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Abstract 

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest solid tumors. The rapid progression 
of PDAC results in an advanced stage of patients when diagnosed. However, the dynamic molecular mechanism 
underlying PDAC progression remains far from clear.

Methods: The microarray GSE62165 containing PDAC staging samples was obtained from Gene Expression Omnibus 
and the differentially expressed genes (DEGs) between normal tissue and PDAC of different stages were profiled using 
R software, respectively. The software program Short Time-series Expression Miner was applied to cluster, compare, 
and visualize gene expression differences between PDAC stages. Then, function annotation and pathway enrichment 
of DEGs were conducted by Database for Annotation Visualization and Integrated Discovery. Further, the Cytoscape 
plugin DyNetViewer was applied to construct the dynamic protein–protein interaction networks and to analyze dif-
ferent topological variation of nodes and clusters over time. The phosphosite markers of stage-specific protein kinases 
were predicted by PhosphoSitePlus database. Moreover, survival analysis of candidate genes and pathways was per-
formed by Kaplan–Meier plotter. Finally, candidate genes were validated by immunohistochemistry in PDAC tissues.

Results: Compared with normal tissues, the total DEGs number for each PDAC stage were 994 (stage I), 967 (stage IIa), 
965 (stage IIb), 1027 (stage III), 925 (stage IV), respectively. The stage-course gene expression analysis showed that 30 
distinct expressional models were clustered. Kyoto Encyclopedia of Genes and Genomes analysis indicated that the 
up-regulated DEGs were commonly enriched in five fundamental pathways throughout five stages, including pathways 
in cancer, small cell lung cancer, ECM-receptor interaction, amoebiasis, focal adhesion. Except for amoebiasis, these 
pathways were associated with poor PDAC overall survival. Meanwhile, LAMA3, LAMB3, LAMC2, COL4A1 and FN1 were 
commonly shared by these five pathways and were unfavorable factors for prognosis. Furthermore, by constructing the 
stage-course dynamic protein interaction network, 45 functional molecular modules and 19 nodes were identified as 
featured regulators for all PDAC stages, among which the collagen family and integrins were considered as two main 
regulators for facilitating aggressive progression. Additionally, the clinical relevance analysis suggested that the stage IV 
featured nodes MLF1IP and ITGB4 were significantly correlated with shorter overall survival. Moreover, 15 stage-specific 
protein kinases were identified from the dynamic network and CHEK1 was particularly activated at stage IV. Experimental 
validation showed that MLF1IP, LAMA3 and LAMB3 were progressively increased from tumor initiation to progression.

Conclusions: Our study provided a view for a better understanding of the dynamic landscape of molecular interac-
tion networks during PDAC progression and offered potential targets for therapeutic intervention.
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Background
Pancreatic ductal adenocarcinoma (PDAC) is one of the 
most malignant solid tumors arising within the ductal 
of the pancreas. The lack of early diagnosis and its rapid 
progression resulted in an advanced stage of PDAC 
patients when diagnosed. In the past several decades, 
many efforts have been taken to unveil the molecu-
lar pathogenesis of PDAC, and to improve the patient 
prognosis through various therapeutic strategies. How-
ever, limited advances have been made to prolong the 
survival and to reduce the mortality. The cancer stag-
ing is one of the most important factors in determining 
treatment strategies and predicting a patient’s outcome 
[1]. At present, surgical resection is the standard care 
for only 20% of patients with localized disease, while 
most patients with surgical management will develop 
cancer recurrence and die within 2 years. Moreover, the 
median survival of advanced inoperable PDAC patient 
with systemic chemotherapy is only about 8 months [2]. 
Therefore, exploring the molecular mechanism under-
lying the progression of PDAC may contribute to the 
development of precise therapeutics for PDAC patients.

PDAC is a complex disease driven by time and con-
text dependent alterations of multiple genes. Consid-
erable advances have been made in demonstrating the 
genetic alterations involved in the progression PDAC. 
Frequent mutations in Kirsten Ras (K-RAS), TP53, 
CDKN2A and SMAD4 has been identified as essential 
drivers for PDAC development [3]. According to the 
integrated genomic analysis, Bailey et  al. [4] revealed 
different mechanism of molecular evolution underlying 
four redefined pancreatic cancer subtypes, which pro-
vides a new insight into potential therapeutic relevance 
and patient selection. Depending on the spatiotempo-
ral proteomic analysis of pancreas cancer progression, 
Mirus et  al. [5] pointed out that dynamic expression 
pattern of serine/threonine stress kinase 4 were asso-
ciated with early tumorigenic events. Additionally, 
genome-wide transcriptome analysis by Jones et al. [6] 
showed that more than 21,000 genetic altered in PDAC, 
which mainly affected 12 core signaling pathways 
including apoptosis, DNA damage repair, cell adhe-
sion and invasion. Besides, Janky et al. [7] screened the 
master regulators of transcription involved in PDAC 
progression and highlighted the HNF1A/B as a puta-
tive tumor suppressor in pancreatic cancer. However, 
despite these important advances, the precise dynamic 
landscape of molecular interaction networks during 
PDAC progression is incompletely understood.

