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Abstract 

Background:  Various diagnostic and prognostic tools exist in colorectal cancer (CRC) due to multiple genetic and 
epigenetic alterations causing the disease. Today, the expression of RNAs is being used as prognostic markers for 
cancer.

Methods:  In the current study, various dysregulated RNAs in CRC were identified via bioinformatics prediction. 
Expression of several of these RNAs were measured by RT-qPCR in 48 tissues from CRC patients as well as in colorectal 
cancer stem cell-enriched spheroids derived from the HT-29 cell line. The relationships between the expression levels 
of these RNAs and clinicopathological features were analyzed.

Results:  Our bioinformatics analysis determined 11 key mRNAs, 9 hub miRNAs, and 18 lncRNAs which among them 
2 coding RNA genes including DDIT4 and SULF1 as well as 3 non-coding RNA genes including TPTEP1, miR-181d-5p, 
and miR-148b-3p were selected for the further investigations. Expression of DDIT4, TPTEP1, and miR-181d-5p showed 
significantly increased levels while SULF1 and miR-148b-3p showed decreased levels in CRC tissues compared to the 
adjacent normal tissues. Positive relationships between DDIT4, SULF1, and TPTEP1 expression and metastasis and 
advanced stages of CRC were observed. Additionally, our results showed significant correlations between expression 
of TPTEP1 with DDIT4 and SULF1.

Conclusions:  Our findings demonstrated increased expression levels of DDIT4 and TPTEP1 in CRC were associated 
with more aggressive tumor behavior and more advanced stages of the disease. The positive correlations between 
TPTEP1 as non-coding RNA and both DDIT4 and SULF1 suggest a regulatory effect of TPTEP1 on these genes.
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Background
Colorectal cancer (CRC) is the second most common 
cancer and leading cause of cancer-related deaths in the 
world [1]. CRC is now known to be a heterogeneous 
disease due to the various genetic and epigenetic altera-
tions causing the disease [2]. The existence of a subset of 
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cancer cells named cancer stem cells (CSCs) also leads to 
tumor heterogeneity by utilizing self-renewal and multi-
lineage differentiation features in the tumor [3]. These 
alterations and CSCs play important roles in develop-
ment and progression of CRC [4, 5]. CRC is typically clas-
sified according to the pathological and clinical features 
of the American Joint Committee on Cancer (AJCC) 
and the staging system is used to evaluate prognosis and 
guide treatment strategies [6, 7]. There are some genetic 
biomarkers which can aid in estimating prognosis and in 
guiding treatment selection in CRC patients such as 18q 
loss of heterozygosity (LOH), p27 Kip1, DNA microsatel-
lite instability [7], K-RAS mutation [8] and RNA expres-
sion profile [9–11]. It is important to find sensitive and 
specific biomarkers to best guide early and appropriate 
treatment before disease progression [12].

Bioinformatics can serve as a very useful tool to inves-
tigate the complexity of big datasets, discover novel bio-
markers and analyze their validation in clinical studies 
[13].

Nowadays, some RNA expression panels  are used in 
clinical cancer such as PAM50 [14]. Although the main 
focus is on transcripts of coding RNA genes, there are 
some evidence that non-coding RNAs (ncRNAs) are also 
involved in hallmarks and pathological processes of can-
cer [15, 16]. The recent discovery from whole genomes 
sequencing has revealed that 98% of the human tran-
scriptome contain ncRNAs [17]. Evidence shows that the 
biological functions of many ncRNAs that are involved 
in the diseases are unknown. The biology of microR-
NAs (miRNAs) as the abundant small ncRNAs has been 
better understood [18, 19]. They can interfere in tumo-
rigenesis by regulating oncogenes and tumor suppressor 
genes [20]. Small ncRNAs that regulate mRNAs can be 
predicted by numerous in-silico computational programs 
[21, 22]. Long non-coding RNAs (lncRNAs) are another 
type of ncRNAs which are expressed in tissue-specific 
pattern and dysregulated in cancer [23] and play impor-
tant functions in cellular processes such as cell prolif-
eration, motility, and apoptosis [24]. Some reports have 
demonstrated that the levels of some lncRNAs, miRNAs 
and mRNAs are controlled and regulated by each other in 
cancer [25]. Identification of the interacting target RNAs 
of each lncRNA is an important step in understanding 
lncRNA functions which can be done through compu-
tational prediction of lncRNA–RNA interactions [26]. 
In the current study, by getting help from bioinformat-
ics analysis and computational algorithms, we selected 
several genes for further investigation of RNA levels in 
our CRC patients. These genes included DNA-damage-
inducible transcript 4 (DDIT4), sulfatase 1 (SULF1) as 
coding RNA genes and miR-181d-5p, miR-148b-3p and 
TPTE Pseudogene 1 (TPTEP1) as ncRNA genes.

DDIT4 also known as REDD1 or RTP801, is expressed 
in response to diverse stress conditions and its abnormal 
expression is linked to cancer via the effects on PI3K/
Akt/mTOR signaling [27, 28]. In-Silico evaluation has 
shown dysregulation in RNA expression levels of DDIT4 
in several cancers which may be used as a poor prognos-
tic factor in colon cancer [29].

SULF1 is a sulfatase that selectively remove 6-O-sul-
fate groups from heparan sulfate (HS). Alternation of 
HS chains is important in signaling events because hep-
aran sulfate proteoglycans (HSPGs) are released into the 
extracellular matrix and act as co-receptors which con-
tributes to regulation of cellular processes [30]. Some 
studies have reported dysregulation of SULF1 expression 
in CRC [31–33].

It was described in a meta-analysis report that dysregu-
lation of miRNA-181d family membrane can be used as 
prognostic marker in different cancers [34]. Also, dys-
regulation of miRNA-148b-3p expression was reported 
in numerous cancers including breast [35], thyroid [36], 
prostate [37], colorectal [38] and gastric cancer [39]. 
Until now, dysregulated expression of TPTEP1 has been 
reported mainly in patients with human lung [40] and 
liver cancer [41].

