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Expression of PAWR predicts prognosis 
of ovarian cancer
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Abstract 

Background:  Ovarian cancer greatly threatens the general health of women worldwide. Implementation of predic-
tive prognostic biomarkers aids in ovarian cancer management.

Methods:  Using online databases, the general expression profile, target-disease associations, and interaction net-
work of PAWR were explored. To identify the role of PAWR in ovarian cancer, gene correlation analysis, survival analysis, 
and combined analysis of drug responsiveness and PAWR expression were performed. The predictive prognostic value 
of PAWR was further validated in clinical samples.

Results:  PAWR was widely expressed in normal and cancer tissues, with decreased expression in ovarian cancer 
tissues compared with normal tissues. PAWR was associated with various cancers including ovarian cancer. PAWR 
formed a regulatory network with a group of proteins and correlated with several genes, which were both implicated 
in ovarian cancer and drug responsiveness. High PAWR expression denoted better survival in ovarian cancer patients 
(OS: HR = 0.84, P = 0.0077; PFS, HR = 0.86, P = 0.049). Expression of PAWR could predict platinum responsiveness in 
ovarian cancer and there was a positive correlation between PAWR gene effect and paclitaxel sensitivity. In 12 paired 
clinical samples, the cancerous tissues exhibited significantly lower PAWR expression than matched normal fallopian 
tubes. The predictive prognostic value of PAWR was maintained in a cohort of 50 ovarian cancer patients.

Conclusions:  High PAWR expression indicated better survival and higher drug responsiveness in ovarian cancer 
patients. PAWR could be exploited as a predictive prognostic biomarker in ovarian cancer.
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Background
Ovarian cancer ranks seventh the most common cancer, 
causing 152,000 deaths annually worldwide (4.3% of all 
cancer deaths), and the 5-year survival rate for ovarian 
cancer has remained unchanged for decades [1]. High-
grade serous ovarian cancer is the most common histo-
logical subtype, which is thought to originate from the 
fallopian tubes and is characterized by nearly universal 

TP53 gene abnormalities [1]. The introductions of plati-
num in 1976 and paclitaxel in 1993 have greatly improved 
the outcomes of ovarian cancer patients [1–3]. Currently, 
combination regimens containing carboplatin and pacli-
taxel are the global standard of care [4]. A response rate 
of approximately 80% has been noted in initial chemo-
therapy [1]. However, the majority of patients develop 
resistance and recurrence [1, 5]. Implementation of pre-
dictive prognostic biomarkers could facilitate the man-
agement of ovarian cancer [1, 4–7].

PRKC apoptosis WTI regulator (PAWR), also known 
as Par-4, is a leucine zipper domain protein implicated 
in various cancers, including prostate cancer, bladder 
cancer, breast cancer, endometrial cancer, and leukemia 
[8–13]. PAWR is localized in the cytoplasm of diverse 
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normal tissue cells and in both the cytoplasm and the 
nucleus of many tumor cells [10]. Endogenous PAWR is 
essential for apoptosis induction in response to a variety 
of exogenous insults [14]. Besides, as a tumor suppres-
sor, PAWR induces apoptosis in a cancer-specific manner 
[9, 15]. PAWR is necessary for PTEN-inducible apopto-
sis, and inhibition of the PI3K/AKT signaling leads to 
PAWR-dependent apoptosis [16]. The PTEN/PI3K/AKT 
pathway is altered in more than 55% of ovarian can-
cer cases, which also affects the drug responsiveness of 
ovarian cancer [1, 17]. Moreover, the chemo-sensitivity 
and response to cisplatin and docetaxel of some can-
cers involve PAWR [14, 18, 19]. Therefore, PAWR may 
provide a feasible biomarker to predict drug responsive-
ness of ovarian cancer and a cancer-selective target for 
therapeutics.

In this study, we profiled PAWR expression in normal 
and tumor tissues of the human body and explored the 
target-disease associations of PAWR with various can-
cers. The protein regulatory network and gene correla-
tions of PAWR were further analyzed to construct the 
regulatory network of PAWR. The prognostic effect for 
survival and the predictive value for drug responsiveness 
of PAWR were also assessed to illustrate its function in 
ovarian cancer.

Methods
HPA analysis
The HPA database (https​://www.prote​inatl​as.org), which 
focuses on different aspects of the genome-wide analysis 
of human proteins, comprehensively maps all the human 
proteins in cells, tissues, and organs [20]. The global 
expression patterns of PAWR in all major tissues and 
organs in the human body were profiled using HPA.

