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prognostic model to predict overall survival 
in lung adenocarcinoma (LUAD)
Aisha Al‑Dherasi1,2, Yuwei Liao3†, Sultan Al‑Mosaib4, Rulin Hua1, Yichen Wang1, Ying Yu5, Yu Zhang1, 
Xuehong Zhang1, Raeda Jalayta1, Haithm Mousa6, Abdullah Al‑Danakh7, Fawze Alnadari8, Marwan Almoiliqy9, 
Salem Baldi6, Leming Shi5, Dekang Lv1*, Zhiguang Li1* and Quentin Liu1*   

Abstract 

Background:  Lung adenocarcinoma (LUAD) remains one of the world’s most known aggressive malignancies with 
a high mortality rate. Molecular biological analysis and bioinformatics are of great importance as they have recently 
occupied a large area in the studies related to the identification of various biomarkers to predict survival for LUAD 
patients. In our study, we attempted to identify a new prognostic model by developing a new algorithm to calculate 
the allele frequency deviation (AFD), which in turn may assist in the early diagnosis and prediction of clinical out‑
comes in LUAD.

Method:  First, a new algorithm was developed to calculate AFD using the whole-exome sequencing (WES) dataset. 
Then, AFD was measured for 102 patients, and the predictive power of AFD was assessed using Kaplan–Meier analysis, 
receiver operating characteristic (ROC) curves, and area under the curve (AUC). Finally, multivariable cox regression 
analyses were conducted to evaluate the independence of AFD as an independent prognostic tool.

Result:  The Kaplan–Meier analysis showed that AFD effectively segregated patients with LUAD into high-AFD-value 
and low-AFD-value risk groups (hazard ratio HR = 1.125, 95% confidence interval CI 1.001–1.26, p = 0.04) in the train‑
ing group. Moreover, the overall survival (OS) of patients who belong to the high-AFD-value group was significantly 
shorter than that of patients who belong to the low-AFD-value group with 42.8% higher risk and 10% lower risk of 
death for both groups respectively (HR for death = 1.10; 95% CI 1.01–1.2, p = 0.03) in the training group. Similar results 
were obtained in the validation group (HR = 4.62, 95% CI 1.22–17.4, p = 0.02) with 41.6%, and 5.5% risk of death for 
patients who belong to the high and low-AFD-value groups respectively. Univariate and multivariable cox regression 
analyses demonstrated that AFD is an independent prognostic model for patients with LUAD. The AUC for 5-year 
survival were 0.712 and 0.86 in the training and validation groups, respectively.

Conclusion:  AFD was identified as a new independent prognostic model that could provide a prognostic tool for 
physicians and contribute to treatment decisions.
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Background
Lung cancer is the most common cause of cancer inci-
dence and death-causing conditions in China and 
the world [1, 2]. Non-small cell lung cancer (NSCLC) 
accounts for nearly 80% of lung cancer, and it is 
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histopathologically classified into two main subtypes: 
lung squamous cell carcinoma (LUSC) and lung adeno-
carcinoma (LUAD) [3], where the latter is the most com-
mon type, with a survival rate of approximately 15% 
within 5  years [4, 5]. These histological subtypes play 
the main role of determining the therapeutic options. 
Although patients with NSCLC receive different treat-
ments, whether early-stage surgical treatment or other 
potential curative treatments for different stages, the 
prognosis of patients with NSCLC in the early stages 
remains poor, with a relapse rate of approximately 40% in 
patients within 5 years [6] and a survival rate of 50–60% 
[7, 8]. These information indicate the existence of some 
individual cases of high-risk among patients who are in 
the early stages of the disease. Therefore, patients need to 
be diagnosed in the early stages, and a reliable prognos-
tic biomarker or prognostic factors to identify high-risk 
individuals are urgent and considerably important for 
NSCLC.

