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Abstract 

Background: Given that dysregulated metabolism has been recently identified as a hallmark of cancer biology, this 
study aims to establish and validate a prognostic signature of lung adenocarcinoma (LUAD) based on metabolism-
related genes (MRGs).

Methods: The gene sequencing data of LUAD samples with clinical information and the metabolism-related gene 
set were obtained from The Cancer Genome Atlas (TCGA) and Molecular Signatures Database (MSigDB), respectively. 
The differentially expressed MRGs were identified by Wilcoxon rank sum test. Then, univariate cox regression analy-
sis was performed to identify MRGs that related to overall survival (OS). A prognostic signature was developed by 
multivariate Cox regression analysis. Furthermore, the signature was validated in the GSE31210 dataset. In addition, 
a nomogram that combined the prognostic signature was created for predicting the 1-, 3- and 5-year OS of LUAD. 
The accuracy of the nomogram prediction was evaluated using a calibration plot. Finally, cox regression analysis was 
applied to identify the prognostic value and clinical relationship of the signature in LUAD.

Results: A total of 116 differentially expressed MRGs were detected in the TCGA dataset. We found that 12 MRGs 
were most significantly associated with OS by using the univariate regression analysis in LUAD. Then, multivariate 
Cox regression analyses were applied to construct the prognostic signature, which consisted of six MRGs-aldolase 
A (ALDOA), catalase (CAT), ectonucleoside triphosphate diphosphohydrolase-2 (ENTPD2), glucosamine-phosphate 
N-acetyltransferase 1 (GNPNAT1), lactate dehydrogenase A (LDHA), and thymidylate synthetase (TYMS). The prog-
nostic value of this signature was further successfully validated in the GSE31210 dataset. Furthermore, the calibration 
curve of the prognostic nomogram demonstrated good agreement between the predicted and observed survival 
rates for each of OS. Further analysis indicated that this signature could be an independent prognostic indicator after 
adjusting to other clinical factors. The high-risk group patients have higher levels of immune checkpoint molecules 
and are therefore more sensitive to immunotherapy. Finally, we confirmed six MRGs protein and mRNA expression in 
six lung cancer cell lines and firstly found that ENTPD2 might played an important role on LUAD cells colon formation 
and migration.
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Background
Lung cancer is one of the most commonly diagnosed 
cancer types with high mortality worldwide in men and 
women [1]. Lung adenocarcinoma (LUAD), which is 
considered a highly molecular heterogeneous disease, is 
a prevalent pathological subtype of lung cancer with an 
average 5-year survival rate of only 15 % [2–4]. Molecu-
lar targeted therapy for LUAD has been widely accepted 
in recent years, and the epidermal growth factor recep-
tor (EGFR) gene, the anaplastic lymphoma kinase (ALK) 
gene, and the Kirsten rat sarcoma viral oncogene (KRAS) 
gene are important targets of LUAD [5–7]. Despite great 
clinical improvements in the molecular basis, diagnosis 
and treatment modalities of LUAD, the recurrence rate 
still remains high, and the survival rate remains poor [4, 
8]. As LUAD has the tendency of early metastasis, and 
most of them are found at advanced stages, which may 
be the most important cause of high mortality in LUAD 
patients [9, 10]. There is an urgent need, therefore, to 
develop more reliable and more effective biomarkers for 
the early detection, diagnosis, prognosis and monitoring 
of LUAD.

Dysregulated metabolism has been recently identified 
as a well-recognized hallmark of cancer biology, meet-
ing the requirements of rapid proliferation and preferen-
tial survival of cancer cells [11, 12]. In the 1920  s, Otto 
Warburg first discovered that cancer cells vigorously 
take up glucose and convert pyruvate into lactate despite 
the presence of sufficient oxygen, a phenomenon now 
widely termed aerobic glycolysis, or the Warburg effect 
[13, 14]. This phenomenon not only provide a niche for 
the survival and proliferation of tumor cells, but also has 
a profound effect on the tumor microenvironment [15]. 
In addition, it has recently been reported that high con-
centrations of lactate in the tumor microenvironment are 
associated with distant metastasis and poor prognosis in 
a multitude of cancers, including LUAD [16, 17]. There 
is general agreement that the metabolic processes play 
an important role in the pathogenesis and progression of 
lung cancer. However, few studies have comprehensively 
analyzed the relationship between metabolism-related 
genes (MRGs) and the diagnosis, risk stratification, prog-
nosis, and survival of LUAD by high-throughput bio-
marker sequencing.

