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Prognostic signature composed 
of transcription factors accurately predicts 
the prognosis of gastric cancer patients
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Abstract 

Background:  Transcription factors (TFs) are involved in important molecular biological processes of tumor cells and 
play an essential role in the occurrence and development of gastric cancer (GC).

Methods:  Combined The Cancer Genome Atlas Program and Genotype-Tissue Expression database to extract the 
expression of TFs in GC, analyzed the differences, and weighted gene co-expression network analysis to extract TFs 
related to GC. The cohort including the training and validation cohort. Univariate Cox, least absolute contraction and 
selection operator (LASSO) regression, and multivariate Cox analysis was used for screening hub TFs to construct the 
prognostic signature in the training cohort. The Kaplan–Meier (K–M) and the receiver operating characteristic curve 
(ROC) was drawn to evaluate the predictive ability of the prognostic signature. A nomogram combining clinical infor-
mation and prognostic signatures of TFs was constructed and its prediction accuracy was evaluated through various 
methods. The target genes of the hub TFs was predicted and enrichment analysis was performed to understand its 
molecular biological mechanism. Clinical samples and public data of GC was collected to verify its expression and 
prognosis. 5-Ethynyl-2′-deoxyuridine and Acridine Orange/Ethidium Bromide staining, flow cytometry and Western-
Blot detection were used to analyze the effects of hub-TF ELK3 on the proliferation and apoptosis of gastric cancer 
in vitro.

Results:  A total of 511 misaligned TFs were obtained and 200 GC-related TFs were exposed from them. After sys-
tematic analysis, a prognostic signature composed of 4 TFs (ZNF300, ELK3, SP6, MEF2B) were constructed. The KM 
and ROC curves demonstrated the good predictive ability in training, verification, and complete cohort. The areas 
under the ROC curve are respectively 0.737, 0.705, 0.700. The calibration chart verified that the predictive ability of the 
nomogram constructed by combining the prognostic signature of TFs and clinical information was accurate, with a 
C-index of 0.714. Enriching the target genes of hub TFs showed that it plays an vital role in tumor progression, and 
its expression and prognostic verification were consistent with the previous analysis. Among them, ELK3 was proved 
in vitro, and downregulation of its expression inhibited the proliferation of gastric cancer cells, induced proliferation, 
and exerted anti-tumor effects.

Conclusions:  The 4-TFs prognostic signature accurately predicted the overall survival of GC, and ELK3 may be poten-
tial therapeutic targets for GC
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Introduction
Gastric cancer is a common malignant tumor of the 
digestive tract. Its incidence ranks fifth among all malig-
nant tumors, and its mortality ranks fourth among can-
cer-related deaths [1]. Due to factors such as economic 
level and lifestyle, China has become an area with a high 
incidence of gastric cancer. In 2020, the new cases and 
deaths of gastric cancer in China accounted for 62.3% 
and 51.4% of the global total [1]. The clinical manifesta-
tions of gastric cancer have no significant specificity, 
similar to the manifestations of non-malignant gastroin-
testinal diseases, with insidious onset, rapid progress, dif-
ficulty in early diagnosis, and mostly in the middle and 
late stages of diagnosis, making most cases lose the best 
opportunity for surgery. The clinical manifestations of 
advanced gastric cancer are mostly merged by invasion 
of adjacent tissues or organs, lymph node metastasis in 
the abdominal cavity and organ metastasis. At present, 
the main treatment for patients with gastric cancer in 
this stage is chemotherapy. However, this treatment has 
large side effects, low quality of life of patients, and short 
survival period [2]. Therefore, seeking a stable and effec-
tive diagnostic index for gastric cancer and solving the 
problems encountered in clinical treatment is the focus 
of gastric cancer research.

Transcription factors are a group of protein mol-
ecules that can specifically bind to a specific sequence 
upstream of the 5′end of a gene to ensure that the tar-
get gene is expressed at a specific time and space with a 
specific strength. Their function is to regulate, turn on 
and turn off genes to guarantee that the correct number 
of genes expressed in the correct cell at the correct time 
throughout the entire life of the cell and organism [3]. 
Among genetic factors, TFs play a vital role in the most 
important cellular processes, such as cell development, 
response to internal and external environmental changes, 
cell cycle control, and carcinogenesis [4]. TFs are the 
drivers of tumor initiation and disease progression, and 
their remarkable diversity and effectiveness making their 
attractive prognostic and therapeutic targets for cancer 
[5, 6].

In this study, we combined The Cancer Genome Atlas 
(TCGA) and Genotype-Tissue Expression (GTEx) data-
bases on the gene expression and corresponding clini-
cal information of gastric cancer. Several TFs related to 
the overall prognosis were identified, and a prognostic 
signature of TFs was developed to predict the overall 
survival of gastric cancer patients. Clinical samples and 
public databases was used to verify the expression and 

prognosis of these hub TFs. We also jointly established 
a nomogram with the prognostic signature and clinical 
information and used a variety of methods to verify its 
predictive performance, which is helpful for clinicians to 
make decisions. More importantly, we identified a novel 
biomarker for gastric cancer and found it regulated cell 
cycle and proliferation in vitro.