GEPIA analysis
The GEPIA database (http://gepia​.cance​r-pku.cn) is an 
interactive web server for analyzing the RNA-sequencing 
expression data of 9736 tumor samples and 8587 normal 
samples [21]. Comparison of PAWR expression between 
TCGA and GTEx samples in different cancer subtypes 
was performed using GEPIA. Besides, the correlation 
between PAWR and other genes was assessed in GEPIA 
and Pearson’s coefficient was calculated.

c‑BioPortal analysis
c-BioPortal (https​://www.cbiop​ortal​.org) is an online 
database for interactive exploration of multidimensional 
cancer genomic datasets [22]. By using c-BioPortal, we 
obtained data on the mutations, copy number alterations, 
and mRNA expression of PAWR. The mutation spec-
trum and clinicopathological characteristics of ovarian 

cancer patients included in the TCGA dataset were also 
retrieved from c-BioPortal.

Evaluation of target‑disease associations
To identify and visualize potential drug targets associated 
with diseases, the Open Targets platform (https​://www.
targe​tvali​datio​n.org) integrates evidence from genetics, 
genomics, transcriptomics, drugs, animal models, and 
scientific literatures [23]. Using the Open Targets plat-
form, we scored and ranked the target-disease associa-
tions of PAWR.

Gene Ontology (GO) analysis
The GO resource (http://geneo​ntolo​gy.org) provides up-
to-date and comprehensive knowledge concerning the 
functions of genes from many different organisms, from 
Homo sapiens to bacteria, facilitating biological research 
[24]. GO terms involving PAWR were searched in the 
GO database.

Construction of protein–protein interaction network
The STRING database (https​://strin​g-db.org) collects, 
scores, and integrates all publicly available sources of 
protein–protein interaction information and comple-
ments these with computational predictions [25]. The 
latest version currently covers 24,584,628 proteins from 
5090 organisms. The protein–protein interaction net-
work of PAWR was constructed using STRING.

Survival analysis
The Kaplan–Meier plotter database (KM plotter) (https​
://kmplo​t.com/analy​sis/), which is capable of assessing 
the effects of 54,000 genes on survival in 21 cancer types, 
integrates gene expression and clinical data simultane-
ously [26]. To determine the prognostic value of PAWR, 
KM plotter was analyzed, and hazard ratio with 95% con-
fidence interval and log-rank P value were calculated.

Oncomine analysis
Oncomine (https​://www.oncom​ine.org/resou​rce/main.
html) is an integrated gene chip and data mining plat-
form, which contains more than 90,000 cancer samples 
and 12,000 normal samples [27]. We used Oncomine to 
examine the expression levels of PAWR related to dif-
ferent clinical outcomes and recurrence statuses. PAWR 
expression under different paclitaxel responsiveness was 
also analyzed by using Oncomine.

UALCAN analysis
UALCAN (http://ualca​n.path.uab.edu) is an interactive 
web portal, which allows in-depth analyses of TCGA 
gene expression data. [28]. Using UALCAN, we analyzed 
the relative expression of PAWR across various tumor 
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subgroups based on individual cancer stages. The differ-
ences among different tumor stages were evaluated using 
one-way ANOVA.

Cancer dependency analysis
The Dependency Map portal (DepMap) (https​://depma​
p.org/porta​l/) systematically identifies genetic dependen-
cies of cancers and small molecule sensitivities and dis-
covers biomarkers that predict them [29]. By exploring 
DepMap, we predicted the correlation between PAWR 
gene effect and drug sensitivity of ovarian cancer cell 
lines. Pearson’s correlation test was performed to evalu-
ate the statistical significance.

Predictive value analysis
The ROC plotter (http://www.rocpl​ot.org) links gene 
expression and response to therapy using transcriptome-
level data of 3104 breast cancer patients and 2369 ovarian 
cancer patients, enabling efficient validation of predic-
tive biomarkers [30]. Treatment response was identi-
fied based on relapse-free survival at 12 months. PAWR 
expression was compared between platinum respond-
ers and non-responders using Mann–Whitney test. A 
receiver operating characteristic curve was drawn to ana-
lyze the predictive value of PAWR for platinum respon-
siveness. The area under the curve (AUC) and P value 
were also calculated.

