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Systematic analysis of gene expression 
profiles reveals prognostic stratification 
and underlying mechanisms for muscle‑invasive 
bladder cancer
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Abstract 

Background:  Muscle-invasive bladder cancer (MIBC) is originated in the muscle wall of the bladder, and is the ninth most 
common malignancy worldwide. However, there are no reliable, accurate and robust gene signatures for MIBC prognosis 
prediction, which is of the importance in assisting oncologists to make a more accurate evaluation in clinical practice.

Methods:  This study used univariable and multivariable Cox regression models to select gene signatures and build 
risk prediction model, respectively. The t-test and fold change methods were used to perform the differential expres‑
sion analysis. The hypergeometric test was used to test the enrichment of the differentially expressed genes in GO 
terms or KEGG pathways.

Results:  In the present study, we identified three prognostic genes, KLK6, TNS1, and TRIM56, as the best subset of 
genes for muscle-invasive bladder cancer (MIBC) risk prediction. The validation of this stratification method on two 
datasets demonstrated that the stratified patients exhibited significant difference in overall survival, and our stratifica‑
tion was superior to three other stratifications. Consistently, the high-risk group exhibited worse prognosis than low-
risk group in samples with and without lymph node metastasis, distant metastasis, and radiation treatment. Moreover, 
the upregulated genes in high-risk MIBC were significantly enriched in several cancer-related pathways. Notably, 
PDGFRB, a receptor for platelet-derived growth factor of PI3K-Akt signaling pathway, and TUBA1A were identified as 
two targets of multiple drugs. In addition, the angiogenesis-related genes, as well as two marker genes of M2 mac‑
rophage, CD163 and MRC1, were highly upregulated in high-risk MIBC.

Conclusions:  In summary, this study investigated the underlying molecular mechanism and potential therapeutic 
targets associated with worse prognosis of high-risk MIBC, which could improve our understanding of progression of 
MIBC and provide new therapeutic strategies for the MIBC patients.
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Background
Muscle-invasive bladder cancer (MIBC) refers to cancers 
happening in the muscle wall of the bladder. Symptoms 
such as pain with urination, blood in the urine, and low 

back pain are often observed in patients with bladder can-
cer. Bladder cancer is one of the most common malignan-
cies worldwide [1]. It is much more commonly diagnosed 
in men than in women, but female patients are usually with 
more advanced stages at the time of diagnosis, and exhibit 
less favorable survival [2]. MIBC has the potential to spread 
to nearby lymph nodes and other organs. In severe cases, 
metastasis would affect distant organs such as lungs and 
liver [3]. Increasing age is considered to be the main risk 
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factor for bladder cancer, and impacts from smoking and 
exposure to some industrial chemicals are also reported to 
be significant [4].

With the advances in high-throughput technologies, sev-
eral prognostic biomarkers have been revealed previously. 
Genetically, genome-wide association studies (GWAS) have 
revealed that genes on chromosome 8q24, particularly the 
PSCA gene (Prostate Stem Cell Antigen), were associated 
with increased metastatic potential of bladder cancer [5, 6]. 
A hypothesis reasons that these genes detected by GWAS 
may be associated with androgen receptor responsive-
ness and inducing androgen-independent pathways, which 
stimulates tumor growth [5]. The losses of regions on 10q 
(including PTEN), 16q, and 22q, and gains on 10p, 11q, 12p, 
19p, and 19q were positively associated with metastasis in 
muscle-invasive bladder cancers [7]. With the genome-
wide gene expression data, several studies have identified 
a combination of gene signatures to predict the prognosis 
of MIBC. Specifically, four gene signatures, IL1B, S100A8, 
S100A9 and EGFR, have been reported to have the capa-
bility of predicting MIBC progression [8]. The novel com-
bination markers of USP18 and DGCR2 can also predict 
survival in patients with muscle invasive bladder cancer [9]. 
In addition, NR1H3 expression is identified as a prognostic 
factor of overall survival for patients with muscle-invasive 
bladder cancer [10]. However, there are some limitations for 
these studies. First, the gene signatures identified by these 
studies were not robust due to lack of validation dataset or 
small sample size in validation dataset. Second, compara-
tive analysis was not conducted on the performance of these 
gene signatures for MIBC prognostic prediction. Third, the 
potential mechanism resulting in the worse prognosis has 
not been thoroughly investigated. In addition, the potential 
therapeutics for patients with worse prognosis was not pro-
posed by these studies. In the present study, to avoid these 
limitations, we attempted to detect a combination of gene 
signatures for MIBC prognostic prediction and stratifica-
tion. Based on the prognostic stratification, we also inves-
tigated the underlying molecular mechanism and potential 
therapeutic targets associated with worse prognosis of 
high-risk MIBC, which could improve our understanding of 
MIBC progression and provide new therapeutic approaches 
for these high-risk patients.