In the present study, we constructed a prognostic sig-
nature based on MRGs from The Cancer Genome Atlas 

(TCGA) database, which was further validated in the 
GSE31210 dataset to explore an efficient metabolic bio-
maker for the more accurate stratification management 
of LUAD. In addition, a nomogram that combined six 
MRGs was created for predicting the 1-, 3- and 5-year 
OS of LUAD. The accuracy of the nomogram prediction 
was evaluated using a calibration plot. Cox regression 
analysis was applied to identify the prognostic value and 
clinical relationship of the signature in LUAD. Moreover, 
the high-risk group patients have higher expression of 
immune checkpoint molecules and are more sensitive to 
immunotherapy. Finally, we confirmed six MRGs protein 
and mRNA expression in six lung cancer cell lines and 
firstly found that ENTPD2 might played an important 
role on LUAD cells colon formation and migration.

Materials and methods
Data collection
The transcriptomic and the corresponding clinical data 
of patients with LUAD were downloaded from TCGA 
(https:// portal. gdc. cancer. gov/) database and the Gene 
Expression Omnibus (GEO; https:// www. ncbi. nlm. nih. 
gov/ geo/) database. The RNA-seq data, including 497 
LUAD and 54 adjacent non-tumor cases from TCGA 
database and 174 LUAD cases from GSE31210 data-
set were examined. The MRGs were identified from 
the metabolic pathway-related gene sets of “c2.cp.kegg.
v7.0.symbols” in gene set enrichment analysis (GSEA). 
MRGs can be further analyzed only when they are 
included in the above data sets.

Differentially expressed MRGs and enrichment analysis
The differentially expressed MRGs in LUAD and normal 
lung tissues were detected using the R package limma and 
the Wilcoxon test method [18]. |logFC|>1 and adjusted 
P < 0.05 were considered as significant. To explore the 
characteristic biological function and potential path-
ways of these MRGs, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis were were carried out with R pack-
age clusterProfiler [19]. Functional categories with a false 
discovery rate (FDR) smaller than 0.05 were presented.

Construction of the metabolism‑related signature for LUAD
To avoid the interference of irrelevant factors, patients 
with follow-up time between 0 day and 2000 days were 

Conclusions: We established a prognostic signature based on MRGs for LUAD and validated the performance of the 
model, which may provide a promising tool for the diagnosis, individualized immuno-/chemotherapeutic strategies 
and prognosis in patients with LUAD.
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included. The 426 LUAD samples with survival infor-
mation in the TCGA dataset were taken as the train-
ing set for constructing the prognosis risk model, and 
the 174 LUAD samples with survival information in the 
GSE31210 dataset were explored for external validation. 
Firstly, univariate Cox analysis was used to screen out 
MRGs associated with the OS of patients with LUAD, 
and only MRGs with a P value < 0.001 were selected for 
subsequent analyses. To avoid the prognostic signature 
overfitting and narrow the genes for prediction of the 
OS, Lasso Cox regression was carried out using R “glm-
net” package. MRGs detected via Lasso algorithm were 
evaluated by step wise multivariate cox regression anal-
ysis. By weighting the estimated cox regression coef-
ficients, the model of tumor-related metabolism genes 
risk was constructed [20]. The prognostic metabolism-
related gene signatures were shown as risk score = Ʃ 
(βi × Expi), where βi, the coefficients, represented the 
weight of the respective signature and Expi represented 
the expression value. Based on the risk score formula, 
patients were assigned into low-risk group and high-
risk group with the median risk score as the cut-off 
point. The Kaplan-Meier (K-M) survival curve was used 
the log-rank test to evaluate the differences in survival 
rate between the two groups. Furthermore, the receiver 
operating characteristic (ROC) curve was implemented 
by R “survival ROC” package [21] and the correspond-
ing area under the ROC curve (AUC) was measured to 
assess the sensitivity and specificity of the metabolism-
related signature.