Immunohistochemistry
Formalin-fixed, paraffin-embedded ovarian cancer tis-
sues were subjected to immunohistochemical analysis 
to determine the expression of PAWR. Briefly, an Avi-
din–Biotin Complex Vecastatin Kit (SP-9001, Zsgb-
Bio, China) was used according to the manufacturer’s 
instructions. After deparaffinization and rehydration 
in a series of xylene and graded ethanol solutions, heat-
induced antigen retrieval was performed in Tris–EDTA 
buffer (pH 9.0, G1203, Servicebio, China). Tumor slides 
were incubated with a primary antibody of PAWR (1:100 
20688-1-AP, Proteintech, China) at 4 ℃ overnight. Fol-
lowing diaminobenzidine (G1212-200T, Servicebio) 
detection, hematoxylin was counterstained. To quantify 
PAWR expression, an immunoreactivity scoring system 
(HSCORE, range from 0 to 3) was used as described pre-
viously [31]. Concisely, i denotes the staining intensity 
of tumor cells (0, absent; 1, weak; 2, moderate; and 3, 
strong), and Pi represents the percentage of cells at the 
corresponding intensity, HSCORE = ∑Pi × i. All slides 
were scored by two investigators, who were blinded to 
all clinicopathological variables. The median HSCORE 
was used as the expression cut-off to classify patients into 
subgroups for further analysis (HSCORE ≤ 1, low expres-
sion; HSCORE > 1, high expression).

Clinical samples
All clinical samples were obtained with signed informed 
consent from the Gynecology Department of Tongji Hos-
pital, Tong Medical College, Huazhong University of Sci-
ence and Technology. The patients were diagnosed with 
high-grade serous ovarian cancer and underwent initial 
debulking surgery without preoperative chemotherapy 
or radiotherapy at the Gynecology Department of Tongji 
Hospital. This study was approved by the Ethical Com-
mittee of Tongji Medical College, Huazhong Univer-
sity of Science and Technology. A total of 50 patients 
with detailed therapeutic and follow-up information 
were included, of whom 12 had paired normal fallopian 
tubes. The follow-up period lasted for 80 months (from 
January 2014 until September 2020). All patients received 
first-line platinum-containing chemotherapy. Platinum 
resistance was defined as recurrence within 6  months 
of completion of first-line treatment, while platinum 
sensitivity was defined as recurrence after more than 
6 months [5].

Statistical analysis
Bioinformatic analyses of databases were described 
above. A two-sided Student’s t-test was used to com-
pare differences between groups. Survival analysis was 
performed with Kaplan–Meier curves using log-rank 
test. Fisher’s exact test and Chi-squared test were used 
to evaluate whether PAWR expression was correlated 
with clinicopathological characteristics of ovarian cancer 
patients. Data were plotted and analyzed using Graph-
Pad Prism 7 (GraphPad Software, CA) and presented 
as the mean ± SD. Significance was assessed at the level 
of P < 0.05 and denoted as follows: *P < 0.05, **P < 0.01, 
***P < 0.001, and ****P < 0.0001.

Results
Expression profile of PAWR​
To gain general insight concerning PAWR, we searched 
the HPA database and obtained the mRNA and protein 
expression information of PAWR in 34 tissues and organs 
in the human body (Fig.  1a). The Consensus RNA data 
integrated three different data sources, namely, HPA, 
GTEx, and FANTOM5, producing a normalized expres-
sion (NX). Normal ovary had a high PAWR protein 
expression and an NX of 22.1. Then, we compared PAWR 
expression in TCGA tumor samples and matched GTEx 
normal samples using GEPIA (Fig.  1b). Among the 33 
tumor subtypes archived in GEPIA, 10 kinds had statis-
tically significant expression differences between tumor 
and normal tissues, including ovarian cancer. The altera-
tion frequency of PAWR was further profiled in TCGA 
cancers using c-BioPortal (Fig. 1c). In the TCGA dataset, 
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nearly 2% of ovarian cancer patients had PAWR altera-
tions. Among these patients, more than half of them had 
PAWR amplification, followed by PAWR deep deletion 
and then PAWR mutation. We also explored the muta-
tion profile of PAWR in a collection of TCGA cancers 
(Additional file  1: Figure S1a) and in individual cancer 
types (Additional file  1: Figure S1b). Overall, PAWR is 
widely expressed in normal and cancer tissues.

