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Abstract 

Background:  Pediatric cancer survival rates overall have been improving, but neuroblastoma (NBL) and acute 
lymphoblastic leukemia (ALL), two of the more prevalent pediatric cancers, remain particularly challenging. One issue 
not yet fully addressed is distinctions attributable to age of diagnosis.

Methods:  In this report, we verified a survival difference based on diagnostic age for both pediatric NBL and pedi-
atric ALL datasets, with younger patients surviving longer for both diseases. We identified several gene expression 
markers that correlated with age, along a continuum, and then used a series of age-independent survival metrics to 
filter these initial correlations.

Results:  For pediatric NBL, we identified 2 genes that are expressed at a higher level in lower surviving patients with 
an older diagnostic age; and 4 genes that are expressed at a higher level in longer surviving patients with a younger 
diagnostic age. For pediatric ALL, we identified 3 genes expressed at a higher level in lower surviving patients with an 
older diagnostic age; and 17 genes expressed at a higher level in longer surviving patients with a younger diagnostic 
age.

Conclusions:  This process implicated pan-chromosome effects for chromosomes 11 and 17 in NBL; and for the X 
chromosome in ALL.

Keywords:  Diagnostic age, Pediatric cancer, Neuroblastoma, Acute lymphoblastic leukemia, Chromosome 17, Age of 
onset
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Background
Age of diagnosis may be particularly important in pediat-
ric cancers due to the significant developmental changes 
that occur in humans from birth to age 18. Put another 
way, a few years in the life of a child represents a substan-
tial percentage change in overall lifespan, not the case in 
later stages of adulthood.

Several studies have indicated that age of onset for 
pediatric neuroblastoma (NBL) and pediatric acute 

lymphoblastic leukemia (ALL) is reflective of disease 
course. Since the 1970s, a survival difference in pediatric 
NBL has been noted between older and younger diag-
nostic age, with a diagnostic age of 12  months or older 
reflective of significantly poorer survival [1]. In a 2005 
study, pediatric NBL patients diagnosed between ages 12 
and 18 months were found to have a higher 6-year event-
free survival ate than those diagnosed later in life [2]. A 
study in 2011 found similar results, suggesting that while 
the impact of diagnostic age on prognosis has decreased 
since it was first detected in the 1970s, it remains a strong 
indication of survival rates for pediatric NBL patients [1].

This stark difference in survival rates based on age at 
diagnosis would suggest developmental, gene expression 
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differences representing possibly unknown or as yet 
uncharacterized subdivisions of NBL, and indeed, certain 
gene expression related distinctions have been associated 
with pediatric NBL progression and prognoses distinc-
tions. Lack of amplification of the MYCN gene, in addi-
tion to general hyperploidy, have been found to represent 
improved prognoses for pediatric NBL patients ages 12 to 
18 months [3]. ATRX mutations have also been found to 
be increased in pediatric NBL patients with an older age 
at diagnosis, suggesting that expression of the wild-type 
version of this gene contributes to survival in patients 
diagnosed at a younger age [4].

Pediatric ALL also indicates elevated survival rates for 
patients diagnosed at a younger age. A 2014 study indi-
cated that survival of pediatric ALL patients decreased 
with age at diagnosis, excluding those diagnosed within 
the first year of life, where there was the worst prognosis 
[5]. While the mutations of several genes have been cor-
related with survival in this cancer, none have also been 
assessed in a context of age at diagnosis.

Keeping in mind that many gene expression scenarios, 
particularly associated with development [6, 7], involve a 
gradient of expression and signal pathway activation gra-
dients, and that signal pathway activation gradients have 
also been reported to represent distinct outputs in the 
cancer setting [8–10], we took an approach to biomarker 
discovery for NBL and ALL that emphasized a contin-
uum of expression levels, with the expectation that, for 
certain genes, the higher the expression level, the greater 
the probability of a discreet effect, in this case a dis-
creet effect leading to a survival distinction. Thus, in this 
study, we used RNA expression data from the TARGET 
database to first identify genes whereby a continuum of 
expression could be established as having a correlation 
with age, and then to additionally, independently filter 
such genes for an association of expression levels with 
distinct survival rates.