In this study, we explored effector networks of mRNAs, 
miRNAs, and lncRNAs in CRC based on predicted rela-
tionships of these RNAs via bioinformatics tools. DDIT4, 
SULF1, miR-181d-5p, miR-148b-3p and TPTEP1 were 
selected as the potential biomarkers in CRC patients 
and their expression levels were measured by RT-qPCR. 
Also, we investigated the association between these RNA 
expression levels and clinicopathological features in 
CRC tissue samples. Although some of these RNAs were 
reviewed in CRC in the past, there is no data about RNA 
expression levels of DDIT4 and TPTEP1 and their clini-
cal significance in CRC patients as well as in the colo-
rectal CSC-enriched spheroids. Therefore, based on our 
knowledge, our study is the first to report these data, and 
also to explore the correlations of these RNA expression 
levels amongst each based on our prediction analysis via 
bioinformatics tools.

Methods
Bioinformatics prediction study
Data sources and network construction
In our previous study, we detected differentially 
expressed genes (DEGs) in total 231 CRC patients 
obtained from merged five data series on Gene Expres-
sion Omnibus (GEO), including GSE41011, GSE62932, 
GSE63624, GSE77953, and GSE78248. Up-regulated 
genes with score > 3 were included in the current study, 
the mean score of up-regulated genes was used as cut-
off criteria (Additional file  1: Table  S1). The score was 
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obtained from the merging series mentioned above as 
we described previously [42]. In the following step, the 
genes which were highly associated with carcinogen-
esis and colorectal cancer diseases (P < 0.0001) were 
screened among the up-regulated genes according to the 
DisGeNET library [43] on Enrichr [44]. Protein–pro-
tein interaction (PPI) network was found using STRING 
database with stringApp (confidence score > 0.4) [45] in 
Cytoscape software [46]. K-means algorithm was used 
for clustering of the STRING database, and the genes in 
the largest cluster were selected as the entry criteria for 
subsequent analysis. Workflow of bioinformatics analysis 
steps were descripted in Fig. 1.

Network enrichment analysis
The pathway enrichment analysis and Gene Ontology 
(GO) were done using Enrichr in order to better under-
standing the biological process and functions of genes. 
Enrichr is a powerful enrichment analysis online tool 
which is linked to mammalian gene sets libraries and 
pathway databases [44]. We used KEGG [47], Reactome 
[48], BioPlanet [49], and WikiPathways [50] which are 
important databases and store a lot of data on biologi-
cal pathways, for our pathway analysis on Enrichr. The 
key genes for the present study were selected according 
to pathway and GO analysis. To visualize results of path-
way and GO analysis for key genes, ClueGO plug-in by 
Cytoscape software was used [51].

mRNA–miRNA network and lncRNA predictions
Prediction of MicroRNAs was performed for key genes 
using Target scan [52], DIANA [53], miR2Disease [54], 
miRWalk [55], miRNet [56], and microRNA.org [57]. 
mRNA–miRNA bipartite network was constructed 
for experimented and high-quality predicted mRNA–
miRNA data. The highest degree and most common 
miRNAs for key genes were selected as hub miRNAs of 
mRNA–miRNA bipartite network. Finally, in order to 
investigate the communication of the miRNAs with other 
RNAs, lncRNA predictions were performed through the 
hub miRNAs on the lncRNA SNP2 [58], miRwalk [55], 
LNCeDB [59] databases.

Selecting genes process among the key genes 
for experimental study
Enrichment analysis and literature review led to selecting 
two mRNAs and miRNAs among numerous key genes 
and hub miRNAs related to CSCs for our experimental 
study. Also, we selected one of topmost lncRNAs that has 
putative target site interaction found via computational 
prediction of lncRNA–mRNA on http://​rtools.​cbrc.​jp/​
cgi-​bin/​RNARNA/​index.​pl [60] based on RactIP [61] and 
IntaRNA databases [62].

Experimental studies in CRC tissues and colorectal 
CSC‑enriched spheroids
Tissue specimens and clinical data collection
Forty-eight fresh tissue samples (tumor and adjacent 
normal tissues as control) from the patients with CRC, 

Fig. 1  Bioinformatics analysis workflow. This figure summarizes the steps and tools in order to select genes for our experimental work

http://rtools.cbrc.jp/cgi-bin/RNARNA/index.pl
http://rtools.cbrc.jp/cgi-bin/RNARNA/index.pl
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who have not received any preoperative radiotherapy 
and other antitumor therapy, were harvested through 
the surgery at the Firoozgar and Bahman hospitals (Teh-
ran, Iran) between April 2017 and May 2018. All samples 
were transferred to RNA later (EURx, Poland) immedi-
ately after resection and placed into prepared cryogenic 
vials, and frozen in liquid nitrogen to avoid RNA degra-
dation. The diagnosis of CRC was made by postopera-
tive pathological examination according to the diagnostic 
criteria from the AJCC [7]. Clinicopathological data from 
the patients were collected from their electronic medi-
cal record system. Clinicopathological features for tumor 
included: tumor size, vascular invasion, perineural inva-
sion, TNM stage, metastasis, and histologic grade (tumor 
differentiation) in addition to the sex and age of the 
patients.