PAWR associates with various cancers
Identification of target-disease associations assists with 
drug discovery [23]. Information concerning PAWR, 
including genetic associations, somatic mutations, drugs, 
pathways & systems biology, RNA expression, text min-
ing, and animal models, was integrated, scored, and 
ranked in the Open Targets platform. Then, an over-
all association score was assigned for every specific 
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target-disease association. A total of 123 kinds of diseases 
were associated with PAWR, among which 53 (43.09%) 
were cancerous (Fig.  2). Ovarian carcinoma, which is 
included in the therapeutic areas of endocrine system 
disease, reproductive system or breast disease, cell pro-
liferation disorder, and urinary system disease, appeared 
in the rank list. GO analysis further revealed the gene 
function of PAWR (Table  1). There were five GO terms 

involving PAWR, some of which are generally implicated 
in cancer, such as negative regulation of transcription by 
RNA polymerase II.

Regulatory network of PAWR​
By exploring the Gene Resource of the National Center 
for Biotechnology Information, we identified 80 pro-
teins that might interact with PAWR (Additional file  2: 
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Fig. 2  Target-disease associations of PAWR and various cancers. By analyzing the Open Targets platform, we found that 53 kinds of cancerous 
diseases were associated with PAWR. After integrating evidence from genetics, genomics, transcriptomics, drugs, animal models, and literatures, 
every target-disease association was scored and ranked
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Table  S1). Subsequently, their gene symbols were 
imported into STRING for visualization (Fig. 3a). A total 
of 13 proteins directly interacted with PAWR. For these 
13 proteins, confidence scores were calculated (Fig. 3b). 
The interaction confidence for THAP1, PRKCZ, and 

DAPK3 ranked top three. We then explored the gene 
correlations of PAWR in ovarian cancer. TP53, an impor-
tant tumor suppressor gene in ovarian cancer [1], had a 
significantly positive correlation with PAWR (R = 0.24, 
P = 4.3e−07) (Fig.  3c). The PTEN/PI3K/AKT signaling 

Table 1  GO terms involving PAWR​

GO gene ontology

Gene/product Gene/product name GO class Contributor Organism

PAWR​ PRKC apoptosis WT1 regulator protein negative regulation of transcription by 
RNA polymerase II

Ensembl Homo sapiens

PAWR​ PRKC apoptosis WT1 regulator protein nuclear chromatin Ensembl Homo sapiens

PAWR​ PRKC apoptosis WT1 regulator protein transcription corepressor activity PINC Homo sapiens

PAWR​ PRKC apoptosis WT1 regulator protein actin binding UniProt Homo sapiens

PAWR​ PRKC apoptosis WT1 regulator protein protein binding UniProt Homo sapiens

a b

dc

Fig. 3  Protein interactions and gene correlations of PAWR. a The protein–protein interaction network of PAWR was constructed using STRING. b 
The interaction confidences of 13 proteins that directly interacted with PAWR were calculated and visualized. c Correlation analysis of PAWR and 
TP53 was performed in the TCGA dataset using GEPIA. (Pearson’s correlation test; TPM, transcripts per million). d Correlations between PAWR and the 
three hub genes of the PTEN/PI3K/AKT signaling axis were analyzed using GEPIA. (Pearson’s correlation test; TPM, transcripts per million)
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pathway, implicated in cell proliferation, apoptosis, 
metastasis, and chemo-resistance of ovarian cancer, has 
been reported to correlate with PAWR [4, 15, 32]. Using 
GEPIA, we found positive correlations between PAWR 
and the three hub genes of this axis (Fig. 3d).

High PAWR expression denotes better survival in ovarian 
cancer
To clarify the definite role of PAWR in ovarian cancer, 
clinical characteristics of ovarian cancer patients and 
genetic signatures of PAWR were studied in detail in 
the TCGA dataset and depicted in onco-prints (Fig. 4a). 
The detailed mutation profile of PAWR in ovarian can-
cer was also studied in c-BioPortal (Additional file  3: 
Figure S2). According to GEPIA, ovarian cancer sam-
ples expressed significantly lower PAWR than paired 
normal samples (Fig.  4b). By survival analysis, high 
PAWR expression indicated better overall survival (OS) 