Methods
Clinical information for pediatric NBL
Of the 1076 pediatric NBL patients, 227 were age 1 or 
younger (21.1%); 825 were between age 1 and 10 (76.7%); 
21 were between age 10 and 18 (1.95%); and 3 were over 
the age of 18 (0.28%). There were 463 females (43%) and 
613 males (57%). 792 patients were white (73.6%); 127 
were black or African American (11.8%); 29 were Asian 
(2.7%); 11 were Native Hawaiian or Pacific Islander 
(1.02%); 3 were American Indian or Alaskan Native 
(0.28%); and 114 did not report race or were of unknown 
race (10.6%). Clinical reports classified 89 patients as 
stage 1 (8.27%); 25 as stage 2a (2.32%); 36 as stage 2b 
(3.35%); 92 as stage 3 (8.55%); 777 as stage 4 (72.2%); and 

55 as stage 4s (5.11%), with 2 patients having unknown 
staging (0.19%).

Clinical information for pediatric ALL
For the 1550 pediatric ALL patients, five did not have 
any clinical information available and were therefore 
not used for survival analysis in this report. Of the 1545 
remaining patients, 904 were age 10 or younger (58.5%); 
584 were between age 10 and 18 (37.8%); and 57 were 
over age 18 (3.69%). There were 642 females (42%) 
and 903 males (58%). 1158 of the patients were white 
(75.0%); 109 were black or African American (7.06%), 67 
were Asian (4.34%); 7 were Native Hawaiian or Pacific 
Islander (0.45%); 4 were American Indian or Alaskan 
Native (0.26%); and 200 were of unknown race (12.9%). 
CNS staging had been recorded for all patients, with 
1255 staged as CNS 1 (81.2%), 124 as CNS 2 (8.03%), 73 
as CNS 2a (4.72%), 26 as CNS 2b (1.68%), 19 as CNS 2c 
(1.23%), 20 as CNS 3 (1.29%), 12 as CNS 3a (0.78%), 7 as 
CNS 3b (0.45%), and 7 as CNS 3c (0.45%). Only 2 patients 
did not have CNS staging information available (0.13%).

Gene expression correlation with diagnostic age
Survival and RNA microarray data [11, 12] were obtained 
from http://www.cbiop​ortal​.org. A Pearson’s correla-
tion coefficient was calculated using an automated 
script (available upon email request to the correspond-
ing author) between diagnostic age (in days) and gene 
expression values for each gene individually. The expres-
sion of genes with a positive correlation coefficient and 
a p-value < 0.05, for the correlation, were categorized 
as “upregulated with age”. The expression of genes with 
a negative correlation coefficient and a p-value < 0.05, 
for the correlation, were categorized as “downregulated 
with age”. In other words, in this latter case, we identified 
genes that were upregulated in younger patients.

Identification of individual survival markers
Individual survival markers were identified using a 
Kaplan–Meier survival analysis for each individual gene. 
An automated script (available upon email request to 
the corresponding author) calculated survival for each 
gene individually as follows: For each gene, barcodes 
were organized by expression value, then the top 20% of 
expressers and bottom 20% of expressers were compared 
using a Kaplan–Meier survival analysis. Genes with a 
p-value < 0.05 and a larger median survival value in the 
top 20% of expressers were categorized as “upregulated, 
high survival markers”. Genes with a p-value < 0.05 and a 
smaller median survival value in the top 20% of express-
ers were categorized as “upregulated, low survival mark-
ers”. Figures representing Kaplan–Meier survival analyses 

http://www.cbioportal.org
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were generated using GraphPad Prism software (version 
7).

Chromosome location data was obtained from NCBI 
(https​://www.ncbi.nlm.nih.gov/) and GeneCards (https​
://www.genec​ards.org/). Chromosome locations of genes 
and the figures representing these data were generated 
using Microsoft Excel.