Validation of the metabolism‐related signature for LUAD
To verify the prognostic value of metabolism-related sig-
nature, we used the GSE31210 dataset as the validation 
cohort. The same formula was used to calculate the risk 
scores for each patient. Survival and ROC curve analyses 
were implemented as described above. Finally, according 
to the results of multivariate cox regression analysis, a 
nomogram for predicting the likelihood of 1-year, 3-year 
and 5-year OS was constructed by R “rms” package. The 
calibration plots were used to evaluate the prognostic 
accuracy of the nomogram.

Analysis of these crucial MRGs expression level
Differential expression of these hub MRGs at the tran-
scription level were examined by matching cancer and 
adjacent normal lung tissues from the TCGA database. 
For further validation of our analysis, The Human Pro-
tein Atlas (HPA) online database (http:// www. prote inatl 
as. org/) was applied to identify the expression of these 
MRGs at the translational level [22].

Association of the prognostic signature 
and clinicopathological features
In addition, univariate and multivariate analyses were 
used to estimate the effect of risk score on OS and the 
clinicopathologic features (age, gender, clinical stage 
and pathological grading). We also explored the corre-
lation between the expression of these MRGs and sev-
eral clinical features. Time-dependent ROC curve was 
performed to compare the accuracy of the prediction 
between the clinicopathologic features and risk score.

Assessing the immuno‑/chemotherapeutic response 
of the risk subtypes for LUAD patients
Immune checkpoint therapy has made important clinical 
advances and offered a new weapon against cancer, which 
would ideally be matched to those patients most likely to 
benefit [23, 24]. Then, we investigated the expression of 
crucial immunomodulators between low-risk group and 
high-risk group. Moreover, according to the Genomics 
of Drug Sensitivity in Cancer (GDSC, https:// www. cance 
rrxge ne. org), the chemotherapeutic response for com-
mon chemotherapy drugs of each LUAD patients was 
calculated by by R “pRRophetic” package[25].

Colon assay and Western blot analysis
Colon assay and Western blot analysis were performed 
as described previously [26, 27].

Quantitative real‑time PCR
Total RNA was extracted with the TRIzol Reagent (Inv-
itrogen Carlsbad, CA, USA), and the concentration was 
measured using an ultraviolet (UV) spectrophotom-
eter (UV-1201; Shimadzu Corporation, Kyoto, Japan). 
Reverse transcription (RT) was performed as described 
previously [27]. Real-time PCR was conducted using 
the SYBR-Green PCR kit (Takara, Osaka, Japan) in a 
Rotor-Gene 3000 machine (Corbett Life Science, Syd-
ney, Australia). The quantitative analysis of the tran-
scription of CAT, LDHA and ENTPD2 was described 
previously [27]. Each reaction was performed in a 25µL 
volume containing 2µL of cDNA, 0.5µL of 10µM per 
each primer, and 12.5 µL of the 2× SYBR-Green mix-
ture. CAT: For: 5′-AGA TGC GGC GAG ACT TTC-
3′, Rev: 5′-CAA CTG GGA TGA GAG GGT AG-3′. 
LDHA: For: 5′-CTG TAT GGA GTG GAA TGA ATG-
3′, Rev: 5′ -GAT GTG TAG CCT TTG AGT TTG-3′. 
ENTPD2: For: 5′-GAC GCT GGT TCT TCA CAC − 3′, 
Rev: 5′ -CTC TTT GGG CAC ATC CTG-3′.

Statistical analysis
All statistical analyses were performed by version 3.6.1 
of R software (https:// www.r- proje ct. org/) and ver-
sion 5.28.1 of Perl software (http:// www. perl. org). The 
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Wilcoxon test was used to compare two paired groups. 
The Kaplan-Meier survival curves were compared 
with the log-rank test. If not otherwise stated, data 
were considered to be statistically significant with P 
value < 0.05.

Results
Identification of differentially expressed MRGs in LUAD
According to the KEGG metabolic pathway-related gene 
sets, a total of 944 MRGs were obtained from the gene 
sets of “c2.cp.kegg.v7.0.symbols”. We matched these 
genes with the sequence data of LUAD related mRNA 
in the TCGA database and GSE31210 dataset, and only 
common mRNAs were used. Considering the cut-
off criteria (adjusted P value < 0.05 and |log FC| > 1.0), 
116 differentially expressed MRGs, which consist of 31 
downregulated and 85 upregulated MRGs (Fig.  1), were 
selected for subsequent analysis.