There is a range of different and varied studies in their 
results conducted at the recent time to identify the prog-
nostic factors and/or prognostic biomarkers for the diag-
nosis of patients with lung adenocarcinoma (LUAD). 
These biomarkers may include one of the following types: 
(1) biomarkers associated with the risk of development 
of toxicity related to certain medications in patients and 
this biomarker is single nucleotide polymorphism (SNP) 
haplotype; (2) Biomarkers indicating the recurrence of 
the disease after surgical removal, they are found on the 
tumor or secreted by the tumor such as some proteins; 
(3) The presence of genetic mutations targeted by the 
therapy or the level of gene expression, both of which act 
as biomarkers; (4) Finally, the number of cancer cells cir-
culating or the tumor metabolic activity may be another 
vital indicator. Many studies have demonstrated tumor 
mutation burden (TMB) as a biomarker for patients with 
LUAD [9]. For example, Rizvi et  al. [10] demonstrated 
that high TMB levels were correlated with improved ORR 
and prolonged PFS in a retrospective analysis of patients 
with NSCLC. Talvitie et al. [11] in its study on lung ade-
nocarcinoma patients has shown that TMB is an inde-
pendent biomarker for predicting survival, as patients 
with TMB greater than or equal to 14 mutations/MB 
had a longer survival than patients with TMB less than 
14 mutations/MB. In another study, Jiao et al. [12] proved 
that TMB was a negative biomarker to predict survival 
for LUAD patients, where the TMB was low in the group 
of patients with EGFR-mutation. In addition, change in 
mean variant allele frequencies (dVAF) has been identi-
fied as a predictor of clinical outcomes in NSCLC and 
UC [13]. Allele frequency deviation (AFD) refers to the 
degree of deviation between the single nucleotide vari-
ant (SNV) allele frequency to tumor samples and that of 

matched control samples, it can reflect the disease stats 
of patients, as demonstrated in another study on AFD 
involving patients with cervical cancer revealed that AFD 
was positively correlated with therapy response and it 
helped in estimating progression-free survival [14].

On the basis of the previous studies on many differ-
ent prognostic biomarkers, particularly the AFD-related 
study [14], the relationship between AFD and overall sur-
vival was identified in patients with LUAD in the current 
study by developing a new algorithm for measuring AFD 
and then evaluating its predictive performance to predict 
the survival of LUAD patients in the early stages as an 
independent prognostic model. This study is considered 
the first study to report the direct association of AFD for 
the prediction of patients survival, which may contrib-
ute and help in the early detection of LUAD patients and 
making effective clinical decisions regarding potential 
individual treatment.

Materials and methods
Data source
The raw data of whole-exome sequencing (WES) with 
clinical information related to patients with lung adeno-
carcinoma were obtained from Fudan University. The 
total number of patients after excluding those with insuf-
ficient clinical information was 102. They were randomly 
divided into two groups: training group, which included 
54 patients, and validation group, which included 48 
patients. The basic clinical characteristics included in the 
analysis are as follows: history of smoking, pT stage, age, 
sex, and tumor size. The details are provided in (Table 1). 
The data analysis process was carried out on the data col-
lected by Fudan University that was previously used in 
another study [15] which was conducted according to 
the ethical standards (Fudan University Shanghai Can-
cer Center Institutional Review Board No. 090977-1). 

Table 1  Baseline Characteristics at Diagnosis

Characteristic (N = 102) Characteristic (N = 102)

Age—yr (no.) T1a

 Median 61.5 T1b 40

 Mean 61.8 T2a 27

 Range 37–84 T2b/T4 33

Age category—no. (%) Sex—no. (%)

  ≤ 60 yr 44 (43%) Male 49 (48%)

  > 60 yr 58 (57%) Female 53 (52%)

Smoking status—no. (%) Tumor_size

 Former/current 31 (30%) Mean 2.4

 Never 71 (70%) Median 2

pT(no.) Range 0.7–6
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Informed consents of patients or their relatives were 
obtained while donating a samples to the tissue bank of 
Fudan University Shanghai Cancer Center [15]. For more 
information pertaining to the data analyzed in our study, 
the data can be accessed and obtain from the European 
Genome-phenome Archive (EGA) via using the following 
access code: EGAS00001004006.