than low PAWR expression (HR = 0.84, P = 0.0077) 
(Fig. 4c). Consistently, high PAWR expression predicted 
longer progression-free survival (PFS) (HR = 0.86, 
P = 0.049) (Fig.  4d). Similar results were obtained in 
ovarian cancer patients receiving optimal debulking 
surgery, wherein patients with high PAWR expression 
exhibited longer OS (Additional file 4: Figure S3a) and 
PFS (Additional file 4: Figure S3b). By exploring UAL-
CAN, we found that there was no significant difference 
in PAWR expression among different tumor stages of 
ovarian cancer (Additional file 5: Figure S4a). However, 
after optimal debulking surgery, stage I/II patients with 
high PAWR expression had more favorable OS (Addi-
tional file 5: Figure S4b) and PFS (Additional file 5: Fig-
ure S4c). A consistent OS advantage was observed in 
stage III/IV patients receiving optimal debulking sur-
gery (Additional file  5: Figure S4d). Although the dif-
ference in PFS did not reach the predefined threshold 
of statistical significance in stage III/IV patients, those 
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Page 8 of 13Tan et al. Cancer Cell Int          (2020) 20:598 

patients with high PAWR expression tended to have 
longer PFS after optimal debulking surgery (Additional 
file 5: Figure S4e). The expression of PAWR under dif-
ferent survival and recurrence statuses was also exam-
ined in Oncomine (Fig. 4e). Patients with higher PAWR 
expression tended to live longer and relapse later. In 
summary, high PAWR expression denotes better sur-
vival of ovarian cancer patients.

PAWR expression indicates drug responsiveness of ovarian 
cancer
Since platinum agents constitute the standard of chem-
otherapy for ovarian cancer [1], we explored Dep-
Map to identify the gene effect of PAWR on platinum 
responsiveness. There was a significant positive correla-
tion between PAWR gene effect and cisplatin sensitiv-
ity of ovarian cancer cell lines (R = 0.5973, P = 0.0187) 
(Fig.  5a). In ROC plotter, we identified platinum 
treatment response based on relapse-free survival at 
12  months. Platinum responders had higher PAWR 
expression than non-responders (Fig.  5b). Moreover, 

PAWR had a significant predictive value for platinum 
response (AUC = 0.578, P = 0.00014) (Fig.  5c). Pacli-
taxel is widely used in combination with platinum in 
treatment regimens for ovarian cancer [1]. In Dep-
Map, PAWR gene effect was positively related to pacli-
taxel sensitivity of ovarian cancer cell lines (Additional 
file  6: Figure S5a). Consistent results were obtained 
when we performed an integrated analysis of six data-
sets in Oncomine, wherein paclitaxel-sensitive cell 
lines had a tendency toward elevated PAWR expres-
sion (Additional file  6: Figure S5b). In patients receiv-
ing platinum-containing chemotherapy after optimal 
debulking surgery, high PAWR expression predicted 
better OS (HR = 0.65, P = 0.00012) (Fig.  5d) and PFS 
(HR = 0.53, P = 6e−8) (Fig.  5e). A survival analysis in 
patients receiving paclitaxel-containing chemother-
apy and optimal debulking surgery produced the same 
results (Additional file  6: Figure S5c, d). These results 
suggested that PAWR expression predicts platinum and 
paclitaxel responsiveness in ovarian cancer.
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Expression of PAWR predicts prognosis of ovarian cancer
To further confirm its predictive value, PAWR expres-
sion was detected in clinical samples. 12 ovarian cancer 
tissues and paired normal fallopian tubes were subjected 
to immunohistochemical analysis (Fig.  6a). Consistent 

with the results obtained with GEPIA, ovarian cancer 
samples expressed significantly less PAWR than matched 
normal fallopian tubes. Another 38 tumor samples 
were also stained for PAWR. The median HSCORE was 
defined as the expression cut-off to classify patients into 
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two subgroups for further analysis (HSCORE ≤ 1, low 
expression; HSCORE > 1, high expression). Patient char-
acteristics were summarized and compared between 
these two groups (Table  2). Concordant with our ear-
lier results, high PAWR expression predicted longer OS 
(HR = 0.23, P = 0.0018) (Fig.  6b) and PFS (HR = 0.28, 
P = 0.0094) (Fig. 6c). According to the recurrence status 
within 6  months of completion of first-line treatment, 
patients were divided into two groups (recurrence within 
6 months, resistant; no recurrence within 6 months, sen-
sitive). The platinum-sensitive group expressed signifi-
cantly higher PAWR than the platinum-resistant group. 
To summarize, PAWR expression predicts prognosis of 
ovarian cancer.

