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RACK1 promotes miR-302b/c/d-3p 
expression and inhibits CCNO expression 
to induce cell apoptosis in cervical squamous 
cell carcinoma
Jing Wang and Shengcai Chen*

Abstract 

Background:  Cervical squamous cell carcinoma (CSCC) is one of the main causes of cancer-related deaths in women 
worldwide. The present study was conducted with the main objective of determining the potential role of receptor 
for activated protein kinase C1 (RACK1) in CSCC through regulation of microRNA (miR)-302b/c/d-3p and Cyclin O 
(CCNO).

Methods:  The expression of RACK1, miR-302b/c/d-3p and CCNO in CSCC tissues and cells was measured by RT-qPCR 
and Western blot analysis. The interaction among RACK1, miR-302b/c/d-3p, and CCNO was determined by dual lucif-
erase reporter assay. Subsequently, effects of RACK1, miR-302b/c/d-3p and CCNO on CSCC cell cycle entry, prolifera-
tion and apoptosis were investigated with the use of flow cytometry, EdU, and TUNEL assays. Furthermore, mouse 
xenograft model of CSCC cells was established to verify the function of RACK1 in vivo.

Results:  RACK1 and miR-302b/c/d-3p were down-regulated and CCNO was overexpressed in CSCC. CCNO was 
identified as the target of miR-302b/c/d-3p. Importantly, overexpressed miR-302b-3p, miR-302c-3p or miR-302d-3p or 
RACK1 enhanced the apoptosis and suppressed the proliferation of CSCC cells in vitro, while inhibiting tumor growth 
in vivo by targeting CCNO.

Conclusions:  On all accounts, overexpressed RACK1 could dampen the progression of CSCC through miR-302b/c/d-
3p-mediated CCNO inhibition.

Keywords:  Cervical squamous cell carcinoma, Receptor for activated protein C kinase 1, Cyclin O, MicroRNA-302b/c/
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Background
Cervical squamous cell carcinoma (CSCC) is one of the 
causes of cancer-related deaths in women [1]. There were 
569,847 newly diagnosed cases of CSCC and 311,365 
deaths reported in 2018 [2]. Notably, CSCC has been 

proven to be the second leading cause of cancer deaths in 
young women (aged 20 to 39 years), which highlights that 
increased screening and administration of human papil-
lomavirus (HPV) vaccination are of a high necessity in 
young women [3]. The therapeutic ratio of CSCC can be 
significantly improved via image-guided brachytherapy, 
as it reduces late toxicities [4]. A low pretreatment HPV 
viral load may indicate poor prognosis in CSCC, and the 
survival nomogram based on it can estimate the long-
term prognosis [5].
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Transcription factor AP-1 is involved in cervical 
cancer development [6]. Another transcription factor, 
homeobox D9 is also associated with malignant phe-
notype of cervical cancer [7]. Receptor for activated 
protein kinase C (RACK1), a multifunctional scaffold-
ing protein, plays a functional role in nucleating cell 
signaling hubs and regulating protein activity, and is 
also involved the modulation of migration and invasion 
of tumor cells [8]. Moreover, downregulated RACK1 
leads to pancreatic cancer growth and metastasis [9]. 
RACK1 depletions can also induce metastasis of gastric 
cancer (GC) by promoting the microRNA (miR)-302c/
interleukin (IL)-8 axis [10]. microRNAs (miRNAs) are 
endogenous non-coding RNAs, and multiple tumors 
have been observed to have dysregulated levels of miR-
NAs [11]. For instance, it is illustrated that miR-373 
can promote the apoptosis of CSCC SiHa cells [12]. 
miR-195 has also been found to suppress proliferation 
of human cervical cancer cells by targeting cyclin D1 
[13]. The miR-302-b/c/d has been found to exert crucial 
effects on a variety of biological processes, and modu-
lates multiple pathological changes including cancer 
[14]. miR-302-3p has been shown to inhibit cervical 
cancer cell migration and invasion by directly targeting 
defective in cullin neddylation 1 domain containing 1 
(DCUN1D1) [15]. In the current study, miR-302b/c/d-
3p was found to bind to the 3′-untranslated region (3′-
UTR) of Cyclin O (CCNO) mRNA and then directly 
targeted it. CCNO is a small gene encoding a 1053 bp 
cDNA and a 350-amino-acid protein, and comprises 
two cyclin box folds [16]. CCNO has been identified 
as a novel protein of the cyclin family, and is known 
to be involved in the regulation of oocyte meiotic pro-
gression at different stages [17]. Its down-regulation 
inhibits the tumorigenicity of GC by enhancing cell 
apoptosis [18]. These findings led to the hypothesis that 
RACK1 might participate in the development of CSCC 
through the regulation of miR-302b/c/d-3p and CCNO.