Alignment and quality control
In-house pipelines were used to process the sequenc-
ing of 102 WES data. Tumor and normal sample qual-
ity data were evaluated using FastQC (http:/​www.​bioin​
forma​tics.​babra​ham.​ac.​uk/​proje​cts/​fastqc/), including 
sequence length distribution, GC content, aspect of per-
base quality, sequence duplicate levels, kemer content, 
and over-represented sequences [14]. Sequencing read-
ings were aligned with the human reference genome 
(hg38) by using the Burrows-Wheeler Aligner (BWA) 
software package with default parameters [16]. The reads 
that were mapped in multiple genome positions were 
removed. Then, the quality of the map was accessed using 
SAM tools flagset [17]. All the genome sites for somatic 
variants were called by using VarScan2 [18] software with 
parameters of base quality higher than 30 and supporting 
reads ≥ 200 (Fig. 1).

Calling of SNV from WES
After all the readings were mapped to the human refer-
ence genome (hg38) by using BWA [16], Picard 1.67 was 
used to mark the duplicate readings realigned around the 
known indels. Base quality recalibration was performed 
using GATK version 3.7 [19]. Somatic mutations were 
called using Mutect2 after insuring that the following cri-
teria have been met: first, the difference of mutant allele 
fraction (MAF) between the tumor and normal sample in 
the same patient was more than one percentage; second, 

in both tumor and normal samples, the sequencing cov-
erage was more than 200; third, the alternative readings 
in the tumor samples were more than 10; and fourth, the 
corrected p-value was less than 0.05. SNVs were anno-
tated using ANNOVAR in multiple databases [20] and 
further filtered with population frequency in ExAC, 1000 
Genomes, dbSNP138.

Allele frequency deviation (AFD)
Variant allele frequency (VAF) of exome sites for 102 
samples were called by using VarScan2 [18] software with 
the base quality higher than 30 and read depth ≥ 200, the 
WBC sample was used as a control to calibrate possible 
errors of the sequence and germline variants during the 
calculation of the VAF (Fig.  1). Then variant allele fre-
quencies were used to calculate AFD for each patient. 
As displayed in (Fig.  2), a scatter plot was first created 
for all the detected genomic sites of the patient, with Y 
axis representing the VAF of a tumor sample and X axis 
representing the VAF of a paired normal sample. Sec-
ond, a diagonal line, on which the points have the same 
VAF between both samples, was created. The distance 
from each point to this diagonal line was calculated and 
defined as di of the i−th point. Third, the X,Y coordinates 
were transposed by − 45°; thus, di is equal to the abso-
lute value of the Y axis of i point and could be calculated 
using the Eq. (1):

where yi’ is the transposed Y-axis value of the i point, the 
xi, yi is the original X and Y axis values. Finally, the AFD 
of the patients was calculated as in the Eq. (2):
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Fig. 1  Whole exome sequencing analysis flowchart
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where di represent the distance value of all points i that 
are deviated from the diagonal line, n represent the total 
number of point. 

Tumor mutation burden (TMB)
In short, the tumor mutation burden (TMB) is defined 
as the total number of somatic (nonsynonymous) 

mutations, which include the small insertions and dele-
tions (INDELs) and single nucleotide variants (SNVs) 
for each megabase [21, 22]. The golden standard 
method of measuring the TMB is through the use of 
WES, which can detect somatic mutations in the entire 
exome and thus give a comprehensive perception of all 
mutations that can contribute to the progress of the 

Fig. 2  Calculation of Allele Frequency Deviation. A Qualified distribution for every sites of Variant allele frequency (VAF) in normal cells should be 
lies around wild type (0%), heterozygous (50%) and homozygous (100%). B Diagonal line on each point that have the same VAF in both tumor and 
normal samples. C, D Transporation of X and Y coordinates by −45°
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tumor at level of cost that is considered lower than the 
WGS [23]. The Quantile method based on TMB meas-
urements was used to determine the appropriate cut-
ting values [24].

Statistical analysis
Spearman correlation test was conducted to determine 
the correlation between factors, such as AFD and TMB. 
Kaplan–Meier (K-M) analysis was used to evaluate the 
differences in patient survival time between the high- and 
low-AFD value groups of patients with LUAD. The P val-
ues and HR (95% confidence interval [CI]) were deter-
mined via log-rank test and univariate Cox regression 
analysis to detect the significant differences between the 
groups. Multivariable Cox regression analysis performed 
to evaluate AFD independence. The ROC curve was used 
to estimate the performance of AFD by comparing the 
AUC. Statistical significance was identified as P ≤ 0.05. 
All statistical analyses were performed using version 3.5.1 
of the R language.