Materials and methods
Data collection and pre‑processing
The TCGA-BLCA gene expression datasets [11] and cor-
responding clinical data were obtained from UCSC Xena 
Browser [12] (https​://xenab​rowse​r.net/datap​ages/). The 
E-MTAB-1803 dataset [13] was downloaded from Array-
Express (http://www.ebi.ac.uk/array​expre​ss/) database 
[14]. The TCGA-BLCA dataset was divided into two 

subsets for model training and validation, using random 
sampling without replacement. For each gene in the 
three datasets, the expression values were discretized as 
high or low expression if the expression values higher or 
lower than its corresponding median.

Gene expression data of MIBC cell lines
We also collected the normalized gene expression data 
of 30 MIBC cell lines from Gene Expression Omnibus 
(GEO) database [15], with accession number GSE47992 
[16]. The Wilcoxon rank-sum test and fold change 
method were used to identify differentially expressed 
genes between two conditions.

Overrepresentation enrichment analysis (ORA)
Overrepresentation enrichment analysis, which was 
based on hypergeometric test, was implemented by R 
package clusterProfiler with enrichKEGG function [17]. 
We chose adjusted P-value 0.05 as the threshold for the 
selection of significant pathways.

Gene set enrichment analysis
The gene set enrichment analysis was implemented in 
R/Bioconductor fgsea [18]. The genes were pre-ranked 
based on the Z statistic obtained in a differential expres-
sion analysis between high-risk and low-risk groups. 
1000 permutations were used to calculate the enrichment 
significance.

Cox proportional hazards regression analysis
Cox proportional hazards regression analysis was per-
formed to evaluate the differences in overall survival 
between patients from two risk groups or two expression 
status, which was implemented using R package survival 
with coxph function. Kaplan–Meier curves were plotted 
to visualize the overall survival of each group. The risk 
score for each patient was calculated based on the expres-
sion of three gene signatures selected by predict.coxph 
function. These three signature genes were selected from 
previously identified prognostic gene pool by Maximum 
Minimum Parents and Children (MMPC) algorithm [19], 
which was implemented by R package MXM with MMPC 
function.

Drug‑target analysis
The drug-target analysis aimed to explore drugs that are 
capable of inhibiting thos upregulated genes in high-risk 
MIBC. The drug–target interactions were extracted from 
Drug Gene Interaction Database [20] (DGIdb) using the 
R package maftools with drugInteractions function [21]. 
These interactions were visualized by Cytoscape 3.7.1 
[22].

https://xenabrowser.net/datapages/
http://www.ebi.ac.uk/arrayexpress/


Page 3 of 13Zhang et al. Cancer Cell Int          (2019) 19:337 

Statistical analysis
R version 3.6.0 was used to perform all analyses. Statisti-
cal comparisons between groups were performed using 
the t-test or non-parametric Wilcoxon rank-sum test. 
P < 0.05 was considered as indicative of statistically sig-
nificant differences.