Materials and methods
Ethics statement
This study was approved by the Ethic Committee of 
Affiliated Hospital of Youjiang Medical University for 
Nationalities and performed in strict accordance with 
the Declaration of Helsinki. All participants signed 
informed consent documentation prior to the study. 
Animal experiments were approved by the Institutional 
Animal Care and Use Committee of Affiliated Hospital 
of Youjiang Medical University for Nationalities with 
extensive efforts made to minimize animal suffering 
during the study.

Study subjects
Clinical CSCC samples were collected from 46 patients 
with CSCC who underwent hysterectomy from August 
2015 to July 2016. The inclusion criteria for selection 
of patients were as follows: the patients did not receive 
chemotherapy, radiotherapy, endocrine therapy or other 
anti-tumor treatment before surgery; the patients were 
pathologically confirmed as CSCC after surgery; the 
patients had complete medical records and follow-up 
data. Patients suffering from combined diseases includ-
ing combined breast cancer, ovarian cancer, severe liver 
and kidney dysfunction were excluded from the study. 
Thirty cases of normal cervical tissues were collected 
from patients who underwent hysterectomy for benign 
gynecological diseases.

Cell treatment
The CSCC cell line CasKi and the human normal cervi-
cal epithelial immortalized cell line H8 were purchased 
from the cell bank of BeNa Culture Collection (BNCC). 
Cells were cultured in Eagle’s minimal essential medium 
(EMEM) supplemented with 10% fetal bovine serum 
(FBS) and 1% penicillin/streptomycin at 37  °C with 5% 
CO2 and 95% saturated humidity. Cells at passage 3 were 
inoculated into a 24-well plate at a density of 2 × 106 cells/
well), and cultured to grow into monolayer cells. CasKi 
cells were treated with following plasmids: small interfer-
ing RNA-negative control (si-NC), si-CCNO, NC-mimic, 
miR-302b-3p mimic, miR-302c-3p mimic, miR-302d-3p 
mimic, overexpression (oe)-NC, or oe-RACK1 using 
Lipofectamine 2,000 (Invitrogen Inc., Carlsbad, CA, 
USA). All plasmids were constructed by Shanghai San-
gon Biotech company (Shanghai, China).

Immunohistochemistry
The prepared paraffin sections were dewaxed and 
hydrated. After microwave antigen retrieval using 1 mM 
ethylenediaminetetraacetic acid (EDTA) (pH 8.0), the 
sections were added with 3% H2O2-methanol. Next, 
the sections were added with primary antibody against 
CCNO (ab47682, 1:500, Rabbit, Abcam, Cambridge, UK), 
and RACK1 (5432, 1:1000, Rabbit, Cell Signaling Tech-
nologies, Beverly, MA, USA), and incubation was car-
ried out overnight at 4  °C. Thereafter, the sections were 
re-probed with polymer enhancer (PV-9000, ZSGB-Bio, 
Beijing, China) at room temperature for 20  min. Next, 
the sections underwent further incubation with enzyme-
labeled anti-mouse/rabbit polymer (PV-9000, ZSGB-Bio, 
Beijing, China) at room temperature for 30  min, and 
developed using 3,3′-diaminobenzidine (DAB) for 5 min. 
After the development was halted by distilled water, 
the sections were counterstained with hematoxylin, 
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differentiated and blued. The sections were convention-
ally hydrated, cleared and sealed. Finally, the sections 
were photographed and observed under an inverted 
microscope (CX41, Olympus, Tokyo, Japan).

Reverse transcription quantitative polymerase chain 
reaction (RT‑qPCR)
Total RNA was extracted from tissues or cells, followed 
by reverse transcription into complementary DNA 
(cDNA). Primers (Table  1) were designed and synthe-
sized by Invitrogen (Invitrogen Inc., Carlsbad, CA, 
USA). With glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) and U6 (Invitrogen Inc., Carlsbad, CA, USA) 
used as internal references, RT-qPCR was carried out 
on an ABI 7,500 quantitative PCR instrument (Thermo 
Fisher Scientific Inc., Waltham, MA, USA) using the 
SYBR® Premix Ex Taq™ (Tli RNaseH Plus) kit (RR820A, 
Takara Holdings Inc., Kyoto, Japan). The final data were 
analyzed using the 2−ΔΔCt method.