Materials and methods
Data processing
The names of transcription factor gene were obtained 
from the Human Transcription Database website (http://​
bioin​fo.​life.​hust.​edu.​cn/​Human​TFDB#​!/) [7]. Gastric 
cancer RNA-seq data and clinical information were 
obtained from the TCGA website. We standardized the 
downloaded FPKM data of gastric cancer and converted 
it into TPM data, and combined the TPM data of nor-
mal gastric mucosa downloaded on the GTEx website by 
removing the batch effect. After extracting the transcrip-
tion factor expression data, using the “limma” R pack-
age [8], False Discovery Rate (FDR) < 0.05 and |log2Fold 
Change (FC)| > 1.0 as screening conditions to identify dif-
ferentially expressed transcription factors. The “ggplot” R 
package was used to draw volcano maps and heat maps 
to visualize differentially expressed transcription factors.

Weighted gene co‑expression network analysis (WGCNA)
To search the TFs that are highly correlated with gas-
tric cancer, the DETFs obtained were analyzed using 
the “WGCNA” R package [9]. We firstly used the Pear-
son correlation coefficient of gene pairs to establish an 
unsupervised co-expression relationship based on the 
adjacency matrix of connection strength. Then we used 
topological overlap matrix analysis to cluster the adja-
cency matrix of the gene expression data of gastric can-
cer patients. Finally, the dynamic tree-cutting algorithm 
was applied to the tree diagram for module identification, 
the minimum size of the module gene number was set 
to 30, and the cutting height was 0.90. Using the expres-
sion data of each co-expression module in all samples 
to execute module feature genes (MEs) as the first main 
component. The candidate TFs in the modules with the 
highest and lowest correlation with GC were extracted 
for further analysis.

Construction and verification of prognostic signatures
Univariate Cox regression analysis screened out TFs 
related to the overall prognosis from DETFs. The LASSO 
regression was further analyzed and the collinearity was 
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removed to obtain TFs that were significantly related 
to the prognosis [10]. Then, the samples in TCGA were 
randomly divided into the training and verification 
cohort. In the training cohort, multivariate Cox regres-
sion was used to construct a prognostic signature in TFs 
with significant prognosis. The hub TFs with non-zero 
coefficients were selected to calculate the risk score. 
The prognostic risk score of each patient applies to the 
following formula: risk score = expression level of TF 
1 × Cof1 + expression level of TF 2 × Cof 2 + … + Expres-
sion level of TF x × Cof x, where Cof represents the value 
of each TF Regression coefficients. The median risk score 
was used as the cut-off value to divide STAD patients in 
the training cohort into high-risk and low-risk groups. 
Using the same formula and the same cut-off value in 
the verification queue. Drawing the K–M survival curve, 
and using the log-rank test to evaluate the difference in 
survival between the high and low-risk groups. The sen-
sitivity and specificity of the prognostic signature was 
calculated by the 5-year ROC curve [11]. Univariate and 
multivariate Cox regression analyses were performed to 
confirm whether the prognostic model of TFs is an inde-
pendent prognostic factor compared with the clinical 
prognosis. Also, we merged the training and validation 
cohorts and used the same methods for analysis.

Pathway analysis
To explore the molecular mechanism differences between 
high and low-risk groups. We performed principal com-
ponent analysis to understand the difference between 
high and low-risk groups. Using Gene Set Enrichment 
Analysis (GSEA, version 4.0) based on the molecu-
lar signature database (Molecular Signatures Database, 
MSigDB) to provide gene enrichment analysis for the 
high-risk group and low-risk group (|NSE| > 1, FDR < 0.05 
is considered as statistical learning meaning. Using this 
method to find the differences in tumor pathways and 
mechanisms between high and low-risk groups.

Nomogram construction and verification
Using the “rms” R package to build a prognostic nomo-
gram for STAD patients to predict the probability of 
survival in 1–5  years. Age, Gender, Radiation therapy, 
Pharmaceutical therapy, Pathological stage, pathologi-
cal T stage, pathological N stage, pathological M stage, 
and risk score are independent parameters that form the 
nomogram. Using C index and calibration curve to cal-
culate the discrimination and calibration of nomogram 
prediction and true survival rate [12]. By quantifying the 
net income under different threshold probabilities in the 
nomogram, a decision curve analysis was carried out to 
determine the clinical validity of the nomogram.

Transcription target gene prediction and enrichment 
analysis
Using the Gene Transcription Regulation Database 
(GTRD) database (http://​gtrd.​biouml.​org), we analyzed 
that within 2000  kb upstream and downstream of the 
transcription start site, SiteCount ≥ 10 is the target gene 
bound by hub TFs [13]. The “org.Hs.eg.db” R package was 
used to perform GO and KEGG function enrichment 
analysis, among which items that meeting p value < 0.05 
and q value < 0.05 are significant, to explore the potential 
function of hub TF in gastric cancer.