Discussion
PAWR is a pro-apoptotic protein that has roles in both 
the intrinsic and extrinsic apoptotic pathways [14]. Here, 
we found that PAWR was expressed ubiquitously in nor-
mal and cancer tissues. Besides, PAWR was associated 
with various cancers, including ovarian cancer. PAWR 
formed an interactive regulatory network with a group 
of proteins and correlated with several genes, which were 
both implicated in ovarian cancer and drug responsive-
ness. Ovarian cancer tissues expressed significantly less 
PAWR than paired normal tissues. In ovarian cancer, 
high PAWR expression denoted better OS and PFS. Fur-
thermore, PAWR expression predicted platinum and 
paclitaxel responsiveness in ovarian cancer. PAWR could 
be exploited as a predictive prognostic biomarker in 
ovarian cancer.

Integrating information from several databases, we 
profiled PAWR expression in humans. Decreased PAWR 
expression in ovarian cancer tissues compared with 
matched normal tissues suggested a tumor suppressor 
role of PAWR. The general target-disease associations of 
PAWR with various cancers further supported its prog-
nostic and therapeutic value. In the regulatory network 
of PAWR, a panel of proteins and genes was implicated in 
ovarian cancer and affected the therapeutic response of 
ovarian cancer. For example, THAP1 functions as a proa-
poptotic factor [33]. PRKCZ, a member of the protein 
kinase C family, is involved in various cellular processes, 
including proliferation, differentiation, and secretion 
[34]. DAPK3 induces morphological changes in apoptosis 
and plays a role in the induction of apoptosis [35]. The 
pivotal tumor suppressor gene TP53 was correlated with 
PAWR in TCGA ovarian cancers. Similarly, PAWR had 
significant correlations with PTEN, PI3K, and AKT1, all 
of which are involved in ovarian cancer. All these results 
indicated that PAWR might be capable of predicting 
prognosis and drug responsiveness of ovarian cancer.

High PAWR expression predicted better OS and PFS 
in ovarian cancer patients. In the past few years, with 
improved perioperative support and multidisciplinary 
surgical teamwork, there has been a trend toward greater 
surgical intent with respect to optimal debulking and 
even total debulking [4]. In patients receiving optimal 
debulking surgery, the promotive effect of PAWR was 
maintained. Moreover, high PAWR expression was cor-
related with prolonged survival independent of tumor 
stage. Patients with high PAWR expression tended to 

Table 2  Characteristics of patients included in immunohistochemical analysis

FIGO International Federation of Gynecology and Obstetrics
†  Fisher’s exact test
‡  Chi-squared test for trend

Characteristics total patients PAWR high PAWR low P values

(N = 50) (N = 25) (N = 25)

No No % No %

Age at diagnosis

 ≤ 50 years 12 5 20.00 7 28.00 0.7416†

 > 50 years 38 20 80.00 18 72.00

FIGO stage

 I 1 1 4.00 0 0.00 0.2695‡

 II 10 5 20.00 5 20.00

 III 32 17 68.00 15 60.00

 IV 7 2 8.00 5 20.00

Ascites

 Yes 25 14 56.00 11 44.00 0.5721†

 No 25 11 44.00 14 56.00
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live longer and recur later than those with low expres-
sion. The survival-promoting effect of PAWR was vali-
dated in our inhouse cohort. Owing to the lack of data, 
we were unable to analyze PAWR expression and plati-
num responsiveness integrally in Oncomine. However, 
PAWR was found to correlate with and predict platinum 
response of ovarian cancer patients in three other data-
bases. For paclitaxel, the receiver operating characteristic 
curve in ROC plotter did not show statistical significance. 
However, the positive correlation between PAWR gene 
effect and paclitaxel sensitivity of ovarian cancer cell 
lines, the tendency toward elevated PAWR expression in 
paclitaxel-sensitive cell lines, and the survival advantage 
of patients with high PAWR expression further argued in 
favor of its role in paclitaxel response. Moreover, plati-
num and paclitaxel are generally used in combination 
in clinical applications [1, 4]. In our validation cohort, 
which contained patients who received carboplatin and 
paclitaxel combination regimens, high PAWR expression 
denoted better survival and platinum sensitivity. There-
fore, we proposed that PAWR could predict prognosis of 
ovarian cancer. The TCGA dataset, which we primarily 
analyzed in the present study, comprised cases of high-
grade serous ovarian cancer, the most common ovarian 
cancer subtype. All the clinical samples included were 
high-grade serous ovarian cancer. The role of PAWR in 
other subtypes of ovarian cancer remains to be eluci-
dated. Tumor size is an important determinant of sur-
vival in ovarian cancer patients [36, 37]. The discordant 
data sources in some medical archives restrained the uni-
form assessment of tumor size. Consequently, we were 
unable to explore the correlation between tumor size 
and PAWR expression. However, high PAWR expression 
denoted prolonged survival and increased drug respon-
siveness. Therefore, it is reasonable to believe PAWR 
could be a feasible predictive prognostic biomarker in 
ovarian cancer.