Functional enrichment of the differentially expressed 
MRGs
To investigate the potential functional implication of 
these MRGs, 116 differentially expressed MRGs were fur-
ther analyzed by GO functional enrichment analysis and 
KEGG pathway enrichment analysis. A total of 431 GO 
terms and 42 pathways were identified (adjusted P < 0.05). 
The top 30 enrichment GO analysis and top 30 enrich-
ment KEGG analysis were displayed in Fig.  2. The top 
enriched GO terms in biological processes were carbox-
ylic acid biosynthetic process and organic acid biosyn-
thetic process, and those in cellular components were 

mitochondrial matrix, ficolin-1-rich granule lumen, and 
ficolin-1-rich granule, in terms of molecular function, 
genes were mostly enriched in terms of co-factor bind-
ing. In the KEGG pathway enrichment analysis, these 
genes were shown to be significantly associated with 
signaling pathway related to material synthesis and mate-
rial metabolism, such as “biosynthesis of amino acids”, 
“arginine and proline metabolism”, “glycolysis/gluconeo-
genesis”, “carbon metabolism” and et al.

Establishment of metabolism‐related prognostic signature 
for LUAD
To identify MRGs associated with OS, a univariate cox 
proportional hazard regression analysis was initially 
performed on 116 differentially expressed MRGs in the 
TCGA database. The result showed that 12 MRGs were 
significantly associated with the OS (Fig. 3a; P < 0.001). 
Of the survival-related MRGs, 10 genes (ALDOA, 
TPI1, PKM, LDHA, GPI, PFKP, RRM2, TYMS, 
GNPNAT1, and ENTPD2) were considered risk factors 
(all P < 0.001; HRs, 1.0026–1.1103) and that their over-
expression might reduce survival. While,  overexpres-
sion of the remaining two genes (CAT and FBP1) (all 
P < 0.001; HRs,0.9747 and 0.9907, respectively) might 
improve the survival of patients. The Lasso regression 
analysis was then used to remove MRGs that may be 
highly related to other MRGs (Fig. 3b–c). Furthermore, 
a prognostic signature model was established based on 
multivariate Cox regression analysis. Finally, six MRGs 
were confirmed and applied to establish a metabo-
lism-related signature (Fig.  3d). A prognostic model 

Fig. 1   Differentially expressed MRGs in LUAD. a Heatmap of MRGs between LUAD and normal lung tissues in TCGA database; The color from 
blue to red represents the progression from low expression to high expression. b Volcano plot of MRGs in TCGA database; The red dots in the plot 
represents upregulated genes and blue dots represents downregulated genes with statistical significance. Gray dots represent no differentially 
expressed genes 
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was constructed to evaluate the prognosis of each 
patient as follows: Risk score = (0.001709×expres-
sion value of ALDOA) + (-0.01187×expres-
sion value of CAT) + (0.082279×expression value 
of ENTPD2) + (0.030344×expression value of 
GNPNAT1) +(0.003499×expression value of LDHA) + 
(0.018476×expression value of TYMS).

Then, the risk score of each patient was calcu-
lated according to this prognostic model. Based on 
the median risk score, 426 LUAD patients were clas-
sified into a high risk group (n = 213) and low risk 
group (n = 213). The risk score, survival status and 
gene expression heatmap of these prognostic MRGs 
are presented in Fig.  4a–c. Kaplan-meier log-rank test 
indicated that patients in the high risk group showed 
markedly poorer OS than those in the low risk group 
(Fig. 4d). Areas under the curve value of the signature 
predicting the 1-, 3- and 5-year OS rates were 0.73, 
0.703 and 0.854, indicating that this prognostic model 
exhibited a good sensitivity and specificity (Fig. 4e).

Validation of the metabolism‐related prognostic signature 
for LUAD
The GSE31210 dataset including 174 LUAD samples 
were used for the validation of the metabolism-related 
signature. According to the median risk score, we divided 
patients into high risk (n = 78) and low risk groups 
(n = 96). Consistent with the results derived from the 
TCGA database, the Kaplan-Meier curve demonstrated 
that patients in the high risk group exhibited markedly 
poorer OS than those in the low risk group (Fig. 5d). The 
risk score, survival status and gene expression heatmap 
of these prognostic MRGs were shown in Fig. 5a-c. The 
AUCs for 1-, 3- and 5-year OS rates were 0.654, 0.705 
and 0.725 (Fig. 5e). A nomogram for predicting 1-, 3- and 
5-year OS of patients with LUAD was constructed with 
the six prognostic genes that had most significant values 
in multivariate analysis (Fig. 6a). In addition, the calibra-
tion curve of the prognostic nomogram demonstrated 
good agreement between the predicted and observed 
survival rates for each of OS (Fig. 6b-d).