Hub TFs expression and prognosis characteristics 
and verification
We first analyzed the relationship between hub TFs and 
various clinicopathological characteristics, and explored 
their expression characteristics. Then, 10 pairs of gas-
tric cancer clinical surgical specimens were collected. 
All procedures were approved by the patient’s informed 
consent and the ethics committee of the Second Affili-
ated Hospital of Nanchang University. After the sample 
was homogenized, the total RNA was extracted with Tri-
zol (Thermo Fisher, USA), and the RNA obtained was 
reverse transcribed using the reverse transcription kit 
RR047A (Takara, Japan). ACTB was used as the internal 
reference gene, and the mRNA expression of hub TFs was 
analyzed by rt-PCR using the RR820 kit (Takara, Japan) 
on the 7900-HT system (Thermo Fisher, USA). The prim-
ers were all synthesized by Shanghai Shenggong, see the 
attached table for details. In addition, the HPA database 
was used to analyze the protein expression of hub TFs 
[14]. Finally, the prognosis of hub TFs in GSE51105 was 
verified on Kaplan–Meier Plotter.

Cell line selection and transfection
Based on the above analysis results, we speculated 
that ELK3 is a potential new biomarker for gastric can-
cer. In order to verify the function of ELK3, download 
the GSE146361 microarray data from Gene Expres-
sion Omnibus to analyze the expression of ELK3 in 
gastric cancer cell lines, and obtain a cell line with high 
expression of ELK3. Furthermore, according to lipo3000 
(Thermo Fisher Scientific, USA) instructions, RNA inter-
ference technology was used to inhibit the expression of 
ELK3 in cells. The siRNA used were all synthesized by 
Sangon Biotech (Shanghai, China). The sequence is as 
follows, SiScr: Sense 5′-UUC​UCC​GAA​CGU​GUC​ACG​
UTT-3′, Antisense 5′-ACG​UGA​CAC​GUU​CGG​AGA​
ATT-3′; siELK3-1: Sense 5′-CCU​GCG​AUA​CUA​UUA​
UGA​CAATT-3′, Antisense 5′-UUG​UCA​UAA​UAG​UAU​
CGC​AGGTT-3′; siELK3-2: Sense 5′-UGG​AUC​AGA​
AAC​AUG​AGC​AUUTT-3′, Antisense 5′-AAU​GCU​CAU​

http://gtrd.biouml.org
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GUU​UCU​GAU​CCATT-3′; siELK3-3: Sense 5′-AUC​
AGG​UUU​GUG​ACC​AAU​AAATT-3′, Antisense 5′-UUU​
AUU​GGU​CAC​AAA​CCU​GAUTT-3′. Three days after 
transfection, the expression changes of ELK3 were ana-
lyzed by rt-PCR.

Cell proliferation assay
The proliferation of gastric cancer cells was evaluated 
by 5-Ethynyl-2′-deoxyuridine (EDU) Cell proliferation 
detection. Staining according to the instructions of the 
EDU commercial kit (US EVERBRIGHT, Suzhou, China), 
and using a fluorescence microscope (Olympus, Japan) 
to perform EDU measurement on the treated cells. Per-
forming PI single staining on the cells according to the 
cell cycle kit (US EVERBRIGHT, Suzhou, China), instruc-
tions, using Becton Dickinson FACS calibur instrument 
to analyze the cell cycle distribution, and analyze the 
effect of ELK3 on cell proliferation.

Cell apoptosis detection
In order to analyze the effect of inhibiting ELK3 on the 
apoptosis of gastric cancer cells, first stained with Acri-
dine Orange/Ethidium Bromide(AO/EB) Kit (Sangon 
Biotech, Shanghai, China), and analyzed the number of 
apoptosis of gastric cancer cells after downregulating 
ELK3. Further, using Annexin V-APC Apoptosis Detec-
tion Kit (US EVERBRIGHT, Suzhou, China) to detect 
cells in the early and late stages of apoptosis. The cells 
were processed according to the instructions, collected 
and analyzed in a Becton Dickinson FACS calibur instru-
ment. The cells that were positive for Annexin V-APC 
and PI were counted.