The molecular interactions in tumor are varying with 
cancer staging. Construction and analysis of dynamic 
molecular networks provide a view to understand 
dynamic cellular mechanisms of different biological pro-
cess during cancer progression and offer opportunities 
for therapeutic intervention. In the present study, we 
analyzed the microarray from Gene Expression Omnibus 
and identified the differentially expressed genes between 
normal tissue and PDAC of different stages, respectively. 
Further, we constructed the dynamic protein–protein 
interaction networks and analyzed different topological 
variation of nodes and clusters over time. Several func-
tional molecular modules and genes were identified as 
key regulators for PDAC development. Through visual-
izing the dynamic networks from early to advanced stage, 
our study aimed at improving our understanding of the 
underlying mechanism of PDAC progression and pro-
vided novel insights for precise treatment.

Methods
Tissue samples
Human PDAC tissues with four different stages and non-
tumorous tissues were obtained from five patients who 
underwent surgical resection at Zhejiang Cancer Hos-
pital. All specimens had a pathological diagnosis at the 
time of assessment. Studies were approved by the Ethics 
Committee of Zhejiang Cancer Hospital.

Microarray data
Microarray dataset GSE62165 containing staging pan-
creatic ductal adenocarcinoma (PDAC) and non-tumoral 
pancreatic tissue was obtained from Gene Expression 
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) 
database in the National Center for Biotechnology Infor-
mation (NCBI), which was deposited by Janky and col-
league [7]. The GSE62165 dataset included 118 surgically 
resected PDAC varying from stage I to stage IV and 13 
control samples. The detail PDAC patient cohort con-
sisted of 8 stage I samples, 30 stage IIa samples, 62 stage 
IIb samples, 5 stage III samples and 13 stage IV samples. 
Additionally, the gene expression profile was detected 
basing on HG-U219 (Affymetrix Human Genome U219 
Array) platform.

Data processing and screening of differentially expressed 
genes (DEGs)
The CEL file data of GSE62165 was read using the affy 
package in the R language software (version 3.2.3, 
https ://www.r-proje ct.org/). Background correction, 
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normalization, expression calculation of the original 
array data and log2 transformation were processed by 
robust multichip average (RMA) algorithm. Empiri-
cal Bayes method was used to identify significant DEGs 
between different stages of PDAC and normal pancre-
atic samples basing on the limma package in R. P values 
were adjusted for multiple testing depending on the Ben-
jamini–Hochberg False Discovery Rate (FDR) method. 
The strict thresholds for identifying DEGs were set as 
FDR < 0.01 and |log2 fold change (FC)| ≥ 2.

Analysis of DEGs expression manner during PDAC 
progression
The software program Short Time-series Expression 
Miner (STEM) is designed for clustering, comparing, and 
visualizing gene expression data from short time series 
microarray experiments [8]. To search the differences of 
gene expression between PDAC stages, the STEM tool 
was applied to profile candidate genes simultaneously 
from normal status to stage IV. Briefly, the union of DEGs 
from five stages was input and normalized by STEM. The 
maximum number of model profiles was set as 100, and 
FDR was selected as correction method. The rest param-
eters were remained unchanged. Colored clusters indi-
cated statistically significant number of genes assigned.

Function annotation and pathway enrichment of DEGs
Gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) were applied for the functional 
annotation and pathway enrichment analysis of DEGs 
through using the Database for Annotation Visualiza-
tion and Integrated Discovery (DAVID; https ://david 
.ncifc rf.gov/) [9–11]. Adjusted P values were calculated 
by Benjamini–Hochberg FDR method and the thresholds 
were set as FDR < 0.05 to indicate a statistically significant 
difference.