Western blot analysis
Total protein was isolated from tissues or cells using 
radioimmunoprecipitation assay (R0010, Beijing Solarbio 
Science & Technology Co., Ltd. (Beijing, China). Then the 
protein was separated using 10% sodium dodecyl sulfate 
polyacrylamide gel electrophoresis and transferred to 
polyvinylidene fluoride membrane. Next, the membrane 
was blocked with Tris-buffered saline Tween-20 (TBST) 
solution containing 5% bovine serum albumin (BSA), 
and incubated at 4 °C overnight with the diluted primary 
anti-rabbit antibody as follows: GAPDH (5174, 1:1000, 

36 KD), RACK1 (5432, 1:1000, 32 KD), CCNO (ab47682, 
1:1000, 40 KD), B-cell lymphoma 2 (Bcl-2) (3498, 1:1000, 
Rabbit, 26 KD), Cyclin D1 (2922, 1:1000, 15 KD), cleaved 
poly (ADP-ribose) polymerase (PARP) (#5625, 1:1000, 89 
KD), and cleaved caspase 3 (#9664, 1:1000, 17 KD) [19]. 
All of the aforementioned antibodies were purchased 
from Cell Signaling Technology (Beverly, MA, USA), 
with the exception of CCNO from Abcam, Cambridge, 
UK. Then, the membrane was incubated with second-
ary antibody goat anti-rabbit immunoglobulin G (IgG) 
(ab150077, 1:1000, Abcam, Cambridge, UK). Lastly, the 
membrane was developed using enhanced chemilumi-
nescence and analyzed using the gel image analysis soft-
ware Image J.

Dual luciferase reporter assay
The synthetic 3′-UTR of CCNO wild type (WT) gene 
fragment was introduced into pMIR-reporter (Huayuey-
ang Biotechnology Co., Ltd., Beijing China) using the 
endonucleases SpeI and HindIII, after which the mutant 
type (MUT) was designed based on the complementary 
sequence of 3′-UTR of CCNO WT. The target fragment 
was inserted into the pMIR-reporter reporter plasmid 
using T4 DNA ligase following restriction endonuclease 
digestion. The correctly sequenced luciferase reporter 
plasmids WT or MUT were co-transfected with miR-
302b/c/d-3p mimic or NC mimic into HEK293T cells. 
The cells were then collected and lysed after 48  h of 
transfection, after which luciferase activity was detected 
with the use of Glomax 20/20 luminometer fluorescence 
detector (Promega, Madison, WI, USA) using a luciferase 
assay kit (K801-200, BioVision Technologies, Exton, PA).

5‑Ethynyl‑2′‑deoxyuridine (EdU) assay
Cells were seeded into 96-well plates at a density of 
5 × 103 cells/well. After 6 h, the cells were incubated with 
100 µL of EdU solution for 2 h, fixed, and incubated with 
2 mg/mL glycine for 5 min. Next, the cells were incubated 
with 100 µL penetrant for 10  min, added with 100 µL 
1× Apollo staining reaction solution for 30 min of incu-
bation, washed with 100 µL penetrant and washed using 
100 µL methanol for 5 min. Subsequently, the wells were 
incubated with 100 µL 1× Hoechst 33,342 reaction solu-
tion under dark conditions for 30 min on a rotary shaker, 
after which the cells were blocked by the addition of 100 
µL anti-fluorescence quenching tablets. Lastly, cells were 
photographed under a fluorescence microscope (Olym-
pus FV1000, Olympus, Tokyo, Japan), and the number of 
cells was recorded. If the nucleus of the cell stained red, 
it was labeled positive and the exception to this finding 
were negative cells.

Table 1  Primer sequences for RT-qPCR

F, forward; R, reverse; RT-qPCR, reverse transcription quantitative polymerase 
chain reaction; RACK1, receptor for activated protein kinase C; CCNO, Cyclin O; 
GAPDH, glyceraldehyde-3-phosphate dehydrogenase

Genes Primer sequences (5′–3′)