Isolation and confirmation of colorectal CSC‑enriched 
spheroids
Colorectal CSC-enriched spheroids were isolated from 
the HT-29 cancer cell line which were purchased from 
Iranian Biological Resource Center (IBRC; C10097, RRID: 
CVCL_0320). The HT-29 cancer cells were cultured in 
DMEM/High glucose medium (Gibco, Germany) supple-
mented with 10% fetal bovine serum (Gibco, Germany), 
1% non‐essential amino acids (Gibco, Germany), 2  mM 
l-glutamine (Gibco, Germany) and 1% Penicillin–Strep-
tomycin (Biowest, France) at 37  °C in 5% CO2 and 95% 
humidified incubator. Colorectal CSC-enriched sphe-
roids were generated using hanging droplet technique of 
HT-29 cancer cells descripted earlier [63]. Spheroid cul-
ture medium included DMEM/F12 (Gibco, Germany), 
supplemented with 2% B27 (Gibco, Germany), 10  ng/
ml of basic fibroblast growth factor (bFGF), 20  ng/ml 
epidermal growth factor (EGF) (PeproTech, USA), 1% 
nonessential amino acids, 2  mM l-glutamine, and 1% 
Penicillin–Streptomycin. In brief, 70%‐80% confluent 
HT‐29 cells were detached with 0.05% trypsin/EDTA 
(Gibco, Germany) and were washed twice with PBS and 
serum‐free medium. Then, 25 μL droplets containing 
10,000 cells re-suspended in spheroid culture medium 
on the lid of Petri dishes containing 5  ml PBS at 37  °C 
incubator with 5% CO2 and 95% humidified incubator 
for 96 h. Drops containing spheroids were harvested by 
washing with a gentle shaking of media and transferred 
onto nonattachment flasks (coated flasks with 1.2% poly-
HEMA (Sigma, USA)) for 6 days in spheroid culture 
medium conditions as described above. After observa-
tion of sphere morphology by microscope, spheroids 
were evaluated for CSC features based on RNA expres-
sion of stemness genes (OCT4, SOX2, C-MYC, KLF4 and 
NANOG), ABC transporter genes (ABCB1, ABCG2, and 

ABCC1) and epithelial-mesenchymal transition (EMT) 
genes (TWIST1, SNAIL1, Vimentin, and ZEB1) [64].

RNA extraction and cDNA synthesis
Total RNA was extracted from frozen tissues and cells 
(HT-29 cell line and colorectal CSC-enriched spheroids), 
using miRNeasy mini kit (QIAGEN GmbH-Germany) 
according to the manufacturer’s instructions. RNA sam-
ples were separated by agarose gel electrophoresis and 
their concentration was measured by optical absorbance 
at 260/280 nm. Complementary DNA (cDNA) was syn-
thesized from extracted RNA using cDNA synthesis kit 
(TaKaRa Bio, Shiga, Japan) and miRNA cDNA synthesis 
kit (Bon Yakhteh, Iran).

Real time‑quantitative polymerase chain reaction (RT‐qPCR)
The specific primers for amplification with RT-qPCR 
were designed using Primer-BLAST [65] and Oligo-
Analyzer 3.1 software (Integrated DNA Technologies) 
(Table 1). RT-qPCR was performed to find the expression 
levels of selected genes from bioinformatics analysis and 
stemness, ABC transporter and EMT genes that were 
used for validating colorectal CSC-enriched spheroids. 
RT-qPCR reactions were performed by SYBR Green 
PCR Master Mix (Takara, Japan) on Real-Time PCR Sys-
tem (Rotor-Gene Q MDx, Germany). The expression of 
miRNA genes and TPTEP1 was normalized to internal 
control of kit and RNU6 (U6) expression levels, respec-
tively. To normalize other mRNAs expression, GAPDH 
gene was used as an internal control gene. The relative 
expression levels of the genes were calculated by 2−ΔΔCt 
method [66].

Statistical analysis
Statistical analysis was performed using SPSS 21.0 soft-
ware (SPSS Inc, Chicago, IL). All data in statistical analy-
ses were expressed as median of RNA expression levels. 
Significance differences in expression levels of candidate 
genes between tumor and adjacent normal tissue samples 
as well as between colorectal CSC-enriched spheroids 
and HT-29 cell line were analyzed using nonparametric 
test (Mann–Whitney U test). For comparisons of quan-
titative values between more than two groups, Kruskal–
Wallis test was used. The Spearman’s test was applied 
to evaluate the association between expression levels of 
these RNAs amongst each other and clinicopathological 
features. P-value less than 0.05 was considered as statis-
tically significant. GraphPad Prism version 8 software 
(GraphPad Software, La Jolla, CA) was used for making 
the boxplots, heat map graph and scatterplots.
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Results
Bioinformatics analysis and selecting target genes
Network analysis and clustering genes
Three hundred and seventy up-regulated genes were 
included in network analysis based on score > 3 which 

found to be involved in carcinogenesis or colorectal 
cancer (P < 0.0001) on DisGeNET (Additional file  1: 
Table  S1). PPI network analysis explored the interac-
tions of these up-regulated genes amongst each other. 
Five main clusters were obtained from k-means algo-
rithm for genes with confidence ≥ 0.4 (Additional 
file 2: Figure S1). In order to limit the number of genes, 
largest cluster covering 167 genes (Additional file  1: 
Table  S1) were selected for subsequent analysis in 
which their PPI network is shown in Fig. 2.

Pathway and GO enrichment analysis
To find better characteristics of the 167 genes, path-
way and GO enrichment analysis were performed using 
the Enrichr tool. The top 10 results of pathway and GO 
annotation analysis (P < 0.05) were shown in the Addi-
tional file  2: Figure S2 and S3. Enrichment analysis 
displayed the “spliceosome”, “miRNA biogenesis”, “P53 
signaling pathway”,” DNA repair”, “MAPK signaling 
pathway” and “gene expression” are parts of the top 10 
pathways.