Upfront treatment of ovarian cancer largely depends 
on debulking surgery to eliminate residual disease and 
cytotoxic chemotherapy [1]. Chemo-sensitivity assays 
or genetic screening arrays that establish drug sensitiv-
ity have been studied, but require further confirmation 
[4]. Evaluating PAWR expression provided a feasible 
approach to predict survival and drug responsiveness 
of ovarian cancer patients by simply performing immu-
nohistochemical staining, which is convenient and cost-
effective. Consistent with result for some other tissues 
[13, 15], PAWR was expressed in the cytoplasm in cells 
of normal fallopian tubes, while there was both cytoplas-
mic and nuclear expression of PAWR in cancer samples. 
PAWR can also be secreted spontaneously by normal 
and cancer cells in culture [38], providing the possibil-
ity of detection by non-invasive liquid biopsy. However, 

the current sample size was small. Before clinical imple-
mentation, large preclinical studies are needed. Another 
limitation is the lack of specific drugs targeting PAWR. 
We will explore inhibitors of PI3K and AKT for PAWR-
targeted therapy in future research.

Conclusions
In summary, PAWR is widely expressed in normal and 
cancer tissues and is associated with various cancerous 
diseases. Ovarian cancer tissues express significantly less 
PAWR than matched normal tissues. High PAWR expres-
sion indicates better survival and higher drug responsive-
ness in ovarian cancer patients. PAWR could be exploited 
as a predictive prognostic biomarker in ovarian cancer, 
which warrants further investigation.
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Additional file 1: Figure S1. Mutation profile of PAWR in various cancers. 
(a) Integrated mutation profile of PAWR in different TCGA cancers. (b) 
Mutation profile of PAWR in individual cancer types.

Additional file 2: Table S1. Proteins having potential interactions with 
PAWR.

Additional file 3: Figure S2. Mutation profile of PAWR in ovarian cancer. 
The detailed mutation profile of PAWR in TCGA ovarian cancers was 
studied using c-BioPortal.

Additional file 4: Figure S3. PAWR expression predicts survival of ovarian 
cancer patients after optimal debulking surgery. Ovarian cancer patients 
undergoing optimal debulking surgery were classified into two subgroups 
based on PAWR expression. Survival analysis was performed using KM 
plotter. Survival curves were depicted for OS (a) and PFS (b) (log-rank test).

Additional file 5: Figure S4. PAWR expression predicts survival of ovar-
ian cancer patients regardless of tumor stage. (a) PAWR expression of 
the TCGA ovarian cancer patients was analyzed and compared among 
different tumor stages using UALCAN (one-way ANOVA). Survival analysis 
of stage I/II patients receiving optimal debulking surgery was performed. 
Kaplan–Meier survival curves for OS (b) and PFS (c) were shown (log-rank 
test). For stage III/IV patients undergoing optimal debulking surgery, 
survival analysis was performed using KM plotter. Kaplan–Meier survival 
curves for OS (d) and PFS (e) were depicted (log-rank test).

Additional file 6: Figure S5. High PAWR expression suggests high pacli-
taxel responsiveness in ovarian cancer. (a) The correlation between PAWR 
gene effect and paclitaxel responsiveness of ovarian cancer cell lines was 
analyzed in DepMap (Pearson’s correlation test). (b) PAWR expression 
under different paclitaxel responsiveness was analyzed in six datasets in 
Oncomine. Survival analysis was performed for ovarian cancer patients 
receiving paclitaxel-containing chemotherapy after optimal debulking 
surgery. Kaplan–Meier survival curves for OS (c) and PFS (d) were depicted 
(log-rank test).
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