Results
Identification of prognostic genes and construction 
of prognostic model for MIBC
To select prognostic genes for prognostic model con-
struction, we designed a systematic data analysis work-
flow to search for a subset of genes. We first divided the 
samples from TCGA into training and validation data-
sets, which were labeled as TCGA-training (n = 215) 
and TCGA-validation (n = 214), respectively. Univari-
able Cox proportional hazards regression analysis was 
conducted to identify a total of 1473 prognostic genes 
(Log-rank test, P < 0.05). These prognostic genes were 
then ranked by their importance estimated by random 
forest algorithm. The univariable Cox regression analysis 
of the top-ten genes were listed in Table 1. Subsequently, 
the Maximum Minimum Parents and Children (MMPC) 
algorithm successfully identified three prognostic genes, 
KLK6, TNS1, and TRIM56, as the best subset of genes 
(threshold for MMPC = 0.05). As shown in Fig.  1b, c, 
KLK6 and TNS1 were more abundantly expressed in 
deceased patients than in living patients (Wilcoxon 
rank-sum test, P < 0.005), and their expression patterns 
were negatively correlated with patients’ overall survival, 
while higher expression of TRIM56 was observed in liv-
ing patients (Wilcoxon rank-sum test, P < 0.05), indicat-
ing a favorable prognosis. Finally, multivariable Cox 
proportional hazards regression model was constructed 
based on these three prognostic genes, and the patients 
were divided into high-risk and low-risk groups based on 
their risk scores estimated by the Cox model (median of 

the risk score as the threshold). As illustrated in Fig. 1d, 
the samples from high-risk and low-risk groups exhibited 
significantly different prognostic outcomes (Log-rank 
test, P-value < 0.0001), suggesting that the stratification 
by the Cox model was closely associated with MIBC 
overall survival.

To investigate the biological function of the three prog-
nostic genes in MIBC, we collected 30 MIBC cell lines. 
For each of the three prognostic genes, we calculated their 
expression in each cell line, ranked them and selected the 
first four as cell lines with the high expression and the 
last four as ones with the low expression, respectively. 
We then compared these four highest expression cell 
lines with the corresponding four lowest expression cell 
lines. Subsequently, KEGG enrichment analysis revealed 
that differentially expressed genes (DEGs) in KLK6 high 
expression cell lines were enriched in pathways such as 
tight junction and cell adhesion molecules (P < 0.05, 
Additional file 1: Table S1), suggesting that high expres-
sion of KLK6 in MIBC may be associated worse progno-
sis via regulation of cell–cell communication. Moreover, 
KEGG analysis of DEGs between cells with high and low 
expression of TRIM56 revealed that TRIM56 was highly 
associated with mismatch repair (MMR). Low expression 
of TRIM56 in MIBC may be associated with the defect 
in MMR (Additional file 1: Table S1). In addition, we did 
not observe any KEGG pathways enriched by the DEGs 
related to TNS1. However, previous studies [23, 24] have 
reported that TNS1 could increase the metastatic poten-
tial and alter expression of genes involved in cell motility 
in colorectal cancer, and may be a potential prognos-
tic biomarker in human colorectal cancer. These results 
indicated that KLK6 and TRIM56 may be associated with 
worse prognosis of MIBC via regulating cell–cell com-
munication and MMR, respectively.

Validation of the prognostic stratification in two datasets
To validate our prognostic stratification in MIBC risk 
prediction, we first preformed stratification on the sam-
ples (n = 214) from TCGA-validation dataset. Moreo-
ver, we also collected another gene expression dataset 
E-MTAB-1803 with detailed follow-up information from 
the ArrayExpress database. A total of 73 samples with 
follow-up information was included for stratification 
(see “Materials and methods”). Remarkably, the stratified 
groups in each of the two validation datasets exhibited 
significant difference in overall survival (Fig. 2, P < 0.005), 
suggesting that the prognostic stratification for MIBC 
was robust.