RACK1 F: TCT​CTT​TCC​AGC​GTG​GCC​ATT​AGA​

R: CCT​CGA​AGC​TGT​AGA​GAT​TCC​GAC​AT

miR-302b-3p F: ATC​CAG​TGC​GTG​TCGTG​

R: TGC​TTA​AGT​GCT​TCC​ATG​TT

miR-302c-3p F: GCG​TGC​TTC​CAT​GTT​TCA​GTGG​

R: CAG​TGC​AGG​GTC​CGA​GGT​AT

miR-302d-3p F: TCT​ACT​TTA​ACA​TGG​AGG​CACTT​

R: TCA​CCA​AAA​CAT​GGA​AGC​AC

CCNO F: TCT​ACA​GAC​CTT​CCG​CGA​CT

R: GCT​CTA​CCA​GCA​CCT​CAC​TT

U6 F: CGC​TTC​GGC​AGC​ACA​TAT​ACTA​

R: CGC​TTC​ACG​AAT​TTG​CGT​GTCA​

GAPDH F: TCA​TCT​CTG​CCC​CCT​CTG​CTG​

R: GCC​TGC​TCA​CCA​CCT​TCT​TG
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Flow cytometry
Cells were centrifuged and cell pellet was resuspended 
in phosphate-buffered saline (PBS) to a concentration of 
about 1 × 105 cells/mL. Subsequently, the cells were fixed 
at 4 °C for 1 h using 1 mL pre-cooled − 20 °C 75% etha-
nol, and centrifuged, with the ethanol removed. The cells 
were subsequently added with 100 µL RNase A avoiding 
exposure to light, subjected to water bath at 37  °C for 
30  min, added with 400 µL propidium iodide (PI) and 
incubated at 4 °C for 30 min. Finally, cell cycle entry was 
detected at 488 nm.

Terminal deoxynucleotidyl transferase‑mediated 
dUTP‑biotin nick end labeling (TUNEL) assay
Tissues or cell slides were fixed, incubated with PBS 
containing 0.1% Triton X-100 on ice bath for 2 min, per-
meabilized, and then incubated with TUNEL solution 
at 37 °C for 60 min avoiding exposure to light. Next, the 
cells were sealed with anti-fluorescence quenching liquid 
and observed under a fluorescence microscope at 450–
500 nm and 515–565 nm.

Tumor xenograft in nude mice
Thirty BALB/c female nude mice (aged 5 week, with 
weight of 18–21 g) purchased from Shanghai Lingchang 
Company (Shanghai, China) were selected and bred in 
the specific pathogen free environment at the animal 
experiment center of Affiliated Hospital of Youjiang 
Medical University for Nationalities before experiment. 
The nude mice were bred for 7 days in comfortable envi-
ronment with moderate temperature, fed with aseptic 
food and drinking water, and an alternation of 12 h day 
and night. The lentiviral vectors of NC agomir, miR-
302b-3p agomir, miR-302c-3p agomir, miR-302d-3p 
agomir, oe-NC and oe-RACK1 were purchased from the 
Shanghai Sangon Biotech company (Shanghai, China). 
The lentivirus was collected and added to the CasKi 
cells (1 × 108 TU/mL). Then the stably transfected CasKi 
cells were prepared as cell suspension (5 × 106/mL) and 
subcutaneously injected into the right leg of nude mice. 
Tumor formation was observed daily. Once the tumor 
was evident, the long and short diameters of the tumor 
were measured every 5 d. After 40 d of feeding, the nude 
mice were euthanized by the administration of anaesthe-
sia. Then, the subcutaneous tumors were removed, pho-
tographed and weighed.

Statistical analysis
SPSS 21.0 statistical software (IBM Corp. Armonk, NY, 
USA) was used for data processing. The measurement 
data were expressed as mean ± standard deviation. 
Independent sample t-test was used for data compari-
son between two groups. One-way analysis of variance 

(ANOVA) was used for data comparison among multi-
ple groups, followed by Tukey’s post hoc test. Repeated 
measures ANOVA was used for data comparison at dif-
ferent time points, followed by Bonferroni’s post hoc test 
with corrections for multiple comparisons. Pearson’s cor-
relation coefficient was used to analyze the correlation 
between miR-302b/c/d-3p expression and CCNO expres-
sion. p < 0.05 indicated a statistically significant value.

Results
CCNO is highly expressed in CSCC, and down‑regulated 
CCNO suppresses proliferation but promotes apoptosis 
of CSCC cells
The GEPIA database revealed a high expression of 
CCNO in CSCC and endocervical adenocarcinoma 
(p < 0.05) (Fig.  1a). RT-qPCR and immunohistochemis-
try were conducted to verify the upregulation of CCNO 
in CSCC, and the results showed an increase in CCNO 
expression in clinical samples of CSCC patients (both 
p < 0.05) (Fig.  1b, c. In addition, CCNO expression was 
evidently elevated in CSCC cell line (CasKi) (p < 0.05) 
(Fig. 1d, e).