A closer check of GO and pathway analysis indicated 
that some of the genes participate in “microRNAs in 
cancer”, “proteoglycans in cancer”, “apoptosis” and “cell 
cycle” pathways. These genes contribute to several key 
biological processes including “extracellular matrix 
organization”, “regulation of cell migration” and “posi-
tive regulation of cell proliferation” based on GO analy-
sis which their disorder was reported in cancer [67]. 
Information of functional characteristics of genes led to 
restricting these genes to 11 key genes (TWIST1, DDIT4, 
LAMC2, SULF1, REG1A, REG3A, VSNL1, BNIP3, 
GPSM2, GTF3A and SMNDC1). The information path-
ways and common features of 11 key genes are summa-
rized in Fig. 3.

mRNA–miRNA network and prediction of lncRNAs
One mRNA-miRNA bipartite network was created from 
key genes and miRNAs related to them (Fig. 4 and Addi-
tional file  3: Table  S2). Nine miRNAs with the highest 
degree and most common for 11 key genes (hub miR-
NAs) were selected as most effective miRNAs on the 
network of CRC (hsa-miR-1, hsa-miR-125a-5p, hsa-miR-
129-5p, hsa-miR-1297, hsa-miR-137, hsa-miR-145, hsa-
miR-148b, hsa-miR-181d and hsa-miR-185). To reduce 
analysis complexity, lncRNAs for hub miRNAs were pre-
dicted using miRNA–lncRNA target algorithms in sev-
eral databases (Additional file 4: Table S3). The Topmost 
of lncRNAs (18 lncRNAs), those experimentally have 
been supported are summarized in Table 2.

Table 1  Primer sequence of genes for RT-qPCR

Gene groups Gene names Primer Sequence (5´ → 3´)

Selected genes from 
bioinformatics 
analysis

DDIT4 F: CTT​TGG​GAC​CGC​TTC​TCG​TC
R: GGT​AAG​CCG​TGT​CTT​CCT​CCG​

SULF1 F: GGA​CGG​ATA​CAG​CAG​GAA​CG
R: CAG​CAC​ATG​GGT​GTA​GTC​

ACA​

TPTEP1 F: AGC​CGC​AGA​CAA​AAG​ACC​
TCGG​

R: CCA​CCA​AAC​AGG​CTT​CGT​
GTGA​

miRNA-181d-5p AAC​ATT​CAT​TGT​TGT​CGG​TGGGT​

miRNA-
148b-3p

TCA​GTG​CAT​CAC​AGA​ACT​TTGT​

Stemness genes OCT4 F: GTG​GAG​AGC​AAC​TCC​GAT​G
R: TGC​AGA​GCT​TTG​ATG​TCC​TG

SOX2 F: AAT​GGG​AGG​GGT​GCA​AAA​
GAGG​

R: GTG​AGT​GTG​GAT​GGG​ATT​
GGTG​

C-MYC F: ACA​CAT​CAG​CAC​AAC​TAC​G
R: CGC​CTC​TTG​ACA​TTC​TCC​

KLF4 F: CCT​CGC​CTT​ACA​CAT​GAA​
GAG​

R: CAT​CGG​GAA​GAC​AGT​GTG​
AAA​

NANOG F: AGC​TAC​AAA​CAG​GTG​AAG​AC
R: GGT​GGT​AGG​AAG​AGT​AAA​GG

EMT genes TWIST1 F: TTC​TCG​GTC​TGG​AGG​ATG​
GAG​

R: ACG​CCC​TGT​TTC​TTT​GAA​
TTTGG​

SNAIL1 F: CCA​GAG​TTT​ACC​TTC​CAG​CA
R: GAT​GAG​CAT​TGG​CAG​CGA​

VIM F: TCT​ACG​AGG​AGG​AGA​TGC​GG
R: GGT​CAA​GAC​GTG​CCA​GAG​AC

ZEB1 F: CTT​CTC​ACA​CTC​TGG​GTC​
TTA​TTC​

R: CGT​TCT​TCC​GCT​TCT​CTC​
TTAC​

ABC transporter 
genes

ABCB1 F: GTT​CAG​GTG​GCT​CTG​GAT​
AAG​

R: AGC​GAT​GAC​GTC​AGC​ATT​AC

ABCG2 F: TTC​CAC​GAT​ATG​GAT​TTA​CGG​
R: GTT​TCC​TGT​TGC​ATT​GAG​TCC​

ABCC1 F: CGC​CTT​CGC​TGA​GTT​CCT​
R: TGC​GGT​GCT​GTT​GTG​GTG​

Housekeeping genes GAPDH F: CAT​GAG​AAG​TAT​GAC​AAC​
AGCCT​

R: AGT​CCT​TCC​ACG​ATA​CCA​
AAGT​

RNU6 (U6) F: TCG​CTT​CGG​CAG​CAC​ATA​TAC​
R: GCG​TGT​CAT​CCT​TGA​GCA​G
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Finally, reviewing the literature led to selecting genes 
of DDIT4, SULF1, miR-181d-5p and miR-148b-3p that 
are involved in CSCs amongst the key genes and hub 
miRNAs for our experimental validation [68–71]. Also, 
TPTEP1 was selected on topmost of the predicted lncR-
NAs for our experimental study that has target and inter-
action sites in untranslated region (UTR) and coding 
sequence (CDS) region for DDIT4 and SULF1, respec-
tively, as found by prediction algorithms (Fig. 5).

Experimental studies in CRC tissues and colorectal 
CSC‑enriched spheroids
Patients’ characteristics
Out of 48 patients with CRC, the number of males and 
females were 29 (60.4%) and 19 (39.6%) respectively. The 
patients were in the age group of 20–87  years with the 
mean age of 59 ± 13.7 (mean ± SD) years. Twenty-five 
(52.1%) of the cases were in early stages (I-II) while 23 

(47.9%) were in advanced stages (III-IV) of the tumor. 
Twenty-one patients (43.8%) had well differentiated can-
cer cells (Grade 1), followed by 19 cases (39.6%) with 
moderately differentiated (Grade 2) and 8 cases (16.6%) 
with poorly differentiated cancer cells (Grade 3). Patients 
were classified into 3 groups: 25 patients (52.1%) didn’t 
have any metastasis, 14 patients (29.1%) had only lymph 
node metastasis and 9 patients (18.7%) had distant metas-
tasis. Vascular and perineural invasion were observed in 
14 (29.1%) and 18 (37.5%) patients respectively.