To further demonstrate the performance of the three-
gene-signature-based stratification in MIBC cohorts, 
we compared our method with three other stratification 
methods based on the three-gene-signature with three 

Table 1  The top-ten prognostic genes ranked by random-
forest-based importance

Gene symbol coef exp(coef) se(coef) Z-score Pr(> |Z|)

KLK6 0.67 1.96 0.21 3.12 1.80E−03

RGMA 0.64 1.89 0.21 2.97 3.00E−03

TNS1 0.63 1.87 0.22 2.90 3.69E–03

P4HA3 0.54 1.72 0.21 2.55 1.07E–02

UACA​ 0.50 1.65 0.21 2.35 1.87E–02

CYTL1 0.47 1.60 0.21 2.21 2.71E–02

PTCD3 − 0.45 0.64 0.21 − 2.12 3.40E–02

TRIM56 − 0.43 0.65 0.21 − 2.03 4.27E–02

NRP1 0.42 1.52 0.21 1.97 4.92E–02

NHS − 0.42 0.66 0.21 − 1.97 4.93E–02
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Fig. 1  The development and construction of Cox proportional hazard regression model of three-gene-signature. a The workflow for the 
identification of three prognostic gene signatures. b The expression levels of the three gene signatures in alive and deceased patients. c The hazard 
ratio and 95% confidence interval of the three gene signatures in the Cox proportional hazard regression model. d The Kaplan–Meier curves for the 
two risk groups in the TCGA-training dataset. The red and green curves represent the high-risk and low-risk groups, respectively
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other stratification methods proposed by Wu et al. [10], 
Kim et  al. [8, 9], which were used to predict the over-
all survival of MIBC. We found that our stratification 
based on three-gene-signature was superior to the others 
(Fig. 2c). Although the stratification by Wu et al. showed 
similar performance with ours in TCGA-validation data-
set, its performance on E-MTAB-1803 dataset was much 
poorer than the stratification by three-gene-signature. 
These results suggested that our stratification exhibited 
better performance in predicting overall survival for 
MIBC.

The stratification was a prognostic factor independent 
of clinically prognostic indicators and radiation treatment
As our prognostic model exhibited satisfying perfor-
mance on all MIBC patients from both training and vali-
dation sets, it was also necessary to investigate whether 
this stratification was a prognostic factor independent 
of clinically prognostic indicators, such as lymph node 
and distant metastasis, and radiation treatment. We 

constructed a multivariable Cox regression model using 
the three gene signatures and other clinical cofactors-
such as lymph node, distant metastasis, and radiation 
treatment-as variables, and observed that these three 
genes were significantly associated with the prognosis 
in Cox models with and without these clinical cofactors 
(Table  2), suggesting that the three gene signatures still 
maintained prognostic significance in the multivariable 
regression model with the clinical factors.

To further demonstrate that the stratification was a 
prognostic factor independent of clinically prognos-
tic indicators and radiation treatment, we also con-
ducted statistical tests on both TCGA-validation and 
E-MTAB-1803 datasets. Consistently, the high-risk and 
low-risk groups exhibited significant difference in over-
all survival among samples with or without lymph node 
metastasis, which were observed in both of the valida-
tion datasets (Fig.  3a, b, log-rank test, P < 0.05). Simi-
larly, the high-risk group also exhibited worse overall 
survival than the low-risk group among samples with 
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and without distant metastasis from TCGA-validation 
dataset, and among samples without distant metasta-
sis from E-MTAB-1803 dataset (Fig. 3c, d, log-rank test, 
P < 0.05). Exceptionally, the statistical significance was 
not observed among samples with distant metastasis 
from E-MTAB-1803 dataset, which may be resulted from 
the small sample size (Fig. 3d, n = 29). Furthermore, the 
high-risk group had worse prognosis than the low-risk 
group among samples with and without radiation treat-
ment from both TCGA-validation and E-MTAB-1803 
dataset (Fig. 4, P-value < 0.1). These results demonstrated 
that the three-gene stratification of MIBC samples was a 
prognostic factor independent of both clinically prognos-
tic indictors and radiation treatment.