Results
Patients characteristic
The main histological subtype in this study was lung 
adenocarcinoma (LUAD). The range of the patient’s age 
was between 37 and 84  years (61.5  years as a median 
age). Fifty-three (52%) patients were female and 49 
(48%) were male; their output status was zero or one; 
70% of the patients never smoked, while 30% were for-
mer/current  smokers. Forty (39.2%) had stage T1a, 
twenty-seven patients (26.4%) had stage T1b, thirty-
three patients (32.3%) had stage T2a, one patient had 

stage T2b (98%) and one patient had stage T4 (98%) 
(Table 1) (Additional file 1: Table S1). The patients have 
not received any neoadjuvant treatment.

Relationship between AFD and TMB
In order to find out if the AFD and TMB are related, 
we performed a Spearman correlation test. Figure 3(A) 
shows the correlations between AFD and TMB in 
patients with LUAD. Spearman correlation coefficient 
showed that the p-value of the test was more than the 
significance level of 0.05. Therefore, AFD and TMB 
were not significantly associated at a correlation coeffi-
cient of 0.16 and p-value of 0.26 for the training group. 
In the validation group, the result also showed no cor-
relation between AFD and TMB, with a p-value of 0.6 
and correlation coefficient = −0.077 (Fig. 3B).

Allele frequency deviation shows an active power 
to predict patient outcomes
A time-dependent curve was used to evaluate the sen-
sitivity and specificity of AFD and TMB for OS predic-
tion in the training and validation groups. The AFD 
and TMB significantly achieved almost the same AUC 
values of 0.713 and 0.721 (Fig. 4C and D), respectively, 
in the training group, while in the validation group, 
AFD achieved an AUC of 0.86 and TMB achieved 0.65 
(Fig. 5C and D). These results demonstrated that AFD 
has the good power and efficient prognostic perfor-
mance to predict the survival of patients with LUAD, 
which is reflected by the AUC value.

Fig. 3  Spearman Correlation between the AFD and TMB. The association between AFD and TMB in patients with LUAD in the training group (A) 
and validation group (B)
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Overall survival
Considering that TMB and AFD are continuous vari-
ables and the cutting points for these variables are still 
not uniformly established, therefore in our study, we 
assumed that the risk of death is associated with the rise 
of AFD values, and in order to select a group of patients 
with high AFD values as a high-risk group and sepa-
rate them from the low AFD values group as a low-risk 
group, we used the quantile method to get the correct 
cutting point based on AFD values. In the training set, 
the mean value of AFD was 13.74 (0.15–33.18), while it 
was 19.81 (2.5–32.97) for TMB. The AFD cutoff points 
at 75% quantile were 17.93 and 22.028 mutation/Mb for 
the AFD and TMB in the training set, respectively, and 
16.7 and 23.2 mutation/Mb for the AFD and TMB in the 
validation set, respectively, thus dividing the patients into 
high and low-value groups. The Kaplan–Meier curve 

estimated the OS at 31 months as 89.7% (95% confidence 
interval [CI] 80.6–99.8) in the low-AFD-value group and 
64.3% (95% CI 43.5–95) in the high-AFD-value group 
(Table  2). A gradual decrease was observed in survival 
from 78.6% at 12  months to 52.2% at 35  months in the 
high-AFD-value group. In the training group, the OS of 
patients who belong to the low-AFD-value (low-risk) 
group was significantly longer than that of patients who 
belong to the high-AFD-value (high-risk) group, with 
10% lower risk of death and 42.8% higher risk of death for 
both groups, respectively (HR for death = 1.10; 95% CI 
1.01–1.2, p = 0.03) (Tables  2 and 4). The patients in the 
high and low-AFD-value groups included in the survival 
analysis according to their cutoff points were 14 and 40, 
respectively. In the validation group, OS was found to 
be significantly longer in the low-AFD-value (low-risk) 
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group than in the high-AFD-value (high-risk) group, 
with 5.5% lower risk of death and 41.6% higher risk of 
death for both groups, respectively (HR = 3.1, 95% CI 
1.4–6.60, p = 0.003) (Tables 3 and 4). The patients in the 
high and low-AFD-value groups included in the survival 
analysis according to their cutoff points were 12 and 36, 
respectively.  