Western blot analysis showed that downregulation of 
CCNO induced a marked decline in Bcl-2 and Cyclin D1 
expression, while it resulted in elevated cleaved PARP 
and cleaved caspase 3 expression (p < 0.05) (Fig.  1f ). 
Flow cytometry results showed that the number of cells 
arrested in the G0/G1 phase was increased and cells 
arrested in the S phase were obviously reduced in the 
absence of CCNO (p < 0.05) (Fig.  1g). EdU assay and 
TUNEL assay exhibited that downregulated CCNO led 
to decreased cell proliferation and increased cell apop-
tosis (both p < 0.05) (Fig. 1h, i). In summary, CCNO was 
highly expressed in CSCC, and down-regulated CCNO 
could promote apoptosis and inhibit proliferation of 
CSCC cells.

CCNO is a target gene of miR‑302b/c/d‑3p
Upstream miRNAs of CCNO were predicted by RNA22, 
miRwalk, TargetScan, and mirDIP. Then, miR-302b-3p, 
miR-302c-3p and miR-302d-3p were verified to have a 
targeted regulatory relationship with CCNO (Fig.  2a). 
The targeted binding sites between miR-302b-3p/miR-
302c-3p/miR-302d-3p and CCNO were predicted by 
the bioinformatics online site (Fig. 2b). Luciferase activ-
ity was decreased in cells co-transfected with miR-
302b/c/d-3p and WT-CCNO (p < 0.05) (Fig.  2c–e). 
Besides, overexpressed miR-302b/c/d-3p resulted in the 
significant inhibition of CCNO expression in the CasKi 
cells (p < 0.05) (Fig.  2f, g). Correlation analysis showed 
that there exists a negative correlation between CCNO 
and miR-302b-3p, miR-302c-3p and miR-302d-3p 
expressions in CasKi cells (Fig.  2h–j). On the basis of 
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the aforementioned, CCNO was a target gene of miR-
302b-3p, miR-302c-3p and miR-302d-3p and could be 
negatively regulated by them.

miR‑302b‑3p, miR‑302c‑3p or miR‑302d‑3p suppresses 
proliferation and enhances apoptosis of CSCC cells 
by downregulating CCNO
RT-qPCR showed a decrease in miR-302b-3p, miR-
302c-3p and miR-302d-3p expressions in both CSCC 
patient tissues (p < 0.05) (Fig.  3a–c), and CasKi cell line 
(p < 0.05) (Fig.  3d). Then, miR-302b-3p, miR-302c-3p 
and miR-302d-3p were overexpressed in CSCC cell line. 
Western blot analysis showed that overexpressed miR-
302b-3p, miR-302c-3p or miR-302d-3p led to reduced 
CCNO, Bcl-2 and Cyclin D1 expression and elevated 
cleaved PARP and cleaved caspase 3 expression (p < 0.05) 
(Fig.  3e). Moreover, overexpressed miR-302b-3p, 

miR-302c-3p and miR-302d-3p increased the number 
of cells arrested in the G0 and G1 phase, and decreased 
number of cells arrested in the S phase by flow cytometry 
(p < 0.05) (Fig. 3f ). EdU assay and TUNEL assay revealed 
that overexpressed miR-302b-3p, miR-302c-3p or miR-
302d-3p inhibited cell proliferation while promoting cell 
apoptosis (both p < 0.05) (Fig. 3g, h). These data indicated 
that miR-302b-3p, miR-302c-3p or miR-302d-3p could 
repress CSCC cell proliferation while stimulating apopto-
sis via downregulation of CCNO.

miR‑302b‑3p, miR‑302c‑3p or miR‑302d‑3p stim ulates 
CSCC cell apoptosis and suppresses tumor growth 
by targeting CCNO in vivo
Overexpressed miR-302b-3p, miR-302c-3p or miR-
302d-3p resulted in a significant decrease in size, vol-
ume and weight of subcutaneous tumors in nude mice 