The biological differences between the two risk groups 
and potential therapeutic targets of the high‑risk group
To improve our understanding of the biological differ-
ences between these two risk groups, we performed dif-
ferential gene expression analysis on the two validation 
datasets (t-test, adjusted P-value < 0.05). The upregu-
lated and downregulated genes were subjected to KEGG 
enrichment analysis, respectively. However, the downreg-
ulated genes were not enriched in any KEGG pathways, 
while the upregulated genes were enriched in human pap-
illomavirus infection, PI3K-Akt signaling pathway, ECM-
receptor interaction, focal adhesion, protein digestion 
and absorption, and relaxin signaling pathway (Fig.  5a, 
FDR < 0.05). The co-occurrence of PI3K-Akt signaling 
pathway, ECM-receptor interaction, and focal adhesion 
suggested that these two risk groups showed significant 
difference in tumor microenvironment. Further inves-
tigation of PI3K-Akt signaling pathway highlighted the 
upregulated components, such as RTKs (receptor tyrosine 
kinases), ECM (extracellular matrix), and ITGA (Integ-
rin alpha subunit) (Fig. 5b). The genes involved in PI3K-
Akt signaling pathway were significantly upregulated 

in high-risk group as compared with the low-risk group  
(Fig. 5c).

To further search for drug and therapeutic targets for 
patients in the high-risk group, we mapped the upregu-
lated genes in the high-risk group to the drug–target 
interaction network, and identified 8 genes, includ-
ing ADAM12 (ADAM Metallopeptidase Domain 12), 
CTGF (Cellular Communication Network Factor 2), 
CTSK (Cathepsin K), GUCY1A2 (Guanylate Cyclase 1 
Soluble Subunit Alpha 2), INHBA (Inhibin Subunit Beta 
A), PDGFRB (Platelet Derived Growth Factor Recep-
tor Beta), TNFSF4 (TNF Superfamily Member 4), and 
TUBA1A (Tubulin Alpha 1a), as the potential therapeu-
tic targets (Fig.  5d). Notably, PDGFRB, a receptor for 
platelet-derived growth factor, was the most frequent 
target of several drugs, suggesting that the patients in 
high-risk group could be treated with the inhibitors 
of PDGFRB. In addition, TUBA1A was also identified 
as the potential target of multiple drugs for high-risk 
MIBC. Notably, a clinical trial was conducted to study 
the effectiveness of Ixabepilone, which was an inhibi-
tor of TUBA1A, in treating patients with progressive or 
metastatic urinary tract cancer (The clinical trial acces-
sion: NCT00021099).

To prove the practicability of these target-drug/
inhibitor predictions, we performed literature research 
for these pairs. Among the drugs targeting PDGFRB 
and TUBA1A, 6 and 4 drugs were reported to be used 
in the treatment of MIBC (Additional file 2: Table S2), 
respectively. Particularly, drugs of sorafenib, imatinib, 
dasatinib, sunitinib, vinflunine, vinblastine, trastu-
zumab emtansine, and trastuzumab for PDGFRB or 
TUBA1A were shown to have the potentials in treating 
MIBC by in vitro, in vivo or clinical trials. The mapping 
of the upregulated genes in high-risk group to drug–
target interaction network provided multiple therapeu-
tic candidates for the patients of high-risk group.

Table 2  The multivariable Cox models with  and  without clinical factors including  lymph node, distant metastasis, 
and radiation treatment

coef: coefficients for the variables included in Cox model; Pr(> |Z|): P-value for the variables

Cox model without clinical cofactors Cox model without clinical cofactors

coef exp(coef) se(coef) z Pr(> |Z|) coef exp(coef) se(coef) z Pr(> |Z|)