Fig. 2   Gene functional enrichment analysis of differentially expressed MRGs.a The top 30 significant terms of GO function enrichment. BP 
biological process, CC cellular component, MF molecular function. b The GO circle shows the scatter map of the logFC of the specified gene. c The 
top 30 significant terms of KEGG analysis. d The KEGG circle shows the scatter map of the logFC of the specified gene. The higher the Z-score value 
indicated, the higher expression of the enriched pathway
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Analysis of these crucial MRGs expression level
To explore the six hub genes at the transcription level, the 
mRNA expression levels were analyzed using the TCGA 
database. The results demonstrated that the expression 
of ALDOA, ENTPD2, GNPNAT1, LDHA, and TYMS 
in LUAD tissues were all increased than those of adja-
cent normal lung tissues, while the expression of CAT 
was decreased than those of adjacent tissues (Fig.  7). 
Subsequently, we also investigated the expression of 
hub genes between low and high risk group. The results 
showed that high risk group had higher expression of 
five hub MRGs (ALDOA, ENTPD2, GNPNAT1, LDHA, 
and TYMS) than low risk group, while the expression 

of CAT was decreased than high risk group (Additional 
file 1: Figure S1, P < 0.001). To assess the six hub genes at 
the translational level, the protein expression levels were 
analyzed using the HPA database. The results showed 
that the protein level of ALDOA, ENTPD2, GNPNAT1, 
LDHA, and TYMS were increased in LUAD tissues than 
in normal tissues, matched their mRNA expression lev-
els (Fig.  8). There is no difference between LUAD tis-
sues and normal tissues for the protein level of CAT 
(Fig. 8b). Finally, to further investigate functional impli-
cation of six MRGs, GO and KEGG analysis were con-
ducted in R software. GO analysis showed that six MRGs 
were mainly enriched in metabolic process, including 

Fig. 3 Establishment of metabolism-related prognostic signature. a Identified these differentially expressed MRGs related to the LUAD risks by 
univariate cox regression analysis. P values < 0.001 were considered to be statistically significant. b Screening of optimal parameter (lambda) at 
which the vertical lines were drawn. c Lasso coefficient profiles of the seventeen MRGs with non-zero coefficients determined by the optimal 
lambda. d Multivariate cox analysis to developing a prognostic index based on these MRGs
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purine nucleoside diphosphate, puriner ibonucleoside 
diphosphate, ribonucleoside diphosphate and nucleoside 
diphosphate metabolic process (Additional file 2: Figure 
S2a). KEGG analysis showed that six MRGs were signifi-
cantly enriched glycolysis/gluconeogenesis, HIF-1 sign-
aling pathway and carbon metabolism (Additional file 2: 
Figure S2b).

Clinical value of prognostic signature
Univariate and multivariate Cox regression analysis was 
conducted to evaluate the independent prediction ability 
of metabolism-related prognostic signature between the 
signature and other common prognostic factors, includ-
ing age, gender, histological grade, pathological stage and 
TNM stage. Although univariate cox analysis indicated 
that pathologic stage, T stage, N stage and our model 
were markedly associated with OS (Fig.  9a; p < 0.001), 
after the multivariate analysis, only metabolism-related 

prognostic signature (p < 0.001) and pathological stage 
(p < 0.007) could be used as an independent prognostic 
factor (Fig.  9b). To further evaluate the clinical value of 
MRGs, the relationship between MRGs prognostic indi-
cators and clinical features were investigated, and the 
results indicated that ALDOA, ENTPD2, GNPNAT1, 
LDHA, and CAT were differentially expressed in patients 
with various clinical features (Fig.  10). To validate the 
clinical value of the metabolism-related prognostic sig-
nature, the association between the risk score and clini-
cal characteristics were subsequently assessed, and the 
results demonstrated that high risk scores were positively 
associated with survival status, gender, N stage, and path-
ologic stage in patients with LUAD (Fig. 10). To investi-
gate more additional prognostic value of the prognostic 
signature, time-dependent ROC curve was performed. 
The AUC value of the risk score predicting the 0.5-, 1-, 
2-, 3- and 5-year OS rates were 0.745, 0.779, 0.726, 0.716, 
0.760 and 0.784, respectively, which was much higher 