Western Blot analysis
The cells were lysed in RIPA (Solarbio, China) containing 
protease inhibitors (Boster, China) for 20 min on ice. The 
bicinchoninic acid protein content kit (Solarbio, China) 
to determine protein concentration. 40  μg total protein 
per well was separated on 10% polyacrylamide gels and 
transferred to polyvinylidene fluoride (PVDF) mem-
brane (Merck, Germany). The membrane was blocked 
with 5% BSA for 1  h at room temperature. The PVDF 
membrane was combined with GAPDH (Proteintech, 
USA, Cat No. 60004-1-Ig), PCNA (ABclonal, China, Cat 
No. A0264), P21 (ABclonal, China, Cat No. A1483), P16 
(ABclonal, China, Cat No. A0262), B-cell lymphoma/leu-
kemia-2 (Proteintech, USA, Cat No. 12789-1-AP), BCL2 
Associated X (Proteintech, USA, Cat No. 50599-2-Ig), 
Caspase-3 (Proteintech, USA, Cat No. 66470-2-Ig)was 
incubated overnight. After washing with Tris-buffered 
saline Tween, the membrane was probed with horse-
radish peroxidase-conjugated goat anti-rabbit IgG or 
goat anti-mouse IgG (Boster, China) for 1  h at room 

temperature. The band was detected using Super ECL 
Plus (US EVERBRIGHT, China). The protein expres-
sion results are expressed relative to the GAPDH band 
density.

Results
Identification of differentially expressed and gastric 
cancer‑related transcription factors
The analysis process of this study was shown in Fig.  1. 
There are a total of 375 gastric cancer samples and 32 
normal samples in the gastric adenocarcinoma (STAD) 
cohort of the TCGA database, and there are 359 normal 
samples in the GTEx database. The clinical information 
of TCGA-STAD was shown in Additional file 1: Table S1. 
We extracted the expression data of 1,634 transcription 
factors and identified 284 up-regulated and 227 down-
regulated transcription factors based on the screening 
conditions (Additional file  1: Table  S2). Using volcano 
plot (Fig. 2A) and heat map (Fig. 2B) to visually display. 

Using WGCNA to further analyze these 511 transcrip-
tion factors. We first determined whether there are out-
liers in each sample, and then performed hierarchical 
clustering. In the WGCNA analysis, we chose the soft 
threshold capability to determine the relative balance of 
scale independence and mean connectivity. As shown 
in Fig. 3A, power = 15 can be used as the power value of 
the soft threshold. Then, based on the input TFs, through 
average linkage hierarchical clustering, a total of 10 mod-
ules were generated (Fig.  3B). After calculating the cor-
relation MS of the shape of each module (Fig.  3C), the 
MEbrown module containing 49 TFs was considered to 
be the most relevant to gastric cancer, and the MEtur-
quoise containing 151 TFs was considered the least rel-
evant to gastric cancer. The specific gene names are in 
Additional file 1: Table S3.

Construction and verification of TFs prognostic signature
Univariate Cox regression analysis identified 8 TFs 
related to the overall prognosis, among which dangerous 
TFs were shown in red and protective TFs were shown in 
green (Table 1). The LASSO regression analysis was per-
formed on these TFs to further determine the prognos-
tic significantly related TFs, which are ZNF300, ELK3, 
SP6, ZNF564, MEF2B, FOXS1 (Fig. 4). Subsequently, we 
divided the TCGA-STAD queue into a training cohort 
and a verification cohort. Based on these 4 TFs, multi-
variate Cox regression analysis was used in the training 
cohort to further construct the prognostic signature, and 
finally, 4 TFs were obtained. The relative regression coef-
ficients were shown in Table 1.

By calculating the risk score of each patient, using 
the median as the threshold, they were divided into 
high-risk and low-risk groups. Kaplan–Meier (KM) 
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survival analysis showed (Fig.  5A) that the high-risk 
group had a lower survival rate (P = 1.772e−05). 
Besides, the 5-year receiver operating characteris-
tic curve (ROC) was drawn and the area under the 
curve (AUC) was calculated to be 0.737, indicated 

that the prognostic signature has moderate predic-
tive sensitivity and specificity (Fig. 5B). We performed 
univariate and multivariate Cox regression analysis 
to assess the prognostic value of risk scores. Univari-
ate Cox regression showed (Fig.  5C) Pathologic stage 

Fig. 1  Flow chart of this research

Fig. 2  The identifycation of 494 differentially expressed TFs combined with TCGA and GTEx databases. A Volcano plot. B Heat map
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[HR = 1.763, 95% CI (1.274–2.440), P < 0.001], T stage 
[HR = 1.500, 95% CI (1.083–2.079), P = 0.015], M stage 
[HR = 2.4422, 95% CI (1.097–5.349), P = 0.029], N stage 
[HR = 1.352, 95% CI (1.075–1.701), P = 0.010] and risk 
score [HR = 1.931, 95% CI (1.373–2.714), P < 0.001]. 
Multivariate Cox regression analysis showed (Fig.  5D) 
Gender [HR = 2.043, 95% CI (1.088–3.833), P = 0.026], 
Radiation therapy [HR = 0.314, 95% CI (0.314–0.836), 
P = 0.020], And risk score [HR = 2.237, 95% CI (1.505–
3.325), P < 0.001] were independent prognostic factors.