RNA expression levels of selected genes in CRC tissues 
and the relationship with clinicopathological features
The mRNAs and miRNAs expression levels were evalu-
ated in 48 tumor tissues and their adjacent normal tis-
sues of CRC patients by RT-qPCR. The analysis of the 
RT-qPCR data using Mann–Whitney U test demon-
strated median expression levels of DDIT4 (P = 0.007), 

Fig. 2  Protein–protein interaction network (PPI). PPI network analysis was done for the largest cluster of k-means based on stringApp (confidence 
score ≥ 0.4) in Cytoscape, yellow color nodes indicated key genes that were selected based on the enrichment analysis and literature review
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TPTEP1 (P = 0.035) and miR-181d-5p (P = 0.020) were 
significantly higher in CRC tissues compared to the adja-
cent normal tissues (Table 3) (frame A, C and D of Fig. 6, 
respectively). In contrast, the expression levels of SULF1 

(P = 0.032) and miRNA-148b-3p (P < 0. 001) were sig-
nificantly lower in CRC tissues compared to the adjacent 
normal tissues (Table 3) (frame B and E of Fig. 6, respec-
tively). Figure  6F summaries the data of frame A-E in a 

Fig. 3  Pathway and gene ontology (GO) analysis of selected genes as key genes using the ClueGO plugin in Cytoscape. Pathway analysis, based on 
KEGG, Reactome, and Wikipathways (A), Common results of GO analysis (B) for 11 key genes
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heat map graph showing the pattern of these gene expres-
sion from the up to down-regulated expression levels in 
CRC tissues compared to the adjacent normal tissues in 
order, where the DDIT4 shows the highest up-regulated 
and SULF1 the lowest down-regulated expression levels 
in CRC tissues compared to the adjacent normal tissues.

Additional analyses were performed to find any asso-
ciation between the median expression of the selected 
genes and the clinicopathological features of the CRC 
patients (Table  4). Results displayed significant rela-
tionship between TNM stage and expression of SULF1 
(P = 0.023) and TPTEP1 (P < 0.01) in CRC patients. 

Fig. 4  mRNA–miRNA bipartite network for selected genes in Cytoscape. Eleven key genes is yellow nodes and miRNAs have been indicated in 
green color that were predicted from Target scan, DIANA, miR2Disease, miRWalk, miRNet, and microRNA.org

Table 2  Topmost of predicted lncRNAs based on 9 hub miRNAs 
in colorectal cancer

lncRNAs

LINC01206 MEG3 PAX8-AS1

HCG18 MUC19 TTN-AS1

TPT1-AS1 SNHG14 RPL34-AS1

SATB1-AS1 ZNRD1-AS1 AC009264.1

TPTEP1 TCL6 ENTPD1-AS1

LMCD1-AS1 FAM95B1 SLC8A1-AS1
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Median expression of SULF1 and TPTEP1 showed sig-
nificantly increased levels in tumor tissues obtained 
from CRC patients with the advanced stages (frame B 
and C of Fig. 7). Kruskal–Wallis test showed that expres-
sion levels of DDIT4 (P = 0.048), SULF1 (P = 0.009) 
and TPTEP1 (P = 0.035) were significantly related to 
metastasis (Table  4). Our results demonstrated median 

expression of DDIT4 (P = 0.029) and SULF1 (P < 0.001) 
were significantly higher in patients with distant metas-
tasis than patients without metastasis (frame D and E of 
Fig. 7) while median expression of TPTEP1 was higher in 
patients with only lymph node metastasis than patients 
without metastasis (P = 0.017) (frame F of Fig.  7). The 
levels of miR-181d-5p expression were found signifi-
cantly related to the histologic grading of the CRC tumor 
(P = 0.016) (Table  4). As shown in frame G of Fig.  7, 
the median expression levels of miR-181d-5p was sig-
nificantly higher in CRC patients with Grade 3 than 
patients with Grade 2 (P = 0.006). A significant relation-
ship between median expression levels of miR-148b-3p 
and presence of perineural invasion was observed, where 
the median expression levels of miR-148b-3p in patients 
with the present of perineural invasion were significantly 
lower compared to that in patients without the perineu-
ral invasion (P = 0.021) (Table 4 and frame H of Fig. 7). 

There were numerous significant correlations between 
the RNA expression levels of the selected genes amongst 
each other both in CRC tissues (Table 5) and adjacent nor-
mal tissues (Table  6) as shown by spearman correlation 

Fig. 5  mRNA–lncRNA interactions (DDIT4 and SULF1 with TPTEP1). DDIT4 and SULF1 have interaction sites for TPTEP1, the links predicted in 
interactions DDIT4 and SULF1 with TPTEP1 are in untranslated region (UTR) and coding sequence (CDS) region, respectively

Table 3  Median expression of genes in tumor tissues compared 
to adjacent normal colorectal tissues

Genes Normal Tumor Pattern p-value
Median 
2−ΔΔCt

Median 
2−ΔΔCt

DDIT4 1.2978 3.5836 Up-regulated 0.007

SULF1 1.3811 0.3854 Down-regu-
lated

0.032

TPTEP1 0.8150 1.4401 Up-regulated 0.035

miR-181d-5p 0.6961 1.8826 Up-regulated 0.020

miR-148b-3p 0.8800 0.5170 Down-regu-
lated

 < 0.001
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values. The expression levels of TPTEP1 were positively 
correlated with the expression levels of DDIT4 both in CRC 
(P = 0.019, rs: 0.37) and adjacent normal tissues (P < 0.001, 
rs: 0.53) (frame A of Fig. 8). Also, a significant positive cor-
relation was found between TPTEP1 and SULF1 expres-
sion levels both in CRC tissues (P < 0.001, rs: 0.65) and 
to a lesser extent in adjacent normal tissues (P = 0.046, 
rs: 0.37) (frame B of Fig. 8). There was a negative correla-
tion between DDIT4 and miR-148b-3p expression levels 

in CRC tissues (P = 0.037, rs: − 0.32) (frame C of Fig.  8). 
Moreover, a significant negative correlation between 
SULF1 and miR-148b-3p expression levels in CRC tissues 
(P = 0.010, rs: − 0.40) and to a greater extent, but positively, 
in adjacent normal tissues (P = 0.004, rs: 0.47) was  found 
(frame D of Fig. 8). The expression levels of miR-148b-3p 
were positively and strongly correlated with the expression 
levels of miRNA-181d-5p both in CRC (P < 0.001, rs: 0.88) 