Fig. 1  CCNO is up-regulated in CSCC, and down-regulated CCNO induces apoptosis of CSCC cells. a The expression of CCNO in CSCC and 
endocervical adenocarcinoma from GEPIA database; b, c CCNO expression in CSCC (N = 46) and normal cervical epithelial tissues (N = 30) detected 
by RT-qPCR and immunohistochemistry (× 400); d CCNO mRNA level in CSCC cell line (CasKi) and normal cell line (H8) detected by RT-qPCR; e 
The protein levels of CCNO, Bcl-2, Cyclin D1, cleaved PARP, cleaved caspase 3 in CSCC cell line (CasKi) and normal cell line (H8) detected by Western 
blot analysis, with the protein bands assessed; f The protein levels of CCNO, Bcl-2, Cyclin D1, cleaved PARP and cleaved caspase 3 in CasKi cells 
with CCNO silencing detected by Western blot analysis, with the protein bands assessed; g Cell cycle entry in CSCC cell line (CasKi) detected by 
flow cytometry; h Cell proliferation detected by EdU assay (×200); i Cell apoptosis detected by TUNEL assay (×200). *p < 0.05 vs. normal cervical 
epithelial tissues, H8 cell line or cells treated si-NC. The values in this figure were all measurement data and expressed as mean ± standard deviation. 
Independent sample t test was used for the data comparison between two groups. The experiment was repeated 3 times independently
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(Fig. 4a–c). RT-qPCR showed an increase in the expres-
sion of miR-302b-3p, miR-302c-3p or miR-302d-3p 
in mice following the overexpression of miR-302b-3p, 
miR-302c-3p or miR-302d-3p (p < 0.05) (Fig.  4d), which 

was indicative of successful transfection. Western blot 
analysis revealed that highly-expressed miR-302b-3p, 
miR-302c-3p or miR-302d-3p reduced the expression 
of CCNO, Bcl-2, Cyclin D1, cleaved PARP and cleaved 
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miR-302b/c/d-3p and WT-CCNO or miR-302b/c/d-3p and MUT-CCNO detected by dual luciferase reporter assay; f The expression of miR-302b/
c/d-3p and CCNO in cells detected by RT-qPCR; g CCNO protein expression detected by Western blot analysis, with the protein bands assessed; 
h–j Correlation analysis between CCNO expression and miR-302b/c/d-3p expression in CasKi cells. *p < 0.05 vs. the cells treated with NC mimic. 
The values in the figure were measurement data, and expressed as mean ± standard deviation. Independent sample t test was used for data 
comparison between two groups. One-way ANOVA was used for data comparison among multiple groups, and followed by Tukey’s post hoc test. 
Pearson’s correlation coefficient was used for correlation analysis between indicators. The experiment was repeated 3 times independently
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caspase 3 in subcutaneous tumors (p < 0.05) (Fig.  4e). 
The aforementioned data indicated that miR-302b-3p, 
miR-302c-3p or miR-302d-3p might accelerate CSCC cell 
apoptosis and prevent tumor growth by targeting CCNO 
in vivo.

RACK1 inhibits CCNO expression by promoting miR‑302b‑3p, 
miR‑302c‑3p or miR‑302d‑3p expression
RT-qPCR results showed that overexpressed RACK1 
remarkably upregulated expressions of miR-302b-3p, 
miR-302c-3p or miR-302d-3p, while significantly down-
regulating CCNO expression (p < 0.05) (Fig. 5a). RACK1 
protein level was increased and the protein level of 
CCNO was reduced after overexpression of RACK1 
(p < 0.05) (Fig. 5b). Pearson’s correlation coefficient exhib-
ited a positive correlation between RACK1 expression 

and the expression of miR-302b-3p, miR-302c-3p or 
miR-302d-3p in CasKi cells (p < 0.05) (Fig.  5c). In clini-
cal settings, the positive expression of RACK1 protein 
was downregulated in CSCC patients from immuno-
histochemistry results (Fig.  5d). In summary, RACK1 
inhibited CCNO expression by promoting expression of 
miR-302b-3p, miR-302c-3p or miR-302d-3p.

RACK1 facilitates CSCC cell apoptosis and inhibits tumor 
formation in vivo in CSCC via miR‑302b‑3p, miR‑302c‑3p 
or miR‑302d‑3p‑mediated CCNO inhibition
A series of experiments were conducted to evaluate the 
effects of the RACK1/miR-302b/c/d-3p-CCNO axis in 
CSCC cell progression as well as tumor growth. Western 
blot analysis results showed that overexpressed RACK1 
led to a significant reduction in the expression of CCNO, 