Fig. 4 Construction of the metabolism-based prognostic risk signature in the TCGA cohort. a The risk score distribution of LUAD patients; b Survival 
status and duration of patients; c Heatmap of the metabolism-related genes expression; d Survival curves for the low risk and high risk groups; 
e Time-independent receiver operating characteristic (ROC) analysis of risk scores for prediction the OS in the TCGA dataset
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than clinicopathologic features(Additional file  3: Figure 
S3). The results revealed that prognostic accuracy of the 
signature was superior to clinical risk factors.

Assessment of the immuno‑/chemotherapeutic response 
in the risk subtypes for LUAD patients
Immune checkpoint therapy, which improved antitumor 
immune responses by regulating the activity of T cells, 
has been emerged as a new weapon against cancer[24]. 
Thus, we analyzed the expression of immune checkpoint 
molecules (PD-L1, PD-L2, CTLA-4 and PD-1) between 
low-risk group and high-risk group in LUAD samples. As 
shown in Fig. 11a, high-risk patients with LUAD had sig-
nificantly higher expression of immune checkpoint mole-
cules than low-risk patients. Chemotherapy is an effective 
treatment for patients with advanced LUAD. The IC50 
values of the low-risk and high-risk groups were calcu-
lated based on the GDSC data, as shown in Fig. 11b, the 

results indicated that no chemotherapeutic drugs with 
significant response sensitivity were found in the high-
risk group. The above results demonstrateted that the 
poor prognosis of high-risk patients might be related to 
the immunosuppressive microenvironment and chemo-
therapy resistance. That is to say, the high-risk group 
patients have higher expression of immune checkpoint 
molecules and are more sensitive to immunotherapy.

Experimental validation
The protein expression levels of ALDOA, ENTPD2, 
LDHA, TYMS and CAT were investigated in 5 lung 
cancer cell lines (A549, H460, H1299, H1975, PC9), 
normal airway epithelial cells (16HBE) as control. 
The same with the results we have developed from 
bioinformatics, ALDOA, ENTPD2, LDHA, TYMS 
were significantly increased in 5 lung cancer cell line, 
comparing with in 16HBE. CAT was significantly 

Fig. 5 Validation of the metabolism-based prognostic risk signature in the GSE31210 cohort. a The risk score distribution of LUAD patients; 
b Survival status and duration of patients; c Heatmap of the metabolism-related genes expression; d Survival curves for the low risk and high risk 
groups; e Time-independent ROC analysis of risk scores for prediction the overall survival in the GSE31210 dataset
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Fig. 6 Construction of a nomogram based on the metabolism-related signature in the TCGA cohort. a The nomogram based on the signature in 
LUAD patients at 1, 3, and 5 years. b–d Calibration curves of nomogram for the signature at 1, 3, and 5 years

Fig. 7   Comparison of the crucial genes mRNA levels in paired adjacent normal tissues and LUAD tissues from TCGA. a ALDOA, b CAT, c ENTPD2, 
d GNPNAT1, e LDHA, f TYMS
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decreased in 5 lung cancer cell line, comparing with in 
16HBE. The gray value of protein bands was quantified 
(Fig. 12).

The mRNA expression levels of CAT, ENTPD2 and 
LDHA were also investigated in 6 lung cancer cell lines 
(A549, H460, H1299, H1975, PC9, Lewis), 16HBE as 
control. The results were also same with protein data, 
ENTPD2 (Fig.  13a) and LDHA (Fig.  13b) were signifi-
cantly increased, while CAT (Fig. 13c) was significantly 
decreased, comparing with in 16HBE.