The one-sided stratified log-rank p-values were 
0.0064 (Fig.  4A) and 0.0013 (Fig.  5A) for the training 
and validation groups, respectively, indicating a sig-
nificant difference between the two groups regardless 
of the number of patients in each group. The result 
also showed that patients with high AFD values were 

at higher risk of death than patients with low AFD val-
ues. The Kaplan–Meier curve for TMB in the training 
group showed that  the high-level patients had signifi-
cantly shorter OS than the low-level patients, with 
35.7% higher risk of death (HR = 1.08, 95% CI 0.96–
1.2, p = 0.17). Thus, the OS was 62.5% at 31  months 
(95% CI 41–95.3) in the high-level TMB group and 
89.9% (95% CI 80.9–99.8) in the low-level TMB group 
(Tables 2 and 4). The number of patients in the high-
level group was 40, while it was 14 in the low-level 
group. The one-sided stratified log-rank p-value was 
notably 0.03, indicating the difference between the 
two groups in regard to OS (Fig. 4B). In the validation 
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Table 2  Overall survival in AFD, TMB and Kaplan–Meier estimates in the training group

a Represent the hazard ratio for death
b Indicate the date for censorship of patients on the date the patient was last known to be alive

NA indicate that there is no available events

NE represent that the value could not be estimated

Variable Low-value group (n = 40) High-value group (n = 14)

AFD

 Deaths—no. (%)a 4 6

 Data censoredb 36 8

 Median overall survival—mo (95% CI) NE NE

 The overall survival (95% CI) by Kaplan–Meier estimation

 12 mo 95% (88.5–100) 78.6% (59.8–100)

 31 mo 89.7% (80.6–99.8) 64.3% (43.5–95)

 35 mo NA 56.2% (35.2–90)

TMB

 Deaths—no. (%)a 5 5

 Data censoredb 35 9

 Median overall survival—mo (95% CI) NE NE

 The overall survival (95% CI) by Kaplan–Meier estimation

 13 mo 92.5(84.7–100) 78.6 (59.8–100)

 31 mo 89.9 (80.9–99.8) 62.5 (41–95.3)

 35 mo 87.1 (77.2–98.3) NA

Table 3  Overall survival in AFD, TMB and Kaplan–Meier estimates in the validation group

a Represent the hazard ratio for death
b Indicate the date for censorship of patients on the date the patient was last known to be alive

NA indicate that there is no available events

NE represent that the value could not be estimated

Variable Low-value group (n = 36) High-value group (n = 12)

AFD

 Deaths—no. (%)a 2 5

 Data censoredb 34 7

 Median overall survival—mo (95% CI) NE NE

 The overall survival (95% CI) by Kaplan–Meier estimation

 23 mo 97.1% (91.5–100) NA

 25 mo NA 66.7% (44.7–99.5)

 27 mo 94.1% (86.5–100) 58.3% (36.2–94.1)

TMB

 Deaths—no. (%)a 4 3

 Data censoredb 32 9

 Median overall survival—mo (95% CI) NE NE

 The overall survival (95% CI) by Kaplan–Meier estimation

 10 mo 97.2 (92.0–100) NA

 8 mo NA 91.7 (77.3–100)

 27 mo 88.5 (78.6–99.8) 75.0 (54.1–100)
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group, no significant differences were found between 
the two groups in the Kaplan–Meier  curve (Fig.  5B). 
The numbers of patients in the high and low-level 
groups were 36 and 12, respectively.