Fig. 3  miR-302b-3p, miR-302c -3p or miR-302d-3p inhibits proliferation while inducing apoptosis of CSCC cells by targeting CCNO. a–c The 
expression of miR-302b/c/d-3p in CSCC (N = 46) and normal cervical tissues (N = 30) detected by RT-qPCR; d The expression of miR-302b/c/d-3p in 
CSCC cell line (CasKi) and normal cell line (H8) detected by RT-qPCR; e The protein levels of CCNO, Bcl-2, Cyclin D1, cleaved PARP, cleaved caspase 3 
in CSCC cell line (CasKi) detected by Western blot analysis, with protein bands assessed; f The cell cycle entry in CSCC cell line (CasKi) detected by 
flow cytometry; g The cell proliferation detected by EdU assay (×200); h The cell apoptosis detected by TUNEL assay (×200). *p < 0.05 vs. normal 
cervical tissues, H8 cell line or cells treated with NC mimic. The values in the figure were all measurement data and expressed as mean ± standard 
deviation. Independent sample t test was used for data comparison between two groups, and one-way ANOVA with Tukey’s post hoc test was used 
for data comparison among multiple groups. The experiment was repeated 3 times independently
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Bcl-2 and Cyclin D1 and markedly elevated expression of 
RACK1, cleaved PARP, and cleaved caspase 3 (p < 0.05) 
(Fig. 6a).

Flow cytometry revealed that number of cells arrested 
in the G0 and G1 phase was increased but number of cells 
arrested in the S phase was reduced after overexpression 
of RACK1 (p < 0.05) (Fig.  6b). EdU assay and TUNEL 
assay depicted that overexpressed RACK1 induced mark-
edly reduced cell proliferation and obviously elevated cell 
apoptosis (both p < 0.05) (Fig. 6c, d).

Furthermore, tumor xenograft in nude mice exhibited 
a pronounced decline in size, volume and weight of sub-
cutaneous tumors in nude mice after overexpression of 
RACK1 (Fig. 6e–g). RT-qPCR results showed that expres-
sion of miR-302b-3p, miR-302c-3p or miR-302d-3p was 
increased significantly in response to overexpressed 
RACK1 (p < 0.05) (Fig.  6h). In addition, the protein 
expression of CCNO, Bcl-2, and Cyclin D1 was found to 
be decreased, RACK1, while that of cleaved PARP, and 
cleaved caspase 3 was increased after overexpression of 

RACK1 (p < 0.05) (Fig.  6I). The aforementioned findings 
suggested that the overexpression of RACK1 promoted 
CSCC cell apoptosis and suppressed tumor growth 
in vivo by inhibiting CCNO through regulation of miR-
302b-3p, miR-302c-3p or miR-302d-3p.

Discussion
Cervical cancer is the fourth leading cause of can-
cer-related deaths among females [2]. Squamous cell 
carcinomas, which arise from precursor squamous 
intraepithelial lesions, account for the majority of cervi-
cal carcinoma cases [20]. This study explored the under-
lying mechanism by which RACK1 is involved in CSCC 
and the findings demonstrated that RACK1 inhibited 
CCNO by promoting the expression of miR-302b/c/d-3p, 
thereby stimulating apoptosis of CSCC cells and delaying 
the progression of CSCC.

RACK1 has been previously found to be upregu-
lated in cancer tissues obtained from 25 cervical 
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cancer patients in comparison with the adjacent non-
cancerous tissues [21]. In addition, tissue microarray 
in another study revealed abundant levels of RACK1 
expression in squamous intraepithelial lesion and cer-
vical cancer [22]. However, the current study demon-
strated decreased RACK1 expression in cancer tissues 
from the collected 46 CSCC patients compared to nor-
mal cervical tissues from 30 cases. This discrepancy may 
be caused by the number of the recruited study subjects 
and the employed controls. In addition, CSCC patients 
presented with down-regulated miR-302b/c/d-3p and 
up-regulated CCNO. Downregulated miR-302-3p has 
been observed in cervical cancer tissues in comparison 
to adjacent normal tissues, and its low expression has 
been closely associated with node metastasis, advanced 
clinical stage, and poor prognosis in patients with cer-
vical cancer [15]. Another study provided evidence that 
miR-302 directly targets another cyclin family member, 
Cyclin D1, and suppresses its expression, contributing 
to delayed tumorigenicity of endometrial cancer cells 
[23]. In the present study, CCNO was identified as the 
target of miR-302b/c/d-3p. In addition, elevated mRNA 
expression of CCNO has been reported in GC tissues 
and depletion of CCNO can significantly induce cancer 
cell apoptosis both in  vitro and in  vivo [18], which is 
partially consistent with our findings.