Since ENTPD2 may be a good prognostic marker and 
therapeutic target for cancer patients, especially for 
those receiving immune therapy [28]. We used ENTPD2 
inhibitor POM-1 in 5 lung cancer cell lines, found that 
it could inhibit the formation of colonies in A549 and 
PC9, decreased colony-forming was also observed in 
H1975, which were all lung adenocarcinoma cell lines 

(Fig.  14b). The protein expression of ENTPD2 in 4 
cell lines was confirmed by western blot after adding 
POM-1 (Fig. 14a). Most importantly, we found POM-1 
could inhibit the migration of 5 lung cancer cell lines 
(Fig. 14c).

Discussion
LUAD, which is highly heterogeneous in morphological 
characteristics and remarkably variable in prognosis, is 
the most prevalent subtype of non-small cell lung can-
cer (NSCLC) [4, 29]. More and more attention has been 
recently paid to the key role of gene signatures based on 
specific correlation in predicting the prognosis of LUAD 
because of the rapid advances in high-throughput tech-
nologies and bioinformatics methodology [30–33]. 
Moreover, the identification of novel gene signatures 
that predict the prognosis of patients is beneficial for the 

Fig. 8   Verification of hub MRGs expression in LUAD and normal lung tissue using the HPA database. a ALDOA, b CAT, c ENTPD2, d GNPNAT1, 
e LDHA, f TYMS

Fig. 9 Univariate (a) and multivariate (b) independent prognostic analysis of independent risk factors for OS in patients with LUAD
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choice of treatment regimens and the improvement of 
survival rate [34, 35].

In recent years, interesting in dysregulated metabolism 
of cancer has been growing [36]. Accumulating evidence 
showed that MRGs played a key role in cancer develop-
ment and progression [37]. Therefore, the identification 
of novel MRGs has lately become a hotspot in cancer 
research, both as a biomarker and potential therapeutic 
target. In this study, a total of 116 differentially expressed 
MRGs, which consist of 31 downregulated and 85 upreg-
ulated MRGs, were detected in the TCGA dataset. We 
found that 12 MRGs were most significantly associated 
with OS by using the univariate regression analysis in 
LUAD. After conducting the LASSO regression and 
multivariable Cox regression analyses, a novel prognos-
tic signature which consisted of six MRGs (ALDOA, 
CAT, ENTPD2, GNPNAT1, LDHA, and TYMS) was 

established. Based on the gene signature, LUAD patients 
were classified into a high risk group and low risk group. 
Patients in the high risk group, which had a survival rate 
lower than 15 %, showed markedly poorer OS than the 
low risk group. The time-dependent ROC analysis dem-
onstrated that the AUC for 1, 3, and 5 years were 0.73, 
0.703, and 0.854, respectively, indicating that this prog-
nostic signature have good sensitivity and specificity. 
The prognostic value of this signature was further suc-
cessfully validated in the GSE31210 dataset. Moreo-
ver, the calibration curve of the prognostic nomogram 
demonstrated good agreement between the predicted 
and observed survival rates for each OS. Further analy-
sis indicated that this signature could be an independent 
prognostic indicator after adjusting to other clinical fac-
tors. Moreover, the high-risk group patients have higher 
expression of immune checkpoint molecules and are 

Fig. 10 Relationships between MRGs expression and clinicopathological factors in LUAD (P < 0.05)
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more sensitive to immunotherapy. Finally, the signature 
was found to be associated with various clinicopatho-
logical features.

Furthermore, six genes (ALDOA, CAT, ENTPD2, 
GNPNAT1, LDHA, and TYMS) in this prognostic 
signature were selected as crucial MRGs. ALDOA is 

an important enzyme involved in the glycolysis path-
way that is highly expressed in a wide range of cancers 
[38]. Some studies also proved that the overexpres-
sion of ALDOA might contribute to tumorigenesis 
and the progression of cancers through modulation 
of HIF-1α signaling [39, 40]. Our results showed that 

Fig. 11   Assessing the immuno-/chemotherapeutic response of the risk subtypes for LUAD patients. a The expression of immune checkpoint 
molecules (PD-L1, PD-L2, CTLA-4 and PD-1) between low-risk group and high-risk group; b The IC50 indicated the efficiency of chemotherapy to 
low- and high-risk groups by cisplatin, paclitaxel, docetaxel and gefitinib. * p < 0.05, ** p < 0.01, *** p < 0.001