AFD as an independent prognostic factor
Herein, univariate and multivariable Cox regression 
analyses were conducted in the training and validation 
groups to assess the contribution of AFD as an inde-
pendent prognostic factor for patients with LUAD. 
AFD and other clinicopathological factors, including 
gender, smoking, age, pT, and tumor-size, were used 
as covariates. Univariate regression analysis indicated 
that AFD (p = 0.03) was significantly associated with 
patient survival, while sex (p = 0.47), age (p = 0.31), 
tumor size (p = 0.28), smoking (p = 0.22), pT (P = 0.68) 
and TMB (p = 0.17) were not significantly associated 
with patient survival in the training group, as shown 
in (Table  4). For the validation group, the analysis 
showed that AFD (p = 0.003) was the only factor cor-
related with patient survival; the other clinical fac-
tors did not show any association with patient survival 
(Table 4). The corresponding multivariable cox regres-
sion analysis confirmed that the AFD in the training 
(HR = 1.125, 95% CI = 1.001–1.26, P = 0.04) and vali-
dation (HR = 4.62, 95% CI 1.22–17.4, P = 0.02) groups 
was an independent prognostic factor (Table 4). These 
results showed that AFD is an independent risk fac-
tor that could be used as a prognostic tool for patients 

with LUAD to assist in the early diagnosis for LUAD 
patients.

Discussion
The time of survival differs due to the different stages of 
LUAD among patients, as this type of cancer is heteroge-
neous. Many clinical variables have taken up a wide area 
in the field of predicting the diagnosis and treatment of 
patients with LUAD, but the results are uneven. The most 
important factors are TNM stage, race, age, tumor size, 
and gender these are factors related to the patient. Other 
factors related to the tumor also contribute to the predic-
tion of the outcomes and treatment of patients, includ-
ing the invasion of blood vessels and cell differentiation 
[25–29].

In the current study, the patients with high AFD val-
ues were assumed to be at a high risk compared with 
those with low AFD values. Therefore, AFD may act as 
an indicator of the progress of the disease and the sur-
vival rate of patients. For confirmation, the patients were 
divided into two groups. The first group consisted of 
patients with high AFD values, while the second group 
consisted of those with low AFD values. The quantile 
method was used to obtain the appropriate cutoff point 
to separate patients into two groups in a scientific and 
unbiased manner. Through this cutoff value, a significant 
difference was obtained between the high and low-risk 
groups. Thus, AFD had a clear effect in predicting the 
survival of patients and identifying patients who are at 
high risk.  Multivariable cox regression analysis showed 

Table 4  Univariate and multivariate cox regression analysis of AFD, TMB and overall survival in patients with LUAD

Bold values indicate the significant values < 0.05

CI, confidence interval; C, current; F, Former; HR, hazard ratio; N, Never

Variables Patients (N) Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

Training group

 Sex Female/Male 27/27 1.581 (0.44–5.61) 0.47 0.33 (0.025–4.49) 0.40

 Age  ≤ 60/ > 60 24/30 1.03 (0.96–1.10) 0.31 0.99 (0.91–1.079) 0.89

 Tumor_size  ≤ 2/ > 2 28/27 1.279 (0.81–2.00) 0.28 1.2 (0.677–2.395) 0.45

 Smoking N/(F/C) 36/18 0.467 (0.13–1.61) 0.22 0.20 (0.017–2.45) 0.21

 pT T1/ T2 35/19 1.297 (0.366–4.6) 0.68 0.63 (0.104—3.7) 0.61

 TMB  < 22/ ≥ 22 40/14 1.088 ( 0.96–1.23) 0.17 1.064 (0.90–1.25) 0.44

 AFD  < 17.9 / ≥ 17.9 40/14 1.100 (1.008–1.2) 0.03 1.125 (1.001–1.26) 0.04
Validation group

 Sex Female/Male 26/22 0.17 (0.021–1.48) 0.11 0.013 (0.003–0.46) 0.017

 Age  ≤ 60/ > 60 19/29 0.97 (0.91–1.04) 0.48 0.975 (0.87–1.089) 0.65

 Tumor_size  ≤ 2/ > 2 23/25 2.5 (1.15–5.54) 0.02 1.3 (0.25–6.61) 0.75

Smoking N/(F/C) 35/13 0.87 (0.17–4.52) 0.87 0.06 (0.002–2.15) 0.12

 pT T1/ T2/T4 32/15/1 1.52 (0.63–3.83) 0.37 3.5 (0.094–0.99) 0.49

 AFD  < 16.76/ ≥ 16.76 36/12 3.1 (1.4–6.60) 0.003 4.62 (1.22–17.4) 0.02



Page 10 of 12Al‑Dherasi et al. Cancer Cell Int          (2021) 21:451 

that AFD is an independent prognostic tool capable of 
predicting survival in patients with LUAD. In addition, 
ROC analysis showed that AFD has the effect power to 
predict overall survival of patients.