Similarly, we verified the prognostic signature in the 
verification cohort, and the K–M curve survival analy-
sis showed (Fig.  5E) that the prognosis of the high-risk 
group was worse (P = 2.651e−02). The 5-year AUC was 
0.705, showing good specificity and sensitivity (Fig. 5F). 
Univariate and multivariate Cox regression analysis 
showed (Fig.  5G, H), Age [HR = 1.074, 95% CI (1.045–
1.103), P < 0.001], Gender [HR = 2.135, 95% CI (1.235–
3.688), P = 0.007], Tumor grade [HR = 1.870, 95% CI 
(1.118–3.128), P = 0.017], M stage [HR = 2.997, 95% CI 

Fig. 3  WGCNA identified 200 TFs closely related to gastric cancer. A Analyze the best Power value. B Dendrogram of all clusters expressing TFs 
based on the difference metric (1-TOM). C The heat map shows the correlation between each module and gastric cancer
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(1.029–8.731), P = 0.044], N stage [HR = 1.680, 95% CI 
(1.211–2.330), P = 0.002], risk value [HR = 1.890, 95% 
CI (1.251–2.856), P = 0.003] are independent prognostic 
factors.

Also, we analyzed the entire TCGA-STAD cohort. The 
scatter chart showed the distribution of risk scores and 
the correlation between risk scores and survival data. 
Patients in the high-risk group had higher mortality and 
lower survival time (Fig.  6A). The K-M curve survival 
analysis showed (Fig.  6B) that the low-risk group had a 
higher survival rate (P = 4.520e−06). The 5-year AUC 
value is 0.700, which is not significantly different from 
the training set and the validation set (Fig. 6C). Univari-
ate and multivariate Cox regression analysis showed that 
compared with Age [HR = 1.037, 95% CI (1.018–1.057), 

P < 0.001], Gender [HR = 1.596, 95% CI (1.092–2.334)), 
P = 0.016], Radiation therapy [HR = 0.389, 95% CI 
(0.213–0.710), P = 0.002], N stage [HR = 1.288, 95% CI 
(1.023–1.622), P = 0.031] these factors, the risk score 
[HR = 1.831, 95% CI (1.408–2.381), P < 0.001] has better 
predictive ability (Fig. 6D, E).

Pathway analysis
First, the principal component analysis (PCA) showed 
that there were significant differences between the high 
and low-risk groups (Fig.  7A). Pathway analysis using 
GSEA (Fig. 7B) showed that gastric cancer samples in the 
high-risk group were mainly enriched in Angiogenesis, 
Epithelial Mesenchymal Transition, Hedgehog signaling, 
Hypoxia, IL2/STAT5 signaling, Inflammatory Response, 

Table 1  Univariate and multivariate Cox regression screening prognostic-related transcription factors

HR hazard ratio, CI confidence interval, Coef. coefficients

Gene ID Univariate Cox regression Multivariate Cox regression Coef.

HR 95% CI P value HR 95% CI P value

ZNF300 1.248 1.248–1.523 0.030 1.381 1.025–1.860 0.034 0.323

ELK3 1.501 1.177–1.913 0.001 1.371 0.937–2.006 0.104 0.315

SP6 0.802 0.701–0.919 0.001 0.791 0.641–0.977 0.029 − 0.235

MEF2B 0.564 0.340–0.935 0.026 0.503 0.245–1.033 0.061 − 0.686

FOXS1 1.232 1.057–1.437 0.008 – – – –

E2F2 0.796 0.668–0.948 0.011 – – – –

KLF9 1.230 1.061–1.428 0.006 – – – –

ZNF564 0.403 0.230–0.707 0.002 – – – –

Fig. 4  Lasso regression removes collinearity to identify 6 candidate TFs
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KRAS signaling up, NOTCH signaling, TGF-BETA sign-
aling, NFKB/TNFA signaling. These pathways play an 
important role in the occurrence and development of 
tumors, suggesting that patients with high-risk gastric 
cancer have a higher degree of tumor malignancy.

Nomogram construction and verification
The nomogram is an effective tool that integrate multi-
ple risk factors for clinical applications. We established 
a nomogram of the overall prognosis for 1–5  years in 
the TCGA-STAD cohort. The model integrates Age, 
Gender, Radiation therapy, Pharmaceutical therapy, 
Tumor grade, Pathologic stage, T stage, M stage, N 

stage, RiskScore. The total points of each patient pro-
vided the estimated 1–5  year survival times (Fig.  8A). 
The C-index of this nomogram is 0.714. As shown by 
the calibration chart, the actual 5-year survival rate 
matches well with the 5-year survival rate predicted 
by the calibration chart (Fig.  8B). Decision curve dis-
play (Fig.  8C), if the threshold probability of a patient 
and a doctor is > 14 and < 67%, respectively, using this 
nomogram to predict gastric cancer patients prognosis 
more benefit than the scheme. Within this range, the 
net benefit was comparable with several overlaps, based 
on the nomogram.