Results
Identification of pediatric NBL survival markers
Using a novel scripted algorithm (“Methods” sec-
tion), clinical information for 1076 pediatric neuroblas-
toma (NBL) patients was sorted by diagnostic age in 
days, and an automated Kaplan–Meier (KM) analysis 
of the oldest 20% and the youngest 20% of the patients 
revealed a significant difference in survival (KM log rank 
p-value < 0.0001), with the oldest 20% having lower sur-
vival (Fig.  1; Additional file  1: Table  S1). This analysis 
was repeated for the upper and lower fiftieth percen-
tiles, for age, with results being consistent with the initial 
results using the twentieth percentiles (Additional file 1: 
Table S2).

Considering the patient group representing the twen-
tieth percentiles above, 247 had microarray data avail-
able through the TARGET database [11, 12], representing 
23,434 genes. Again, using an automated process (“Meth-
ods” section), we determined which of these genes rep-
resented RNA expression levels that differed significantly 
with age, based on the statistical significance of a Pear-
son’s correlation coefficient (“Methods” section).

With the above processing, 623 genes were found 
to be significantly correlated with age (upregulated in 
older pediatric NBL patients), and 1334 genes were 
found to be significantly, inversely correlated with age 
(upregulated in younger pediatric NBL patients) (Addi-
tional file 1: Tables S3, S4).

We next identified which of the 23,434 genes were 
independent survival markers (i.e., without regard to 
age-defined patients representing survival distinc-
tions described in the above paragraph.) Of the 623 
genes significantly correlated with older age (above 
paragraph), 95 (Additional file  1: Table  S5) were also, 
independently, markers of low survival, i.e., when 
upregulated (with “upregulated” referring to a sig-
nificant difference in the top 50% and bottom 50% of 
microarray levels, as determined by log-transformed 
t-test p-value < 0.05.) That is, the top expressers had 
significantly worse survival compared to the bottom 
expressers (with the survival distinction represented by 
a KM log rank p-value < 0.05.)

Of the 1334 genes significantly correlated with younger 
age, 397 (Additional file  1: Table  S6) were also identi-
fied, independently, as high survival markers, i.e., when 
upregulated (with “upregulated” referring to a signifi-
cant difference in the top and bottom microarray levels, 
as determined by log-transformed t-test p-value < 0.05). 
That is, the top expressers had significantly better survival 
compared to the bottom expressers (with the survival 
distinction represented by a KM log rank p-value < 0.05) 
(Fig. 2a).

Of the 95 genes that were upregulated with age, and 
were independently correlated with low survival when 
upregulated, we identified 7 genes that, when upregu-
lated, were also correlated with low survival solely within 
the oldest 20% of pediatric NBL patients (p-value < 0.05). 
Of these 7 genes, we identified 2 genes that, when upreg-
ulated, were independently correlated with low survival 
(p-value < 0.05) solely within the youngest 20% of pedi-
atric NBL patients: USP17L5 and SLC25A5 (Fig.  2b; 
Additional file 1: Table S7). To be clear, these two genes, 
USP17L5 and SLC25A5, have withstood 4 filters with 
regard to upregulation and low survival. First, the two 
genes are upregulated in older patients, known to have a 
poor survival rate. Second, the two genes are upregulated 
in low surviving patients regardless of age. Third, within 
the older group, the genes are upregulated with poor 
survival. And, within the younger group, USP17L5 and 
SLC25A5 are upregulated with relatively poor survival. A 
KM curve of the USP17L5 survival marker illustrates the 
point that this marker is associated with decreased sur-
vival within both the oldest 20% and the youngest 20% of 
pediatric NBL patients (Fig.  3; for SLC25A5 KM curve, 
see Additional file 1: Figure S1).

Fig. 1  Kaplan-Meier (KM) overall survival (OS) curve for pediatric NBL 
barcodes representing the oldest 20% (black) of patients compared 
to barcodes representing the youngest 20% (gray) of patients 
(Additional file 1: Table S1). Youngest 20% of patients were found to 
have significantly better survival than the oldest 20% (arrow). Median 
OS for oldest 20% barcodes, 1836 days; median OS for youngest 20% 
barcodes, undefined. Log rank comparison p-value < 0.0001