Fig. 12   Validation of MRGs protein expression by western blot. * p < 0.05, ** p < 0.01, *** p < 0.001
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ALDOA might be a tumor-promoting gene in LUAD. 
Abnormal expression or decreased activity of CAT can 
lead to an increase in intracellular ROS concentration, 
which directly or indirectly induces tumorigenesis [41, 
42]. Consistently, our study found that compared with 
normal lung tissues, the mRNA level of CAT in LUAD 
tissues was down-regulated. GNPNAT1, a member of 
the GNAT protein superfamily, is a key enzyme in the 
metabolic pathway of N-acetylglucosamine synthesis 
[43]. Zhao et  al. reported that the overexpression of 
GNPNAT1 could promote the infiltration and adhesion 
of lung cancer cells [44]. In line with their findings, we 
found GNPNAT1 was also increased in LUAD. LDHA 
catalyzes the conversion of pyruvate to lactate with con-
comitant oxidation of NADH to NAD+, which plays an 
essential role in metabolic pathways of the cancer cells 
[45]. Recently, accumulating evidence showed that the 
overexpression of LDHA could promote the produc-
tion of lactate, thus contributing to the acidification 
of the tumor microenvironment, which may limit the 
effect of anti-PD-L1 therapy [46, 47]. We also found 
increased LDHA in LUAD might associated with a 
poor prognosis. TYMS, a rate-limiting enzyme during 
the DNA synthesis, plays an important role in catalyz-
ing the methylation of deoxyuridine monophosphate 
to deoxythymidine monophosphate [48]. High levels 
of TYMS expression are related to worse responses to 
5-FU, shorter survival times and other adverse clini-
cal behaviors in a variety of solid tumors [49, 50]. Since 
only patients with low expression of TYMS can respond 
to 5-FU, individualized chemotherapy regimens can 
be selected according to the expression of TYMS and 
tumor classification [51]. We also found TYMS as a 
part of the nomogram could predict LUAD patient 
prognosis.

In this study, six MRGs prognostic indicators were 
identified for the first time to be possibly associated with 

the survival outcome of LUAD. We also confirm the pro-
tein and mRNA expression in lung cancer cell lines by 
some experimental validation. To obtain a deep under-
standing of the selected genes, the functional annotation 
analyses of ENTPD2 were performed. ENTPD2 belongs 
to enzymes nucleoside triphosphate diphosphohydrolase 
family (NTPDase). NTPDase1(CD39) was played a key 
role in turning an ATP-mediated immune-stimulating 
into an adenosine-mediated immunosuppressant tumor 
microenvironment (TME) involving the coordinated 
control of inflammatory responses and tumor-associ-
ated antigen-specifific T cell immunity [52]. While over-
expression of ENTPD2 was a poor prognostic indicator 
for HCC, ENTPD2 inhibition was able to mitigate can-
cer growth and enhance the efficiency and efficacy of 
immune checkpoint inhibitors [28]. In this study, we con-
firmed ENTPD2 played an important role on cell colon 
formation and migration in LUAD for the first time.

However, we should acknowledge that there are 
some limitations in the present study which should be 
addressed in future studies. First, the potential selection 
bias could not be ruled out because of the transcriptomic 
and the corresponding clinical data of patients with 
LUAD were obtained from public database. Second, the 
robustness of the prognostic signature must be validated 
in large prospective studies.

Conclusions
In summary, we identified a novel signature based on 
MRGs that could be applied to analyze the prognostic 
of patients with LUAD, and verified by the data from the 
GEO databases and experimental validation. Meanwhile, 
we firstly developed the function of ENTPD2 on cells 
colon formation and migration in 5 lung cancer cell lines. 
This signature may provide valuable information either 
for diagnosis or developing novel therapeutic options for 
LUAD patients in the future.

Fig. 13   Validation of MRGs mRNA expression by real-time PCR. a mRNA expression of CAT in 6 lung cancer cells; b mRNA expression of ENTPD2 in 
6 lung cancer cells; c mRNA expression of LDHA in 6 lung cancer cells; ** p < 0.01, *** p < 0.001
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Fig. 14   Validation the function of ENTPD2 by colon assay and migration. a Confirm of POM1 inhibited ENTPD2 expression by western 
blot; b Inhibit ENTPD2 could inhibit the clone formation in lung adenocarcinoma cells; c Inhibit ENTPD2 could inhibit cell migration in lung 
adenocarcinoma cells. * p < 0.05, ** p < 0.01, *** p < 0.001
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