any single clinical covariate, demonstrat-
ing its higher prediction efficiency. After adjusting by 
sex and IgA_isotype, multivariate Cox regression anal-
ysis showed that the 20-gene prognostic model main-
tained a significant correlation with OS (HR = 3.532, 
95% CI 2.625–4.87, P = 1.38e−14), indicating that the 
prognostic value of the 20-gene signature was an inde-
pendent conventional prognostic factor for predict-
ing patients with NDMM (Table  2). In the validation 
dataset GSE9782, both univariate and multivariate Cox 
regression analyses again showed 20-gene signature 

with highest HR as an independent prognostic factor in 
patients with relapsed MM (Table 2).

Clinical implications of genes associated with MM 
progression
Using the APEX trial dataset (GSE9782) with available 
treatment information, this 20-gene signature succeeded 
in robustly discriminating between high- and low-risk 
patients in the bortezomib (PS-341) treatment group 
(HR = 2.884, 95% CI 1.994–4.172, P = 1.89e−8; Fig.  6a) 
but not in the dexamethasone (DEX) treatment group 
(HR = 1.956, 95% CI 0.983–3.891, P = 0.051; Fig. 6b).

Validation of the hub genes
QRT-PCR was used to further validate the expres-
sion levels of 20 hub genes (B4GALT3, EDEM3, MTX1, 
STK17B, GGH, YBX1, ITM2A, COPA, LGALS1, DDX3Y, 
ITM2C, MAP3K14, TAPBPL, JUNB, CSGALNACT1, 

Fig. 5 Validation of 20-gene signature in patients with relapsed MM obtained from the GSE9782 dataset (n = 264). a Kaplan–Meier survival curves; 
b Time-dependent operating characteristic analysis for survival prediction by our 20-gene risk model, International Staging System stage (ISS), and 
RNAseq-based signature in the GSE9782 set; c the distribution of 20-gene signature risk scores; d patients’ survival status and times; e the heatmap 
of 20 genes expression in patients from the training set
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PLEK, NUCB2, PECAM1, ISCU and PPCDC) in the pri-
mary plasma cells from 20 patients with MM, including 
15 patients without t(4;14) and 5 patients with t(4;14). 
As shown in Fig. 7, except for the three genes (STK17B, 
JUNB, and PLEK), the expression levels of the other hub 
genes were up-regulated in the primary plasma cells from 

MM patients with t(4;14) compared to those without 
t(4;14), which was consistent with the markers at the late 
stage predictedby above mentioned bioinformatics analy-
sis. Based on the median value (-0.19) of risk score calcu-
lated by 20 gene expression values of each sample, the 20 
patients were divided into high-risk group (n = 10) and 

Table 2 Univariate and multivariate analyses for overall survival in patients with multiple myeloma obtained from the GSE24080 and 
GSE9782 datasets

HR hazard ratio, 95%CI 95% confidence interval, β2MG β2-microglobulin, CRP C-reactive protein, sCr serum creatinine, LDH lactate dehydrogenase, ALB albumin; *, 
statistically significant

Variables Univariate analysis Multivariable analysis

HR 95% CI P value HR 95% CI P value

Training set GSE24080

20-gene risk model (high/low) 4.337 3.206–5.868 1.83e−21* 3.532 2.625–4.87 1.38e−14*

Age (y) 1.024 1.007–1.041 5.21e−03* 1.009 0.992–1.026 0.315

Sex (male/female) 0.971 0.716–1.317 0.850 – – –

IgA_Isotype (Y/N) 1.093 0.777–1.537 0.609 – – –

Serum β2MG ≥ 3.5 mg/L (Y/N) 2.211 1.633–2.994 2.92e−07* 1.548 1.034–2.32 0.034*

CRP ≥ 8.0 mg/L (Y/N) 1.485 1.096–2.011 0.011* 1.14 0.822–1.58 0.433

sCr ≥ 2.0 mg/L (Y/N) 2.746 1.866–4.039 2.93e−07* 1.442 0.929–2.237 0.102

LDH > upper limit of normal (> 190 
U/L) (Y/N)

2.32 1.716–3.137 4.57e−08* 1.502 1.078–2.093 0.016*

Serum ALB < 3.5 g/L (Y/N) 1.927 1.329–2.794 5.41e−04* 1.255 0.835–1.886 0.274

Hemoglobin < 100 g/L (Y/N) 1.625 1.191–2.216 2.17e−03* 0.982 0.693–1.391 0.916

Bone marrow plasma cells (%) 1.01 1.004–1.016 9.14e−04* 1 0.993–1.007 0.952

Validation set GSE9782

20-gene risk model (high/low) 2.737 2.11–3.55 3.33e−14* 3.017 2.162–4.211 8.35e−11*