https://www.ncbi.nlm.nih.gov/
https://www.genecards.org/
https://www.genecards.org/
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We used a similar filtering process for genes that were 
upregulated with younger age, and, independently of age, 
also high survival markers, when upregulated. Of these 
resulting 397 genes, we identified 15 genes that were 
also independent, high survival markers (p-value < 0.05) 
within the oldest 20% of pediatric NBL patients. Of these 
15 genes, we identified 4 genes that were also independ-
ent high survival markers (p-value < 0.05) within the 
youngest 20% of pediatric NBL patients: POF1B, RND3, 
KLC4, and SLC12A1 (Fig. 2b; Additional file 1: Table S8). 
That is, these 4 genes were upregulated among high sur-
vivors within the younger patient set. A KM curve of 

the POF1B survival marker illustrates that upregulation 
of this gene is associated with increased survival within 
both the oldest 20% and with the youngest 20% of pediat-
ric NBL patients (Fig. 4; for RND3, KLC4, and SLC12A1 
see Additional file 1: Figure S1).

All of the final NBL results have been confirmed with 
three replicative datasets (Table  1) (https​://hgser​ver1.
amc.nl/) [13].

Gene chromosome distribution for pediatric NBL
To identify any potential linkage among the indicated, 
gene expression survival markers, we did a chromosomal 

Fig. 2  Diagrams depicting the sorting process of genes to identify gene-expression based survival markers based on diagnostic age. a Filter 
1 indicates genes that were significantly upregulated in either older (top) or younger (bottom) patients, Pearson Correlation Coefficient, 
p-value < 0.05. Filter 2 indicates genes that were significantly correlated with either low (top) or high (bottom) survival, log-transformed t-test 
p-value < 0.05. b Filter 3 indicates genes that were also low (top) or high (bottom) survival markers, when upregulated, within the oldest 20% of 
patients. Finally, Filter 4 indicates genes that were also low (top) or high (bottom) survival markers, when upregulated, within the youngest 20% of 
patients. The right-most boxes indicate the number of genes that cleared all four filters, indicating the upregulated genes that are indicative of older 
age and lower survival (2 genes) as well as the upregulated genes indicative of younger age and higher survival (4 genes)

https://hgserver1.amc.nl/
https://hgserver1.amc.nl/
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location analysis of the genes that were correlated with 
both age and survival. Among the 397 genes upregulated 
among younger patients that were also independently 
indicated as upregulated among high survivors (Fig. 2a), 
both chromosome 11 and 17 locations were overrepre-
sented. Chromosome 11 was expected to contain 5.81% 
of these genes, based on random chance, but contained 

12.63%, while chromosome 17 was expected to contain 
4.65% but contained 13.13% (Fig. 5: p-value < 0.0001, for 
expected versus observed, for both 11 and 17; Additional 
file 1: Table S9).

Identification of pediatric ALL survival markers
Using clinical data available for 1550 pediatric ALL 
patients [11, 12], a KM curve of the oldest 20% and the 
youngest 20% of pediatric ALL patients also revealed a 
significant difference in survival between the two groups 
(p-value < 0.0001), with the oldest 20% having lower sur-
vival (Fig. 6).

Of these patients, 203 had microarray data available 
through the TARGET database, representing 23,434 
genes. We then used a similar automated process as in 
the case of pediatric NBL above (“Methods” section) 
to identify survival markers in ALL. 1316 genes were 
upregulated with older age, and 471 of those were also 
independent low survival markers, i.e., regardless of 
age, when upregulated. 1366 genes were upregulated in 
younger patients, and 1057 of those were also independ-
ent, high survival markers, when upregulated.

Of the 471 genes upregulated with age that were also, 
independently, low survival markers, 21 were indicative 
of low survival within the oldest 20% of pediatric ALL 
patients. Three of these genes were also low survival 
markers, when upregulated, within the youngest 20% of 
pediatric ALL patients: THAP4, ZNHIT2, and SF3B2 
(Additional file  1: Figure S1) of the 1057 genes upregu-
lated in younger patients, and that were independently 
high survival markers when upregulated, 77 were indica-
tive of higher survival within the oldest 20% of pedi-
atric ALL patients. Seventeen of these genes were also 
high survival markers within the youngest 20% of pedi-
atric patients: COL5A1, GABBR1, HACE1, RPS6KA5, 
LAMB1, BMP3, MAML3, SLX4IP, EPHA7, OR52H1, 
DDX60L, SNORA19, SNORA2A, ENTHD2, TRIP11, 
ZNF81, and ZNF514 (Additional file 1: Figure S1).