Our study also revealed that up-regulated 
RACK1 inhibited CCNO expression by promoting 

miR-302b/c/d-3p expression, resulting in accelerated 
apoptosis in CSCC cells, as evidenced by decreased 
Bcl-2 and Cyclin D1 expression, and increased cleaved 
PARP and cleaved caspase 3 expression. RACK1 is 
capable of upregulating the expression of a series of 
miRNAs, including the miR-302 cluster, and its loss 
promotes GC tumor invasion and metastasis through 
miR-302c suppression [10]. The pro-apoptotic func-
tions of RACK1 and its ability induce apoptosis of cells, 
partly by inhibiting Src have been established in a pre-
vious study [24]. Up-regulated Bcl-2 contributes to the 
development of laryngeal squamous cell carcinoma and 
inhibits cell apoptosis [25]. Cyclin D1 is associated with 
all cell cycle and pathologic process regulation [26]. 
Cyclin D1 has been proven to be capable of promoting 
cellular proliferation [27], and has a role in the regula-
tion of cell migration and invasion in CSCC [28]. A pre-
vious study provided evidence that cleaved PARP-1 can 
serve as an apoptotic marker in the proliferative regions 
of the spheroids [29]. The biological role of cleaved 
PARP-1 includes DNA repair, maintenance of genomic 
integrity, modulation of transcription, replication and 
differentia, as illustrated in a prior study [30]. There is a 
study confirming that cleaved caspase 3 can be induced 
by Tian Xian liquid, which can inhibit tumor growth 
and induce apoptosis [31], suggesting that cleaved cas-
pase 3 is positively correlated with apoptosis and inhi-
bition of tumor expansion. miR-302 is a member of 
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Fig. 5  RACK1 suppresses CCNO expression through enhancement of miR-302b-3p, miR-302c -3p or miR-302d-3p expression. a The expression 
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the miRNA family that regulates cancer progression 
and invasion via a reprogramming process, which has 
comprehensive effects on multiple cellular pathways 
and events [32]. In human endometrial carcinoma 
cells, miR-302b/c/d-3p has been verified to stimulate 
the apoptotic process [33]. These findings implicated 
RACK1 in CSCC through the miR-302b/c/d-3p/CCNO 

signaling. However, further investigations are required 
to elucidate the potential role of CCNO in CSCC cell 
migration, invasion, and lymph node metastasis in 
order to provide an in-depth analysis of the molecular 
mechanism of RACK1 in CSCC.

Fig. 6  RACK1 promotes CSCC cell apoptosis and suppresses tumor growth in vivo and in vitro by regulating the miR-302b/c/d-3p-CCNO axis. a The 
protein expression of Bcl-2, Cyclin D1, cleaved PARP, and cleaved caspase 3 in CSCC cell line (CasKi) detected by Western blot analysis, with protein 
bands assessed; b The cell cycle entry of CSCC cell line (CasKi) detected by flow cytometry; c The cell proliferation detected by EdU assay; d The 
cell apoptosis detected by TUNEL assay; e The tumors collected at 40 d after CasKi cell transplantation into nude mice; f Tumor volume in nude 
mice transplanted with CasKi cells overexpressing RACK1. g Tumor volume in nude mice transplanted with CasKi cells overexpressing RACK1. h 
The expression of miR-302 in mouse tumors detected by RT-qPCR; I, The protein levels of RACK1, CCNO, Bcl-2, CyclinD1, cleaved PARP, and cleaved 
caspase 3 in mouse tumors detected by Western blot analysis, with protein bands assessed. *p < 0.05 cells or mice treated with oe-NC. The values 
in the figure were measurement data, and expressed as mean ± standard deviation. Independent sample t test was used for the data comparison 
between two groups. Repeated measures ANOVA with Bonferroni post hoc test was used for data comparison among groups at different time 
points. The experiment was repeated 3 times independently. N = 05
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Conclusions
In conclusion, overexpression of RACK1 could poten-
tially enhance miR-302b/c/d-3p expression and then 
inhibit CCNO expression, thereby inducing cell apopto-
sis in CSCC and ultimately preventing the progression 
of CSCC (Fig. 7), which provides novel therapeutic tar-
get for CSCC. However, as this study is still in the very 
early stages of evaluating the specific role of RACK1 in 
CSCC, more studies are required to further clarify its 
underlying mechanism and validate its applicable value 
in clinical practice.
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