Fig. 5  Construction and verification of prognostic signatures in training and verification cohort. A, E K–M curve analysis of survival differences 
between high and low-risk groups. B, F 5-year ROC curve analysis of the sensitivity and specificity of the prognostic signature. C, G Univariate 
Cox regression analysis of the relationship between prognosis model, clinical case characteristics, and prognosis. D, H Multivariate Cox regression 
analysis whether the prognostic model and clinical case characteristics are independent prognostic factors
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Fig. 6  Overall analysis of prognostic signatures in the TCGA-STAD cohort. A Heat maps and scatters plots show that the high-risk group has higher 
mortality and shorter survival time for gastric cancer patients. B The K–M curve shows that the high-risk group has a worse prognosis. C The 5-year 
ROC curve shows that the prognostic model has good predictive performance. D, E Univariate and multivariate Cox regression analysis shows that 
the prognostic model is an independent prognostic factor
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Hub TFs target gene prediction and enrichment analysis
The GTRD is used to predict the target genes of 4 hub 
TFs. Among them, there are 623 eligible target genes for 
ELK3, 449 for SP6, 1569 for MEF2B, and 89 for ZNF300 
(Additional file  1: Table  S4). Perform gene ontology 
(GO) and “Kyoto Encyclopedia of Genes and Genomes” 
(KEGG) analysis on these target genes. GO showed 
(Fig. 9A) that biological processes were enriched in regu-
lation of GTPase activity, regulation of cell morphogene-
sis, Ras protein signal transduction, etc., cell components 
were enriched in neuron to neuron synapse, focal adhe-
sion, cell-substrate junction, etc., and molecular func-
tions were enriched in guanyl-nucleotide exchange factor 
activity, small GTPase binding, Ras GTPase binding. For 
KEGG (Fig.  9B), target genes were mainly enriched in 
important signals involved in tumorigenesis and develop-
ment, such as MAPK signaling pathway, Wnt signaling 
pathway, Autophagy, and Rap1 signaling pathway.

Hub TFs expression and prognosis characteristics 
and verification
We analyzed the relationship between hub TFs and clin-
icopathological characteristics, and the results showed 
that the expression of SP6 was related to the grade and 
age of gastric cancer, and the expression of ELK3 was 
related to the grade, and its expression increased with 
the depth of tumor invasion(Fig.  10A). Then, we used 
rt-PCR to verify the mRNA expression of hub TFs in 10 

pairs of clinical samples. The primer sequences are in 
Table 2. The results suggested (Fig. 10B) that the expres-
sion of ELK3 and SP6 is increased in gastric cancer, and 
the expression of ZNF300 and MEF2B is down-regulated 
in gastric cancer. In addition, using The Human Protein 
Atlas (HPA) to analyze the protein expression of hub TFs, 
ELK3 immunohistochemical staining intensity in normal 
tissues is lower than gastric cancer tissues, while ZNF300 
and MEF2B are higher than gastric cancer tissues 
(Fig. 10C). Kaplan–Meier Plotter showed that the expres-
sions of ELK3 (P = 0.014) and ZNF300 (P = 0.110) in the 
GSE51105 data set were associated with poor progno-
sis, and low expression of SP6 (P = 0.110) and MEF2B 
(P = 0.100) suggested a better prognosis (Fig. 10D).

Inhibition of ELK3 can inhibit the proliferation of gastric 
cancer cells and induce apoptosis
Based on the above analysis results, we found that ELK3 
is not only highly expressed in gastric cancer, but also 
related to poor prognosis. Therefore, further analysis of 
the role played by ELK3 in gastric cancer cells. First, we 
analyzed the expression of ELK3 in 27 cell lines from 
the GSE146361 microarray, and the results indicated 
that the expression of Hs746t was the highest (Fig. 11A). 
Furthermore, using Hs746t as an in  vitro verification 
experimental cell line, three siRNAs were used to inhibit 
the expression of its ELK3. Western-blot showed that 
all three siRNAs had good effects (Fig.11B). We chose 

Fig. 7  Analyzes the difference between the high and low-risk groups. A Principal component analysis. B GSEA shows that the high-risk group 
gastric cancer samples are enriched in pathways closely related to the tumor



Page 11 of 17Zhou et al. Cancer Cell Int          (2021) 21:357 	

Fig. 8  Construction and verification of nomogram. A Combining clinicopathological characteristics and prognostic signatures to construct 
a nomogram to predict the 1–5 year survival rate of gastric cancer patients. B The 5-year calibration chart verifies the predictive ability of the 
nomogram. C 5-year decision curve analysis of clinical benefit rate
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the second siRNA for further experiments, and rt-PCR 
showed that it can inhibit the RNA expression of ELK3 in 
cells (Fig. 11C).