Gene chromosome distribution in pediatric ALL
Because chromosomes 11 and 17 were found to be com-
mon locations for genes upregulated in young, high-
surviving pediatric NBL patients, a similar chromosomal 
distribution analysis was performed for the 1057 genes 
that were upregulated in younger patients and inde-
pendently indicative of increased survival in pediat-
ric ALL patients. Of these genes, 4.07% were expected 
to be located on chromosome X, but in fact, 11.16% 
were located on this chromosome (p-value < 0.0001, for 
expected versus observed, for X; Fig. 7; Additional file 1: 
Table S12).

Fig. 3  Kaplan-Meier (KM) overall survival (OS) curve for pediatric NBL 
barcodes comparing the oldest 20% of patients and high USP17L5 
microarray-based expression (A), oldest 20% of patients and low 
USP17L5 microarray-based expression (B), youngest 20% of patients 
and high USP17L5 microarray-based expression (C), and youngest 
20% of patients and low USP17L5 microarray-based expression (D). 
Median OS for (A), 1235 days; median OS for (B), 3691 days; median 
OS for (C), undefined; median OS for (D), undefined. Log rank 
comparison p-value < 0.0001

Fig. 4  Kaplan–Meier (KM) overall survival (OS) curve for pediatric 
NBL barcodes comparing the oldest 20% of patients and high POF1B 
Microarray expression (A), oldest 20% of patients and low POF1B 
microarray-based expression (B), youngest 20% of patients and 
high POF1B microarray-based expression (C), and youngest 20% 
of patients and low POF1B microarray-based expression. Median 
OS for (A), 3691 days; median OS for (B), 833 days; median OS for 
(C), undefined; median OS for (D), undefined. Log rank comparison 
p-value < 0.0001
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Diagnostic age and survival for pediatric Wilms tumor, 
AML, and osteosarcoma
After finding survival markers based on diagnostic 
age in both pediatric NBL and pediatric ALL, we per-
formed similar analyses for pediatric Wilms tumor, 
pediatric acute myeloid leukemia (AML), and pediatric 
osteosarcoma. While a KM analysis of the oldest 20% 
and the youngest 20% of pediatric Wilms patients did 
reveal a significant difference in survival between the 
two groups, with the oldest 20% having lower survival 
(p-value = 0.0237), no genes were identified using all 
four filters (Fig.  2) used for identifying consistent sur-
vival markers for NBL and ALL, as described above. KM 
analyses of the oldest 20% and youngest 20% of patients 
for both pediatric AML (p-value = 0.4128) and pediatric 

osteosarcoma (p-value = 0.7524) found no significant dif-
ference in survival based on age.

Discussion
The above data provided two basic indications. First, 
the upregulation or downregulation of a particular 
set of genes associated with a continuum of age can be 
used as a starting point to identify gene expression lev-
els associated with survival rates, in this case where the 
survival rates are, in turn, associated with patient age. 
The approach above (Fig.  2) provides new candidate 
biomarkers of survival, and new candidate mediators of 
tumor development, based on an approach that repre-
sents a continuum of expression levels with the presump-
tion (not directly addressed here) that such a continuum 
would reflect probabilistic impacts on cellular or physi-
ological events impacting survival. From this base of 
candidates, further filters were applied to identify and 
validate the gene expression-level, survival associations. 
This approach represents an important, distinct start-
ing point, in comparison to many common approaches 
to identifying biomarkers, and drivers of tumorigenesis, 
motivated by evidence that indicates that amplification of 
signaling pathways, rather than potential on/off switches, 
can ultimately have highly discreet phenotypic results, 
not only in tumorigenesis [10, 14] but in normal devel-
opment [6, 7]. Unlike a starting point for many survival 
biomarkers, the empirical approach, such as transfection 
of an oncoprotein and assaying increased tissue culture 
cell division, may not be possible for certain biomarkers 
or facilitators of tumorigenesis. And indeed, as discussed 