KLK6 0.6767 1.9673 0.2135 3.1440 0.0017 0.6910 1.9957 0.2199 3.1425 0.0017

TNS1 0.7012 2.0161 0.2171 3.2300 0.0012 0.5928 1.8091 0.2250 2.6354 0.0084

TRIM56 − 0.5287 0.5894 0.2135 − 2.4760 0.0133 − 0.5554 0.5738 0.2180 − 2.5474 0.0109

Lymph node (yes) – – – – – 0.5065 1.6595 0.2220 2.2817 0.0225

Distant metastasis (yes) – – – – – 0.6021 1.8259 0.2209 2.7260 0.0064

Radiation (yes) – – – – – 0.7972 2.2194 0.3664 2.1757 0.0296
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The comparison of the prognostic stratification and TCGA 
classification
We compared our prognostic stratification with the 
TCGA classification, and found that the Basal-squamous, 
Luminal infiltrated, and Neuronal subtypes were highly 
enriched in high-risk group (P < 0.05, Fig.  6a), In con-
trast, Luminal-papillary subtype was highly enriched in 
low-risk group (P < 0.05, Fig. 6a). For the five mutational 
signatures including, C>T_CpG, APOBEC-a, APOBEC-
b, ERCC2, and POLE, only APOBEC-a was found to be 
higher in low-risk group than in high-risk group (P < 0.05, 
Fig.  6b), suggesting that the mutations of patients in 
low-risk group might be caused by the dysfunction of 
APOBEC3A. Furthermore, the results also suggested that 
the patients with APOBEC-a mutation signature might 
have a better prognosis.

Identification of immune infiltration patterns for MIBC
To reveal the landscape of immune cells infiltrating into 
tumor tissues of MIBC, we first collected 24 immune 
cell types and angiogenesis-related genes from the pre-
vious study [25]. The gene set enrichment analysis 

was performed to identify immune cells that exhib-
ited more remarkable infiltration in high-risk MIBC as 
compared with low-risk samples. We found that mac-
rophage was highly filtrated into tumors of the high-risk 
MIBC (Fig.  7a, FDR < 0.05). The angiogenesis-related 
genes were highly upregulated in high-risk MIBC 
(Fig.  7b, FDR < 0.05), suggesting that the angiogen-
esis was an important indicator for poor prognosis of 
MIBC. Moreover, two marker genes of M2 macrophage, 
CD163 (CD163 molecule) and MRC1 (Mannose Recep-
tor C-Type 1), were observed significantly upregulated 
in high-risk MIBC (Fig. 7c, P-value < 0.05) in all datasets 
except M-TAB-1803 dataset due to the lack of probes 
quantifying related gene expressions. These results fur-
ther suggested that M2 macrophage may be the major 
infiltrated immune cells in high-risk MIBC and promote 
the progression of MIBC.

Discussion
Bladder cancer is one of the most common malignancies 
worldwide [1]. Several studies [8–10] have proposed sev-
eral approaches to select and combine gene signatures 
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for predicting the prognosis of MIBC, however, these 
gene signature sets have not been systematically com-
pared with one another, and their performance on inde-
pendent datasets are not satisfying. In the present study, 
we aimed to detect a combination of gene signatures 
for MIBC prognostic prediction and risk stratification. 
Based on the systematic data analysis, we identified three 
prognostic gene signatures, KLK6, TNS1, and TRIM56, 
as the best subset of genes. KLK6, a member of the kal-
likrein, was able to predict tumor recurrence in epithe-
lial ovarian carcinoma [26]. Moreover, KLK6 has been 
reported to regulate epithelial-to-mesenchymal transi-
tion (EMT) and serve as prognostic biomarker for head 
and neck squamous cell carcinoma patients [27], which 
also indicated that the poor prognosis in MIBC samples 
with high expression of KLK6 might be associated with 
the dysfunction of EMT. TNS1 was rarely reported to 
be associated with cancer, but was identified as a poten-
tial biomarker in human colorectal cancer [23] and a 
regulator of metastatic potential in colorectal cancer 
via altering expression of genes involved in cell motility 
[24]. In contrast, previous studies [28, 29] have identi-
fied TRIM56 as a tumor suppressor through activation 
of TLR3/TRIF signaling pathway, which was consistent 

with the result that TRIM56 expression was a favorable 
indicator of MIBC in this study. Utilizing the expression 
profiles of these three signatures, we successfully built 
a multivariable Cox regression model to calculate risk 
scores and stratified the MIBC patients into high and low 
risk groups.