Fig. 6  Boxplot of RT-qPCR data presented as median (min–max) for comparing expression levels of genes between colorectal cancer (CRC) tissues 
and adjacent normal tissues. Expression levels of DDIT4 (A), SULF1 (B), TPTEP1 (C), miR-181d-5p (D), miR-148b-3p (E), and summary of the frame A-E 
as a simple heat map (F) from CRC tissues compared to adjacent normal tissues (control)
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and adjacent normal tissues (P < 0.001, rs: 0.64) (frame E of 
Fig. 8).  

Validation of CSC marker genes and expression levels 
of selected genes in CSC‑enriched spheroids compared 
to HT‑29 cancer cells
We evaluated stemness, ABC transporter, and EMT 
marker genes as CSC features in CSC-enriched sphe-
roids derived from HT-29 as determined by RT-qPCR 
after observation of sphere morphology under the micro-
scope (frame A and B of Fig. 9). Our results showed sig-
nificantly higher expression levels of stemness genes 
(OCT4, SOX2, C-MYC, and KLF4), ABC transporter 
genes (ABCB1, ABCG2, and ABCC1) and EMT genes 
(TWIST1, SNAIL1, and ZEB1) in colorectal CSC-
enriched spheroids compared to HT-29 cancer cells (con-
trol) (frame C-E of Fig. 9).

After detection of CSC features, the RNA expression 
levels of DDIT4, SULF1, TPTEP1 and miRNAs (miR-
181d-5p and miR-148b-3p) were measured using RT‐
qPCR in colorectal CSC-enriched spheroids and HT-29 
cancer cells. RNA expression levels of DDIT4 (P = 0.042), 
SULF1 (P = 0.032) and TPTEP1 (P = 0.021) were sig-
nificantly higher in colorectal CSC-enriched spheroids 
compared to the HT-29 cancer cells (frame A-C of 
Fig. 10). No significant difference was found in miRNAs 

expression levels (miR-181d-5p and miR-148b-3p) 
between colorectal CSC-enriched spheroids and HT-29 
cancer cells.

Discussion
Numerous RNAs (mRNAs, lncRNAs and miRNAs) can 
be used as potential biomarkers for diagnosis, prognosis 
and treatment in various cancers and their dysregulation 
shown to be associated with the development of differ-
ent cancers. RNA biomarkers provide dynamics insights 
into cell regulation and processes compared to DNA bio-
markers. They have more sensitivity and specificity than 
protein biomarkers [72]. The biological roles of RNAs 
make them as important as the functions of proteins [73]. 
The use of RNA studies in medicine has led to attracting 
numerous companies to develop new RNA-based diag-
nostic, prognostic tools, and drugs [74]. The panels such 
as ThyraMIR/ThyGENX and approval of the first RNAi 
drug Onpattro have made the RNAs, especially ncRNAs, 
studies important [74, 75].

In the current study, to identify RNA biomarkers 
in CRC, bioinformatics analysis was applied to detect 
DEGs in CRC microarray data, in which 11 key genes 
were selected for further analysis for predictions of miR-
NAs and lncRNAs. Then, we evaluated the expression 
levels of DDIT4, SULF1, TPTEP1, miR-181d-5p and 

Table 4  Relationship between RNA expression of genes and clinicopathological features from colorectal cancer samples

*  Values in bold are statistically significant (P < 0.05)

Clinicopathological features Relevant expression of genes (2 −ΔΔCt), p-value

DDIT4 SULF1 TPTEP1 miR-181d-5p miR-148b-3p

Tumor size (cm) , mean ≈ 5 cm 

≤ 5 0.689 0.468 0.076 0.430 0.556

> 5

Vascular invasion

Yes 0.273 0.133 0.193 0.280 0.315

No

Perineural invasion

Yes 0.752 0.549 0.966 0.058 0.021*
No

TNM stage

I-II 0.354 0.023*  < 0.01* 0.920 0.359

III-IV

Metastasis

No metastasis 0.048* 0.009* 0.035* 0.681 0.226

Only lymph node metastasis

Distant metastasis

Histologic grade (Tumor differentiation)

Grade 1 (Low) 0.922 0.215 0.978 0.016* 0.062

Grade 2 (Moderately)

Grade 3 (Poorly)
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Fig. 7  Relationship between expression levels of genes with clinicopathological features in tumor tissues from colorectal cancer (CRC) patients. 
Relationship expression of DDIT4, SULF1 and TPTEP1 with TNM stages; statistical significantly expression levels of SULF1 and TPTEP1 increased 
with advanced stage (A–C). Increased expression levels of DDIT4, SULF1, and TPTEP1 were observed in CRC patients with metastasis (D–F). Higher 
expression level of miR-181d-5p was associated with histologic grade in CRC tissues (G). miR-148b-3p expression reduced in CRC patients with 
perineural invasion (H)

Table 5  Correlation coefficients according to Spearman 
between RNA expression of genes for all tumor tissues from 
colorectal cancer patients

**  Correlation is significant at the 0.01 level
*  Correlation is significant at the 0.05 level

TPTEP1 miR-181d-5p miR-148b-3p

DDIT4 0.37* − 0.25 − 0.32*

SULF1 0.65** − 0.23 − 0.40*

TPTEP1 1.00 − 0.007 − 0.20

miR-181d-5p 1.00 0.88**

miR-148b-3p 1.00

Table 6  Correlation coefficients according to Spearman 
between RNA expression of genes for all adjacent normal tissues 
from colorectal cancer patients

** Correlation is significant at the 0.01 level
* Correlation is significant at the 0.05 level

TPTEP1 miR-181d-5p miR-148b-3p

DDIT4 0.53** − 0.29 0.16

SULF1 0.37* − 0.11 0.47**

TPTEP1 1.00 − 0.10 0.25

miR-181d-5p 1.00 0.64**

miR-148b-3p 1.00
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miR-148b-3p, as potential biomarkers, in CRC patients 
and their association with clinicopathological features.