Table 1  Evaluation of age-based, NBL survival biomarkers 
(Fig.  2b) using a  replicative dataset (https​://hgser​ver1.
amc.nl/)

p-values for separate datasets indicated in right three columns

Gene Kocak (n = 649) Oberthuer (n = 251) SEQC (n = 498)

(Upregulation associated with older age and worse survival)

 USP17L5 N/A N/A 1.20E − 08

 SLC25A5 1.00E−26 1.30E−32 1.00E−33

(Upregulation associated with younger age and better survival)

 POF1B 4.50E−16 N/A 1.10E−17

 RND3 1.60E−08 5.30E−06 2.80E−05

 KLC4 4.80E−03 0.099 6.70E−10

 SLC12A1 8.40E−05 N/A 1.00E−21

Fig. 5  Actual (light gray) chromosome distribution of the 397 genes upregulated in younger, higher surviving pediatric NBL patients compared to 
expected (dark gray) chromosome distribution (Additional file 1: Table S9). Chromosome 17 was found to be the location of 13.13% of these genes 
(right-side arrow), compared to its expected representation of 4.65% (p-value < 0.0001, Additional file 1: Table S9). Chromosome 11 was found to 
be the location of 12.63% of these genes (left-side arrow), compared to its expected representation of 5.81% (p-value < 0.0001, Additional file 1: 
Table S9)

https://hgserver1.amc.nl/
https://hgserver1.amc.nl/
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further below, several of the genes outputted above have 
little previous connection to tumorigenesis, perhaps 
genes not easily identified in empirical approaches that 
require essentially, but unnaturally, on/off switches in 
signaling or other effects for a detectable output. Other 
paradigms, with a component of continuity and cor-
relation, in the absence of empirical approaches have 
revealed similar successes, for example, the correlation 
of mutation burdens with cancer immune responses 
and responses to immunotherapy [15–18]; and the 

correlation of mutation burden in haematopoietic stem 
cells with subsequent development of acute myeloid leu-
kemia [19].

Second, the data above are consistent with anoma-
lies impacting large regions of single chromosomes, i.e., 
chromosomes, 11 and 17 in pediatric NBL; and the X 
chromosome in pediatric ALL.

In terms of the functional impacts of potential tumor 
drivers, or the expression of proteins that might limit 
tumorigenesis, it does need to be kept in mind that age 
of diagnosis can represent a lot of variation in terms of 
age of onset of the tumor, which would presumably start 
with one tumorigenic cell at an undetermined age. Nev-
ertheless, correlative studies that indicate a value of gene 
expression level assessments based on age do likely pro-
vide at a minimum new prognoses biomarker opportu-
nities and new candidates for assessing specific tumor 
functions.

As for the two genes upregulated with lower survival, 
USP17L5 represents an apparent, relatively poorly stud-
ied member of a family of ubiquitin peptidases; and 
SLC25A5 represents a carrier for ADP to the mitochon-
dria, and a carrier of ATP from the mitochondria to the 
cytoplasm [20]. The ubiquitin peptidases, including the 
USP17 sub-family, have been variously associated with 
cancer progression and cancer growth inhibition (and 
apoptosis), apparently dependent on the type of can-
cer [21–23] or other factors not yet fully appreciated. 
SLC25A5 specifically has been reported to be down-
regulated with metastasis in hepatocellular carcinoma 
[24], with no information available for NBL. As in the 
case of ubiquitin peptidases, as a family, the solute carrier 

Fig. 6  Kaplan-Meier (KM) overall survival (OS) curve for pediatric ALL 
barcodes representing the oldest 20% (black) of patients compared 
to barcodes representing the youngest 20% (gray) of patients 
(Additional file 1: Table S1). Youngest 20% of patients were found to 
have significantly better survival than the oldest 20% (arrow). Median 
OS for oldest 20% barcodes, undefined; median OS for youngest 20% 
barcodes, undefined. Log rank comparison p-value < 0.0001

Fig. 7  Actual (light gray) chromosome distribution of the 1057 genes upregulated in younger, higher surviving pediatric ALL patients compared to 
expected (dark gray) chromosome distribution (Additional file 1: Table S12). Chromosome X was found to be the location of 11.16% of these genes 
(arrow), compared to its expected representation of 4.07% (p-value < 0.0001)
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proteins have a complicated association with cancer pro-
gression, or lack of cancer progression, dependent on 
very specific situations.