Serum β2M ≥ 3.5 mg/L (Y/N) 1.961 1.315–2.924 9.6e−04* 1.686 1.098–2.588 0.017*

CRP ≥ 8.0 mg/L (Y/N) 2.107 1.416–3.135 2.36e−04* 1.6 1.057–2.423 0.026*

Serum ALB < 3.5 g/L (Y/N) 1.798 1.298–2.49 4.17e−04* 1.618 1.058–2.476 0.026*

Fig. 6 Kaplan–Meier analysis of the 20-gene prognostic signature in two main treatmentgroups in APEX trial. a Bortezomib (PS-341); b 
dexamethasone (DEX)
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low-risk group (n = 10). As shown in Additional file  1: 
Table  S2, patients in high-risk group were significantly 
correlated with elevated LDH, which has been consid-
ered as an indicator of poor prognosis in MM patients. 
These results confirmed that the 20-gene signature is a 
potential biomarker for MM.

Pathway analysis by GSEA
The GSEA was used to investigate the possible pathway 
in which the 20 genes might be involved. The expression 
profiles of high-risk and low-risk MM patients classi-
fied by 20-gene signature in the GSE24080 dataset were 
compared. The GSEA results revealed that the signal-
ing pathways of hallmark E2F Targets, MYC Targets, 
G2M Checkpoint, Unfolded protein response, and DNA 

Repair showed significant activation in the high-risk 
group, while the hallmark KRAS signaling, inflammatory 
response, and TNFA signaling via NFKB were suppressed 
(Fig. 8).

Discussion
The development of MM involves a multistep transfor-
mation process, in which genetic heterogeneity plays 
a crucial role [22–24]. There is a strong evidence that 
intraclonal heterogeneity exists in both MGUS, which 
is the earliest clinically recognizable stage of MM, and 
the later stages of the disease, including the high risk 
SMM and plasma cell leukemia [5, 25, 26]. A com-
prehensive analysis of scRNA-seq data and bulk gene 
expression profiles was performed to explore the role 

Fig. 7 Quantitative real-time polymerase chain reaction (qRT-PCR) validation of the expression of 20 genes. The expression levels of genes 
(including B4GALT3, COPA, CSGALNACT1, DDX3Y, EDEM3, GGH, ISCU, ITM2A, ITM2C, JUNB, LGALS1, MAP3K14, MTX1, NUCB2, PECAM1, PLEK, PPCDC, 
STK17B, TAPBPL, and YBX1) in samples from multiple myeloma patients with t(4;14) and without t(4;14) were compared. ***P < 0.001; ** P < 0.01; 
*P < 0.05
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of genetic heterogeneity in MM disease progression. 
Although the previous studies used scRNA-seq to 
examine molecular heterogeneity in MM, none of them 
clearly defined the role of cytogenetic abnormalities in 
MM development. Jang et al. [6] have re-clustered cells 
from patients with MM into 4 sub-populations. Fan 
et al. [7] focused on copy number variation and loss of 
heterozygosity in individual cells in order to identify 
the major genetic subclones. Ledergor et al. [8] applied 
sc-RNA sequencing to study plasma cell heterogeneity 
in symptomatic and asymptomatic myeloma demon-
strating high interindividual variability and identifying 
extensive subclonal structures. However, there is no 
in-depth analysis at the single cell level to explore the 

relationship between cytogenetics and MM cell differ-
entiation trajectory.

To the best of our knowledge, this is the first study to 
explore the relationship between cytogenetic abnormali-
ties and differentiation trajectory of MM cells. Based on 
unbiased clustering analysis and pseudotemporal recon-
struction of differentiation trajectories, 597 cells from 
MM patients at different stages were re-clustered into 7 
main groups according to different risk levels. The pseu-
dotemporal reconstruction of differentiation trajectories 
yields a continuous lineage hierarchy. These were initi-
ated mainly from the cells of MGUS, NDMM or RRMM 
patients with cytogenetically favorable t(11;14) trans-
location, moved towards the cells of SMM or NDMM 