Previous studies have shown that TMB was significantly 
correlated with immune checkpoint inhibitors (ICIs), 
such as PD-L1 and PD-1, and other biomarkers, includ-
ing EGFR and TP53 [30–32]. In the present research, 
the relationship between AFD and TMB were evaluated, 
and the results showed no correlation between the two. 
Furthermore, the AUC of the prediction for patient sur-
vival in AFD and TMB was high and almost the same, 
suggesting that AFD had a substantial efficiency not less 
than the efficiency of TMB to predict overall survival. In 
addition, these results are consistent with the findings in 
the Kaplan–Meier analysis for patients with LUAD, with 
a high statistical significance of AFD in the prediction. 
The patients were also divided by AFD into high and low-
value risk group, the patients with high AFD value had 
shorter OS than those with low AFD value. On the con-
trary, univariate and multivariable cox regression analy-
ses showed that TMB tended to be a non-independent 
prognostic factor for predicting the survival of patients 
with LUAD, and no significant association was observed 
between TMB and LUAD patients survival. This find-
ing is consistent with that of previous studies [33, 34], 
which showed that TMB was significantly related to the 
prediction of the response of patients to the medications 
used in order to determine their effectiveness. Interest-
ingly, AFD displayed a efficiency and predictive ability in 
both analyses and emerged as an independent prognostic 
factor.

A number of studies have reported that tumor size is a 
prognostic factor used to predict patient progression and 
outcomes [35]. A previous study related to AFD demon-
strated the effectiveness of AFD in predicting the benefit 
and response of patients with cervical cancer to treat-
ment, and the predicted evidence of metastases was bet-
ter than that of tumor size [14]. In the present study, AFD 
was shown to be independent of tumor size, and patients 
with high AFD values had worse prognosis than patients 
with low AFD values. Therefore, AFD can be consid-
ered as a prognostic factor for predicting the outcome of 
patients with LUAD, consequently suggesting the use of 
AFD in clinical application for the purpose of early diag-
nosis of lung adenocarcinoma patients.

AFD is still a new model that has not yet been used as a 
prognostic model for the prediction of clinical outcomes 
in lung adenocarcinoma or any other type of cancer. 
Therefore, this study is the first to show that AFD is effec-
tive as an independent prognostic model that has the 
predictive power to identify high-risk groups of patients 
with LUAD. In addition, these results may indicate a 

more fundamental role in AFD efficacy in early LUAD 
detection and accurate survival prediction. However, this 
study has limitations. First, the number of samples was 
small, and this limitation could be avoided by conduct-
ing a study with a large number of patients. AFD could 
be applied to measure the effectiveness of medicines by 
measuring the patient’s response to the treatment used 
by studying those who used certain treatments. In addi-
tion, as a prognostic model, AFD can be applied in fur-
ther cancer research to verify it in different types of 
cancer.

Conclusion
In conclusion, we developed a new prognostic analyti-
cal model by developing a new algorithm to calculate 
the allele frequency deviation (AFD) which character-
ized by effectiveness predictive performance to predict 
the survival of LUAD patients. Furthermore, AFD is an 
independent prognostic tool for predicting survival in 
patients with LUAD. The study results provided evidence 
of the possibility of using the AFD in the early diagnosis 
of patients with LUAD and therefore it may be possible 
to use AFD in clinical application as a new prognostic 
tool to predict the patient’s outcomes and contribute to 
follow-up monitoring and help clinicians make effective 
decisions regarding the potential individual treatment of 
LUAD patients, which improves their survival. Despite 
these findings, the model needs further investigation and 
application in other types of cancers.
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