As for the four genes that are upregulated with youth 
and better NBL survival, only RND3 has a detailed 
research history with cancer. That cancer history is con-
tradictory, as with other genes, with reports indicating 
a potential for high RND3 expression representing both 
pro- and anti-cancer results [25–27]. A recent review 
regarding RND3 specifically evaluated the pro- and anti-
cancer functions and concluded that indeed, the overall 
impact of RND3 is context dependent [28]. Mutation of 
SLC12A1 has been associated with a short survival in 
NBL [29]. POF1B has no known, previous connection to 
NBL and little connection to cancer in general.

Pediatric ALL also reflects decreased survival with 
older age of diagnosis, although this correlation has not 
been extensively investigated [5]. We found that the pedi-
atric ALL patients in the TARGET data set had lower 
survival with higher diagnostic age, confirming this risk 
factor for this dataset (Fig. 6). Employing the above dis-
cussed paradigm (for NBL), the upregulation of 3 genes 
was found to be associated with poor survival and high 
diagnostic age in pediatric ALL (Additional file  1: Fig-
ure S1), none of which have any previous connection to 
cancer; and the upregulation of 17 genes was found to be 
associated with high survival and low diagnostic age in 
this cancer (Additional file 1: Figure S1).

Of the 17 genes that, when upregulated, were associ-
ated with high survival and low diagnostic age in pediatric 
ALL patients, only ZNF81 is located on the X chromo-
some, discussed below. Of the other 16 genes, COL5A1, 
GABBR1, HACE1, EPHA7, and TRIP11 have well-docu-
mented associations with cancer. Inhibition of GABBR1 
(gamma-amino-butyric acid type B receptor 1) has been 
associated with progression of colorectal cancer, whereas 
overexpression of this gene served as an inhibitor of miR-
NAs that would otherwise lead to proliferation of this 
cancer [30]. It is possible that this gene serves a similar 
role when upregulated in younger, higher-surviving pedi-
atric ALL patients. EPHA7 may also be sequestering a 
microRNA, namely miR-944, which, when expressed at 
a high level, has been shown to facilitate proliferation 
of non-small cell lung cancer cells. Thus, high levels of 
EPHA7 may have the effect of sequestering microRNAs 
and reducing proliferation in other cancers [31]. HACE1 
is an E3 ligase downregulated in several cancers, includ-
ing gastric cancer and breast cancer, and was found to 
inhibit the Wnt/β-catenin pathway, thereby playing a 
role in suppressing tumorigenesis [32, 33]. The pathway 
involving TRIP11 and triiodothyronine is necessary for 
localization of TRIP11 to the nucleus and was found to 
be disrupted in renal cell cancer, leading to progression 

[34]. Finally, COL5A1 has been found to have associa-
tions with gastric cancer, non-small cell lung cancer, and 
renal cancer [35–37]. Overall, these overlapping, previ-
ous studies are consistent with the upregulation of these 
genes in the younger patients and in the longer surviving 
patients. Additional gene ontology information for both 
NBL and ALL is provided in Additional file 1: Table S13.

While the lack of an opportunity to confirm newly 
identified biomarkers consistently and firmly with either 
a pro-cancer or anti-cancer phenotype based on a his-
tory of gene expression functions in other cancers can 
be limiting, it is in fact the expectation, based on dec-
ades of previous research. First, as noted in specific cases 
above, there are disparities of gene expression function 
related to context. Second, it is clear that many cancer 
hallmarks are dependent on signal pathway amplification 
rather than a molecular on/off switch. This is exemplified 
by feed forward apoptosis, whereby transcription fac-
tors that activate pro-proliferative genes, such as histone 
genes, also activate apoptosis-effector genes, i.e., when 
these transcription factors are expressed at high levels 
[8–10, 38–42]. Third, even outside of the cancer setting, 
different tissues can have opposite functions for the same 
signaling pathway; FGFR3 activating mutations stimulate 
spermatocyte cell division but inhibit chondrocyte cell 
division, leading to achondroplasia [43, 44].