DDIT4 is a suppressor for mammalian target of rapa-
mycin (mTOR) signaling pathway which is induced in 
various cellular stress conditions such as hypoxia and 
DNA damage [28, 76, 77]. Moreover, DDIT4 gene has a 
p53 transcription-factor binding site which can play a key 
role in the p53-dependent tumorigenesis [78]. Despite its 
repressive role on mTOR signaling pathway, up-regula-
tion of DDIT4 has been shown to promote cell prolifera-
tion and reduce apoptotic rate in various cell types [79, 
80]. DDIT4 was suitable candidate gene in order to pre-
dict miRNAs in CRC because of not only its participation 

in the PI3K/Akt/mTOR signaling pathway [28] but also 
its involvement in “miRNAs in cancer” pathway as shown 
by KEGG pathway analysis. We found RNA expres-
sion levels of DDIT4 were significantly higher in CRC 
tissues compared to the adjacent normal tissues. This 
result is in line with the study on gastric cancer display-
ing up-regulation of DDIT4 expression in the tumor tis-
sues compared to the adjacent normal tissues as found 
by RT-qPCR and immunohistochemically staining [79]. 
Since earlier findings reported that inhibition of mTOR 
pathway is leading to enrichment of cancer stem cells, 
high DDIT4 expression could be related to expression of 
stem-cells markers [68, 81]. As expected, up-regulation 

Fig. 8  Significant correlations for expression levels between DDIT4 and SULF1 with ncRNAs (TPTEP1 and miR-148b-3p). Correlations between 
DDIT4 and TPTEP1 (A), SULF1 and TPTEP1 (B), DDIT4 and miR-148b-3p (C), SULF1 and miR-148b-3p (D) and miR-148b-3p and miRNA-181d-5p (E) in 
colorectal cancer (CRC) tissues and adjacent normal tissues (control)
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of DDIT4 expression was observed in colorectal CSC-
enriched spheroids compared to HT-29 cancer cells in 
our study. This result supports higher expression levels 
of DDIT4 in the CRC patients with metastasis because 
CSCs play role in tumor metastasis [82], and are key driv-
ers in tumor progression [83]. These findings indicate 
that this higher RNA expression of DDIT4 is significantly 

associated with more aggressive tumor behavior. Our 
report is the first study to show high mRNA levels of 
DDIT4 expression and its clinical significance in CRC tis-
sues as well as in colorectal CSC-enriched spheroids.

SULF1, another candidate gene, is a subtype of pro-
teinase released by various cells in the extra cell matrix 
(ECM) and alters its function by modifying HS. This 

Fig. 9  Evaluation cancer stem cell (CSC) features in colorectal CSC-enriched spheroids. Morphological feature of HT-29 cancer cells (A) and 
colorectal CSC-enriched spheroids derived from HT-29 cells (B). Overexpression of stemness genes (OCT4, SOX2, C-MYC, KLF4, and NANOG), (C), 
ABC transporter genes (ABCB1, ABCG2, and ABCC1) (D) and epithelial-mesenchymal transition (EMT) genes (TWIST1, SNAIL1, Vimentin (VIM), 
and ZEB1) (E) in colorectal CSC-enriched spheroids compared to HT-29 cancer cells as control. Not significant (ns): P > 0.05, *P ≤ 0.05, **P ≤ 0.01, 
***P ≤ 0.001, ****P ≤ 0.0001 

Fig. 10  Expression levels of DDIT4, SULF1 and TPTEP1 in colorectal CSC-enriched spheroids. Higher expression of DDIT4, SULF1, and TPTEP1 was 
observed in colorectal CSC-enriched spheroids than HT-29 cancer cells which all were statistically significant. DDIT4 (A), SULF1 (B), and TPTEP1 (C)
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alteration affects several signaling molecules toward the 
development and spread of cancer in the microenviron-
ment [84]. Several experimental studies reported SULF1 
as a tumor suppressor effector and its down-regulation 
levels related to several cancers such as pancreatic, ovar-
ian and gastric cancer [85–87]. While, some other stud-
ies have shown up-regulation of SULF1 expression in 
gastric, colorectal and bladder cancer [31, 88, 89]. Our 
bioinformatics analysis showed up-regulation of SULF1 
expression levels. This data is consistent with the previ-
ous results on ONCOMINE database showing increased 
expression levels of SULF1 in CRC tissues compared to 
the adjacent normal tissues [90]. In our study, RT-qPCR 
data showed down-regulation of SULF1 expression lev-
els in CRC tissues compared to the adjacent normal tis-
sues, although its expression levels showed significantly 
increased levels in patients with more advanced stage 
and metastasis of the tumor. This result is in line with the 
previous findings observing down-regulating of SULF1 
in early stage of ovarian tumors [86, 91]. The increased 
SULF1 expression levels have been also reported at the 
later stages of malignancy progression in CRC patients 
[32, 33]. It has been described that SULF1 has ambivalent 
functions and there is insufficient information to under-
stand the conflicting results regarding the role of SULF1 
in cancer [92, 93]. The tumor suppressor effect of SULF1 
was described under hypoxic conditions in solid tumors. 
The level reduction of SULF1 in such environments 
causes increasing in 6-O-sulfate on HSPGs which subse-
quently leads to increasing of the fibroblast growth factor 
(FGF) signaling and cancer progression [91]. Besides, the 
oncogenic effect of SULF1 was proposed due to the high-
affinity of HS-Wnt complex. In fact, extracellular removal 
of the 6-O-sulfate on the HSPGs by SULF1 allows ini-
tiation of the Wnt signaling [94, 95]. Evidence suggests 
that overexpression of SULF1 is related to expression 
of EMT genes and can promote EMT in human hepa-
tocellular carcinoma [96]. In this regard, we measured 
SULF1 expression in colorectal CSC-enriched spheroids 
with increased EMT gene expression and observed sig-
nificantly higher expression levels of SULF1 in colorectal 
CSC-enriched spheroids compared to the HT-29 cells. 
This finding is in line with the previous data showing 
up-regulation of SULF1 expression levels in high meta-
static colorectal cancer cell lines [33] and breast CSCs 
[71]. Increased SULF1 expression levels in patients with 
distant metastasis, advanced stages of the tumor, as well 
as colorectal CSC-enriched spheroids indicate that the 
levels of SULF1 expression is being increased by tumor 
progression in CRC. Despite dysregulation of SULF1 
expression levels in CRC, such challenging observa-
tions make it difficult to offer SULF1 as a “biomarker”. 