In order to verify the effect of ELK3 on the proliferation 
of gastric cancer, we performed EDU staining. The results 
showed that the proliferation of Hs746t cells decreased 
after ELK3 was inhibited (Fig.  12A). Cell cycle analysis 
indicated that after inhibiting ELK3, the proportion of 
cells in G1 phase was increased, while that in S phase was 
decreased, and the cell proliferation ability was weak-
ened (Fig.  12B). Western-blot showed that the expres-
sion of cell proliferation-related proteins PCNA, P21, P16 
decreased with the down-regulation of ELK3 (Fig. 12C). 
Finally, we analyzed the effect of inhibiting ELK3 on cell 
apoptosis. After AO/EB staining, the expression of ELK3 
was decreased and the number of apoptosis of Hs746t 
was increased (Fig.  13A). Flow cytometry detection 
showed that the rate of apoptosis was negatively corre-
lated with the expression of ELK3 (Fig.  13B). Western-
blot showed that after ELK3 was inhibited, the expression 
of anti-apoptotic protein Bcl-2 decreased, and the 
expression of pro-apoptotic proteins Bax and Caspase-3 
increased (Fig. 13C).

Discussion
Since the discovery of transcription factors in 1961, there 
has been increasing evidence that transcription factors 
are key drivers of many diseases, including cancer [15]. 
In gastric cancer, there have been multiple reports show-
ing that transcription factors play an important role. For 
example, cyclic AMP response element binding protein 
3-like 4 (CREB3L4) promotes the progression of gastric 
tumors and endothelial angiogenesis by transcriptionally 

activating the VEGFA promoter [16]. Insulin gene 
enhancer protein 1 (ISL1) promotes glycolysis and tum-
origenesis in GC through transcriptional regulation of 
GLUT4 [17]. β-catenin can regulate the expression of 
PD-L1 to induce immune escape in gastric cancer [18]. 
These evidence indicated that transcription factors play 
an important role in gastric cancer. In-depth explora-
tion of the potential molecular functions of transcription 
factors and using them as therapeutic targets has great 
prospects.

We jointly analyzed the data of TCGA and GTEx with 
the differences in the expression of transcription factors 
in gastric cancer as a whole, and identified transcrip-
tion factors that are closely related to the prognosis. On 
this basis, we constructed a prognostic risk proportional 
model and verified its good predictive performance. 
Through systematic analysis, we found that the high-risk 
group has a worse prognosis. GSEA further explained 
that the high-risk group was mainly enriched in Angio-
genesis, Epithelial Mesenchymal Transition (EMT), 
Hedgehog signaling, Hypoxia, IL2/STAT5 signaling, 
Inflammatory response, KRAS signaling up, Notch sign-
aling, TGF-beta signaling, NF-κB/TNFA signaling. These 
signals play an important role in tumors and participate 
in the occurrence and development of tumors. EMT is 
one of the key mechanisms of cell morphological plas-
ticity changes in embryonic development and tumor 
metastasis. It is essential in tumor invasion and metas-
tasis progression. The process was mainly manifested by 
tumor epithelial cells losing epithelial cell polarity under 
specific conditions. The contacts between the surround-
ing cells and the matrix is reduced, the adhesion between 
the cells is reduced, the interstitial characteristics are 

Fig. 9  Enrichment analysis of hub TFs target genes. A Gene ontology, B Kyoto Encyclopedia of Genes and Genomes
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obtained, and the cell phenotype is changed. After this 
process, the tumor cells break through the basement 
membrane, causing the adhesion between the cells or the 
matrix to decrease or disappear, migration and invasive-
ness increase, and enter the lymph and blood vessels to 

reach distal tissues or organs to form new tumor metas-
tases [19]. Among them, the mechanisms that trigger 
EMT in tumors include: transforming growth factor-β 
(TGF-β), Wnt, Notch, and Hedgehog signals. This indi-
cated that the high-risk group of gastric cancer patients 

Fig. 10  Expression and prognostic verification of hub TFs. A rt-PCR analyzes the expression of hub TFs in surgical samples. B HPA database analyzes 
the protein expression level of hub TFs. C Analyze the prognosis of hub TFs in GSE51105
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progresses more rapidly and has a higher degree of 
malignancy [20].

We also identified 4 hub TFs, MEF2B, SP6, ZNF300, 
ELK3, and predicted their target genes. The enrichment 
analysis of these target genes showed that the target genes 
were mainly enriched in important signals involved in 
tumorigenesis and development, such as MAPK sign-
aling pathway, Wnt signaling pathway, Autophagy, and 
Rap1 signaling pathway. MEF2B is a member of the MEF2 
family of proteins and is a transcription factor involved 

in the development of muscles, heart, bones, blood ves-
sels, and the immune system. However, studies have 
found that MEF2B can activate the β-catenin pathway to 
induce lung cancer cell invasion [21]. This may be due to 
differences in gene expression and functions in different 
microenvironments. SP6 belongs to the transcription fac-
tor family, which contains three classic zinc finger DNA 
binding domains, which are composed of two cysteines 
and two histidines (C2H2 motif) tetrahedral coordinated 
zinc atoms, these transcription factors bind to GC-rich 