To demonstrate the high performance of the prog-
nostic stratification based on MIBC risk prediction, we 
selected two independent cohorts as validation datasets. 
Remarkably, the stratified groups in the two validation 
datasets both exhibited significant difference in over-
all survival (Fig.  2, P < 0.005). To further demonstrate 
the capability of the three-gene-signature in MIBC risk 
stratification, we also compared our three-gene-signa-
ture-based method with three other stratification meth-
ods by Wu et  al. [10], Kim et  al. [8, 9], and found that 
our method was superior to the others as patients strati-
fied with our method exhibited a more significant dif-
ference in overall survival between high- and low-risk 
groups, suggesting that this prognostic stratification for 
MIBC was more robust and accurate. In addition, we also 
investigated whether this stratification was independent 
from other clinical indicators, such as lymph node and 
distant metastasis, and a history of radiation treatment, 
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which could affect the MIBC prognosis. Consistently, the 
high-risk group exhibited worse prognosis than low-risk 
group in samples with and without lymph node metas-
tasis, distant metastasis, and a history of radiation treat-
ment. Specifically, we found that none of the three other 
stratifications selected the gene signatures based on uni-
variable Cox analysis and their functionality. However, 
the present study selected the three gene signatures by 
integrating the univariable Cox analysis and Maximum 
Minimum Parents and Children (MMPC) algorithm, the 
strength of which is the maintenance of the statistical sig-
nificance in both univariable and multivariable analyses, 
not only in univariable analysis.

Moreover, PI3K-Akt signaling pathway, a critical sign-
aling pathway for cancer cell formation and progres-
sion [30–33], was highly activated in the high-risk group 
according to the results from differential expression 
analysis and gene set enrichment analysis. In addition 
to PDGFRB, other upstream receptor tyrosine-kinases 
(RTKs) in PI3K-Akt signaling pathway, such as EGFR, 
CSF1R, FGFR1, FLT4, FLT3, NGFR, NTRK1, PDGFRA, 
and TEK, were also observed to be upregulated in the 
high-risk group (P < 0.05, Additional file  3: Figure S1). 
These results further suggested that overexpression of 
these RTKs may be responsible for PI3K-Akt signaling 
pathway hyper-activation, and RTKs may serve as thera-
peutic targets in high-risk MIBC. Recently, an FGFR fam-
ily inhibitor, erdafitinib, was approved by the U.S. Food 
and Drug Administration (FDA) to treat locally advanced 
or metastatic bladder cancer in adult patients with sus-
ceptible genetic alteration in FGFR3 or FGFR2, whose 
condition still progressed during or following prior plat-
inum-containing chemotherapy. Therefore, we proposed 
that the erdafitinib treatment may work on patients of 
high-risk group, when platinum-containing chemother-
apy failed to bring satisfying results.

In general, immune cells were infiltrated into tumor 
cells. We found that macrophage was highly filtrated 
into the high-risk MIBC (Fig.  7a, FDR < 0.05), and the 
angiogenesis-related genes were highly upregulated in 
high-risk MIBC (Fig. 7b, FDR < 0.05). More importantly, 
two M2 macrophage markers, CD163 and MRC1, were 
observed to be significantly upregulated in high-risk 
MIBC (Fig. 7c, P-value < 0.05). The co-occurrence of M2 
macrophage infiltration and hyper-active angiogenesis 
in high-risk samples suggested that M2 macrophage may 
promote the angiogenesis of high-risk MIBC, which was 
consistent with previous studies [34–36].

However, the present study still has some limitations. 
First, gene expression profiles of patients with long-
term follow-ups should be collected to further assess the 
robustness of our stratification. Second, data regarding 
the efficacy of certain drugs in high-risk MIBC are not 

available, and in vitro and in vivo studies are needed to 
yield more experimental evidences. There is no experi-
ment to validate the association between M2 macrophage 
and angiogenesis. Nevertherless, this study provides a 
new perspective on the molecular mechanisms behind 
high-risk MIBC, and has successfully illustrated how 
these mechanisms are related to the prognostic outcomes 
of MIBC patients.

Conclusions
The present study has investigated the underlying molec-
ular mechanism and potential therapeutic targets asso-
ciated with worse prognosis of high-risk MIBC, which 
could improve our understanding of the progression of 
MIBC and provide new therapeutic targets for the man-
agement of MIBC.
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