Therefore, more studies are needed to reveal the dual 
roles of SULF1 and its expression pattern in cancer 
patients.

In the present study, we also investigated expression 
of some ncRNAs including miRNAs (miR-181d-5p and 
miR-148b-3p) and TPTEP1 in CRC tissues. Previous 
reports indicated that miR-181d contributes in regu-
lation of Akt pathway in breast cancer and CRC cell 
glycolysis which acts as an oncomiR [97, 98]. We dem-
onstrated that miR-181d-5p is significantly up-regulated 
in tumor tissues compared with the adjacent normal tis-
sues in CRC patients. This data is in good agreement with 
the previous data in CRC patients [97]. Moreover, the 
association between overexpression of miR-181d-5p and 
high-grade tumor cells may indicate a possible influence 
of increased miR-181d-5p expression in the progression 
of cancer. Despite what was previously described in the 
breast cancer cells and CRC patients about association 
between high expression of miR-181d-5p and increased 
invasion and migration of the tumors [97, 99], our data 
analysis didn’t show any significant difference of miR-
181d-5p expression levels with various metastasis groups 
in CRC patients. In line with this data, our results didn’t 
show any significant different in expression levels of miR-
181d-5p between HT-29 cancer cells and colorectal CSC-
enriched spheroids. While up-regulation of miR-181 
family has been previously observed in the liver cancer 
stem/progenitor cells [70].

Cancer reports displayed that miR-148b, especially 
miR-148b-3p, plays an important role as a tumor sup-
pressor by influencing on cell growth and proliferation 
[38], apoptosis [100], metastasis dissemination and can-
cer therapy responses [101]. Our result demonstrated a 
lower expression of miR-148b-3p in CRC tissues com-
pared with the adjacent normal tissues which is in line 
with previous result in CRC patients [38]. Also, we 
observed down-regulation of miR-148b-3p in patients 
with vascular invasion compared to those without this 
invasion. No significant difference in miR-148b-3p 
expression was revealed between colorectal CSC-
enriched spheroids and HT-29 cancer cells, nor between 
metastasis groups of CRC patients. In contrast to our 
findings, decreased expression and suppressor role of 
miR-148b-3p has been previously reported in the hepatic 
CSCs [69, 102].

Our investigation, for the first time, identified dys-
regulated expression of TPTEP1 in CRC patients. Con-
trary to the lung [40] and liver [41] cancer studies, the 
expression of TPTEP1 showed an up-regulation pat-
tern in our CRC tissues compared to the adjacent nor-
mal tissues. Moreover, we observed higher expression 
of TPTEP1 in colorectal CSC-enriched spheroids than 
HT-29 cancer cells. As expected, based on predictions, 
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DDIT4 and SULF1 expression levels were significantly 
correlated with the TPTEP1 expression levels in CRC. 
This result may be related to interaction between these 
RNAs amongst each other and can support findings 
about predicted binding sites based on bioinformat-
ics algorithms for TPTEP1. According to the predicted 
binding site, DDIT4 in RNA level from 3′UTR region 
interacts with TPTEP1. It is remarkable that 3’ UTRs 
play critical roles in gene expression regulation through 
bindings ncRNAs [103]. Also, RNA expression lev-
els of DDIT4 and SULF1 were significantly correlated 
negatively with miR-148b-3p expression levels in CRC 
tissues. These correlations may be explained by regula-
tory effects of miR-148b-3p expression on these RNAs 
as predicted based on the mRNA-miRNA network. We 
aware that our research has limitations to describe in 
details these regulatory effects and further studies are 
warranted to understand the relationship between 
these RNAs.

Conclusions
Overexpression of DDIT4 and TPTEP1 in CRC patients 
with metastasis and advanced stages as well as in colo-
rectal CSC-enriched spheroids indicates that increased 
RNA expression of these markers may be useful indi-
cators of more aggressive tumor behavior and further 
disease progression in CRC patients. Moreover, cor-
relations and predicted interactions of TPTEP1 and 
miR-148b-3p with DDIT4 and SULF1 in mRNA level 
might be due to the regulatory effects of these RNAs 
amongst each other. According to the expression dif-
ferences of DDIT4, SULF1, TPTEP1, miR-181d-5p, and 
miR-148b-3p in CRC tissues compared to the adjacent 
normal tissues, we believe our results provide a valu-
able resource in order to find biomarkers clinicopatho-
logically relevant to CRC patients. From these findings, 
we are able to conclude that analysis of hub mRNA–
miRNA genes can help to predict some important 
lncRNAs which are dysregulated in CRC patients.
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