Table 2  Hub transcription factors primer sequence

Gene ID Forward primer sequence (5′–3′) Reverse primer sequence (5′–3′)

ZNF300 GAG​TAA​CCT​TCA​CAA​CTC​CCAG​ ATG​CCT​CAG​TCA​CTG​TTT​TGC​

ELK3 GAG​AGT​GCA ATC​ACG​CTGTG​ GTT​CGA​GGT​CCA​GCA​GAT​CAA​

SP6 CAG​CCT​CTC​CAA​ACT​TAC​CAG​ AGG​TCC​TCG​CAG​GTT​ACC​C

MEF2B ATG​GAC​CGT​GTG​CTG​CTG​AAGT​ TCC​GAA​ACT​TCT​CTC​CTG​GCTC​

ACTB CAC​CAT​TGG​CAA​TGA​GCG​GTTC​ AGG​TCT​TTG​CGG​ATG​TCC​ACGT​

Fig. 11  Cell line selection and verification of ELK3 inhibition efficiency. A The expression of ELK3 in each gastric cancer cell line in the GSE146361 
microarray. B The expression of ELK3 in each gastric cancer cell line in the GSE146361 microarray. C rt-PCR analysis inhibits the transfection 
efficiency of ELK3



Page 15 of 17Zhou et al. Cancer Cell Int          (2021) 21:357 	

sequences and related GT and CACCC boxes [22]. At 
present, there is no experimental study on the mecha-
nism of SP6 in affecting tumor progression. In this study, 
MEF2B and SP6 were considered protective genes, while 
ELK3 and ZNF300 were considered oncogenes. ZNF300 
is a novel KRAB/C2H2 gene encoding 68kD ZFP, and its 
KRAB domain exhibits transcriptional repressive activ-
ity [23]. What is interesting is that Endogenous ZNF300 
binds directly to the IL2RB gene promoter and potentially 
activates its expression [24]. Reports in tumors indicated 
that ZNF300 can promote the progression of cancer cells 
by activating NF-κB and MAPK pathways to induce tumor 
cell proliferation, invasion, and drug resistance [25, 26].

It is worth noting that although ZNF300 is associated 
with poor prognosis, it is low expressed in tumors. The 
expression of ELK3 in gastric cancer is positively cor-
related with poor prognosis. ELK3 (also known as Net, 
SAP-2, or ERP) is a member of the ETS transcription 
factor family and is located on chromosome 12q23.1. 
The ELK3 protein often forms a ternary complex tran-
scription factor together with serum response accessory 

protein 1, which can bind to a specific DNA sequence 
rich in purine GGA core sequences and regulate the 
expression of a variety of genes including proto-onco-
genes [27]. Under basic conditions, ELK3 is a transcrip-
tional repressor, but it can be activated by RAS/ERK 
signals and mitogen-activated protein kinase (Mitogen-
Activated Protein Kinase, MAPK) pathways to turn it 
into a transcription activator [28, 29]. In recent years, 
ELK3 has been proven to play an important role in the 
occurrence and development of breast cancer, liver can-
cer, lung cancer, and other malignant tumors [30–33]. In 
prostate cancer studies, it has been shown that inhibition 
of ELK3 can promote cycle arrest and apoptosis of tumor 
cells [34]. In the reports of breast cancer and colorectal 
cancer, ELK3 is closely related to chemotherapy resist-
ance, and down-regulating its expression can promote 
chemotherapy sensitivity [35, 36].In addition, ELK3 is 
also involved in TGF-β signaling to promote tumor cells 
to undergo epithelial-mesenchymal transition [37, 38]. 
In gastric cancer, ELK3 has no experimental studies to 
confirm its function. Our in  vitro studies have shown 

Fig. 12  The cell proliferation ability is weakened after ELK3 is inhibited. A Inhibition of ELK3 expression cell proliferation decreased. B After 
inhibiting ELK3, gastric cancer cells were blocked in G1 phase. C Cell proliferation-related protein after ELK3 expression down-regulation
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that inhibiting the expression of ELK3 in gastric cancer 
cell lines reduces its proliferation ability and increases its 
apoptosis level. The above evidence suggested that ELK3 
may act as an oncogene in gastric cancer, but its specific 
mechanism affecting the progression of gastric cancer 
requires further experimental research.

Conclusions
In general, we analyzed the expression differences of tran-
scription factors in gastric cancer based on public data-
bases, screened transcription factors with prognostic ability, 
and used clinical samples for expression verification. On 
this basis, we also constructed a prognostic signature and 
nomogram and systematically verified that it has good pre-
dictive sensitivity, which is helpful for accurate and person-
alized treatment of gastric cancer. More importantly, we 
have identified ELK3 as a new biomarker for gastric cancer, 
which is beneficial to the precise treatment of gastric cancer.
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