Fig. 8 The hallmark gene sets were analyzed using Gene set enrichment analysis (GSEA) for high-risk and low-risk patients from GSE24080. a 
Activated and suppressed pathway analysis by using GSEA for the identified 20-gene signature. b Enrichment plots of GSEA revealing significant 
activated enrichments for E2F targets and MYC targets V1 gene sets
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patients without t(11;14) or t(4;14) translocation, and 
finally to the cells of SMM or RRMM patients with 
cytogenetically high risk t(4;14) translocation. It is note-
worthy that the expression level of CCND1 showed a sig-
nificant increase in the early stage cells when compared 
to the late stage cells, but FGFR3, an oncogene, showed a 
prominent increase in the late stage cells when compared 
to the early and middle stage cells. These results are con-
sistent with the survival rate observed in MM patients 
with different cytogenetic abnormalities.

As t(4;14) is regarded as an important factor affecting 
the prognosis of patients with MM, the biological pro-
cesses involved in the marker genes in the late stage cells 
were investigated. The enrichment results showed that 
the markers in the late stage were mainly involved in pro-
tein processing, indicating protein biosynthesis as a criti-
cal functional aspect that separates the late stage cells 
from the remaining cells.

To evaluate the prognostic value of markers in the late 
stage cells and to improve their prediction in MM, the 
markers related to OS of MM were screened from the pub-
lic bulk gene expression profiles, and constructed a prog-
nostic signature with significant genes. In this study, a novel 
20-gene prognostic signature was developed to stratify 
patients into high- and low-risk groups with significantly 
different survival rate. Validation of the predictive value 
of the 20-gene signature was also successfully performed 
in an independent set. Within the same dataset GSE9782, 
the HR of the 20-gene signature (HR = 2.612 with 95% CI 
1.894–3.603) was higher than that of the 44-gene signature 
(HR = 1.831 with 95% CI 1.33–2.522) developed by Jang 
[6], demonstrating the robustness and good reproducibil-
ity of 20-gene signature in MM. Further analysis revealed 
that the 20-gene risk model was independent of clinical 
prognostic variables. In addition, this signature succeeded 
in predicting the clinical outcome of patients treated 
with bortezomib. In particularly, the performance of the 
20-gene signature in predicting the survival of patients was 
stronger than the previously published signatures (EMC92, 
UAMS70, and UAMS17) and the widely used ISS. As lack 
of enough information about revised international staging 
system (R-ISS),we were unable to compare our signature 
with R-ISS.It was noteworthy that AUC of our 20-gene sig-
nature based on microarray dataset was also higher than 
that of RNA sequencing-based signature recently devel-
oped from TCGA MM RNA sequencing datasetMMRF-
CoMMpass. These results demonstrated that the 20-gene 
prognostic model could provide additional predictive infor-
mation at the molecular level.

Validation of the expression levels of 20 hub genes 
by qRT-PCR confirmed that the 20-gene signature is a 
potential biomarker for MM.Furthermore, the GSEA 

was used to investigate the possible pathway involved 
in the 20 genes. The GSEA results showed that the 
signaling pathways of hallmark E2F Targets, MYC Tar-
gets, G2M Checkpoint, Unfolded protein response, and 
DNA Repair showed significant activation in the high-
risk group, which were important in the development 
of MM. Thus, 20 genes might participate in the patho-
genesis of MM by regulating these known biological 
processes and pathways.

Here are still some limitations in the present study. 
First of all, this prognostic signature is developed using 
retrospective analysis based on public datasets, thus, 
the results need to be further confirmed in prospective 
trails. Second, our research is based on data analysis 
combined with our own patient samples, but the small 
sample size, especially patients with t(4;14), is a limita-
tion of the present study. Besides, our results are based 
on single cell sequencing and microarray, for transcrip-
tome expression profile from RNA sequencing, its per-
formance remains unknown.

In summary, the scRNA-seq data was used to cluster 
individual cells from 15 MM patients at different stages 
into 7 main clusters based on increasing risk levels in 
MM, and revealed the relationship between cytoge-
netic abnormalities and the differentiation trajectory of 
MM cells. Cells with cytogenetically favorable t(11;14) 
translocation showed association with early stage of 
MM, while cells with cytogenetically high risk t(4;14) 
were associated with the late stage of MM. Based on 
bulk gene expression profiles, an excellent and robust 
20-gene signature was further developed, which in turn 
serves as an independent biomarker to predict sur-
vival of MM patients. Our results are considered to be 
important for understanding the pathological mecha-
nisms and in designing the strategies for preventing 
MM progression.
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