In pediatric ALL, there was a disproportionate increase 
in the number of genes expressed at a higher level in 
younger, longer surviving patients located on the X chro-
mosome. There is very little in the literature regarding 
X chromosome loss and worse ALL survival or X chro-
mosome gain and better survival. However, there has 
been one report with a small amount of data indicating 
loss of X chromosome in older patients with presumably 
poorer survival rates but where specific, relative survival 
data was lacking [45]. As for pediatric NBL and chromo-
somes 17 and 11, our data clearly indicated an overrepre-
sentation of genes on these two chromosomes that were 
upregulated with better survival, suggesting chromo-
some loss in older, worse surviving patients. Again, there 
are no data now available regarding chromosome copy 
number variations (CNV) in very young NBL patients, 
the subject of this study. (For example, the youngest 20% 
of NBL patients in this study were all diagnosed under 
1 year of age.) However, there have been reports of worse 
survival among older cohorts of patients with loss of 
11q [46, 47]. The above data do not distinguish between 
CNV of either chromosome 11 or 17, respectively, versus 
loss or gain of heterochromatic regions that would affect 
gene expression. However, the previous reports of loss 
of chromosome 11q and poorer survival are consistent 
with chromosome loss in poorer surviving patients. 17q 
gain in NBL has been linked to lower survival in older 
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patients. This is an apparent contradiction, however, 
these 17q data do not represent a significant overlap of 
our data, due to the lack 17q information for the younger 
patients in this study.

Conclusion
A novel, age-based biomarker identification algorithm 
led to identification of several genes, where for the first 
time, expression levels either directly or inversely corre-
lated with NBL and ALL survival, respectively; and led to 
the likely identification of a role for specific chromosome 
CNVs in NBL and ALL development. While the impact 
of these findings on clinical management is a longer term 
issue, the indicated survival markers are potentially use-
ful prognostic tools. In addition, the genes at issue may 
suggest potential therapy targets.

Additional file

Additional file 1: Table S1. Kaplan-Meier output for Fig. 1, with case 
barcodes at end of output. Table S2. Kaplan-Meier output summary 
for pediatric NBL diagnosis age survival curve, halves. Table S3. 623 
genes upregulated in older pediatric NBL patients (Pearson Correlation 
Coefficients, p-values). Table S4. 1334 genes upregulated in younger 
pediatric NBL patients (Pearson Correlation Coefficients, p-values). 
Table S5. 95 genes upregulated in older pediatric NBL patients that are 
also, independently, correlated with low survival (p-values). Table S6. 397 
genes upregulated in younger pediatric NBL patients that are also, inde-
pendently, correlated with high survival (p-values). Table S7. Microarray 
values of every pediatric NBL patient for USP17L5 and SLC25A5. Table S8. 
Microarray values of every pediatric NBL patient for POF1B, RND3, KLC4, 
and SLC12A1. Table S9. Chromosome distribution of 397 genes upregu-
lated in younger pediatric NBL patients that are also correlated with high 
survival. Table S10. Microarray values of every pediatric ALL patient for 
THAP, ZNHIT2, and SF3B2. Table S11. Microarray values of every pediatric 
ALL patient for COL5A1, GABBR1, HACE1, RPS6KA5, LAMB1, BMP3, MAML3, 
SLX4IP, EPHA7, OR52H1, DDX60L, SNORA19, SNORA2A, ENTHD2, TRIP11, 
ZNF81, and ZNF514. Table S12. Chromosome distribution of 1057 genes 
upregulated in younger pediatric ALL patients that are also correlated 
with high survival. Table S13. Gene ontology information, added in the 
revision. Table S14. KM curve median values for pediatric NBL and ALL 
genes, added in the revision. Figure S1. KM curve panels for all genes in 
Additional file 1: Table S14, added in the revision.
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