Dynamic protein–protein interaction (PPI) network 
construction and variation analysis of node centrality 
and cluster
The online database Search Tool for the Retrieval of 
Interacting Genes (STRING, http://strin g-db.org/) is 
commonly used to identify the interactions between 
known proteins and predict proteins and to construct 
a PPI network [12]. The DEGs were input into STRING 
to construct PPI network and further visualized by 
Cytoscape (version 3.6.1) software. The Cytoscape plugin 
DyNetViewer was applied to construct the stage-course 
dynamic protein interaction network [13]. The time 
course protein interaction networks (TC-PIN) algo-
rithm was chosen to constructing sub-networks and 
the threshold was set as 2. For dynamic node central-
ity analysis, three typical centrality measures including 

degree centrality (DC), betweenness centrality (BC), 
local average connectivity-based method (LAC) were 
used. The top 20 DC, BC, and LAC of genes that uniquely 
elevated at each stage were firstly identified, respectively. 
Then, the common genes among the top 20 DC, BC, and 
LAC lists at each stage were considered as key nodes for 
dynamic network development. For dynamic module 
analysis, clustering algorithm molecular complex detec-
tion (MCODE) was conducted for analyzing clusters of 
dynamic networks. The degree cutoff was set as 5 and 
K-core was set as 2.

Identification of PDAC stage‑specific activated kinases 
and phosphosite markers
To identify the stage-specific activated kinase during 
PDAC progression, total protein kinase list was acquired 
from the human kinome database (kinase.com) [14] and 
was intersected with DEGs. Then, the dynamic DC, BC 
and LAC of intersection kinases were retrieved from the 
results of dynamic node centrality analysis described 
above. Furthermore, the substrates of kinases were 
searched from PhosphoSitePlus (https ://www.phosp hosit 
e.org) online tool. The sequence characteristics of kinase 
substrates were depicted by sequence logo to indicate the 
phosphosite markers.

Kaplan–Meier survival analysis of key genes in PDAC
The online database Kaplan–Meier plotter (www.kmplo 
t.com) is capable to retrieve gene expression data and 
clinical information from GEO, European Genome-
phenome Archive (EGA) and The Cancer Genome 
Atlas (TCGA) [15]. To evaluate the prognostic value 
of candidate genes, the patient samples were split into 
two cohorts according to the best cutoff of gene expres-
sion computed by Kaplan–Meier plotter. To analyze 
the relationship between particular pathways and over-
all survival, the mean expression of pathway associ-
ated signature genes and best cutoff were calculated by 
Kaplan–Meier plotter. Besides, the log rank P value and 
hazard ratio (HR) with 95% confidence intervals were 
also computed.

GEPIA is a newly developed interactive web server for 
estimating the RNA sequencing expression data from the 
TCGA and Genotype-Tissue Expression (GTEx) dataset 
projects [16]. Candidate genes were queried by GEPIA 
to explore their expression levels at different stages using 
TCGA-pancreatic adenocarcinoma data.

Immunohistochemistry
Paraffin-embedded sections were deparaffinized and 
rehydrated firstly. Then, 1  mM EDTA (pH 8.0) was 
applied to retrieve the antigen. Endogenous peroxide 
activity was block by 0.3% hydrogen peroxide. Before 
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incubating with primary antibody, 5% goat serum in TBS 
was used to avoid non-specific binding. The primary 
antibodies contained rabbit anti-MFL1IP (1:100, Protein-
tech, USA), rabbit anti-LAMA3 (1:200, Abbkine, China) 
and rabbit anti-LAMB3 (1:200, Abbkine, China). After 
incubating with biotinylated secondary antibodies, sec-
tions were developed using DAB (Beyotime, China) and 
counterstained with hematoxylin.

Results
Identification of DEGs at different pancreatic ductal 
adenocarcinoma (PDAC) stages and analysis of DEGs 
expression patterns
The microarray dataset GSE62165 was acquired from 
GEO. Differentially expressed genes (DEGs) (FDR < 0.01, 
|log2 FC| ≥ 2) of different PDAC stages were screened 
out basing on the R analysis, respectively. Compared with 
normal tissues, the total DEGs number for each stage 
were 994 (stage I), 967 (stage IIa), 965 (stage IIb), 1027 
(stage III), 925 (stage IV). Then, the heatmaps of the top 
10 up and down-regulated DEGs at each stage were hier-
archically clustered and displayed, respectively (Fig. 1a–
e). As the results showed in Fig. 1a–e, these top 20 DEGs 
could clearly distinguish each PDAC stage from normal 
pancreatic tissues.

To explore the differences of gene expression between 
PDAC stages, the STEM tool was applied to profile stage-
course gene expression patterns. A total of 30 expression 
manners were enriched among 100 assumed expression 
models (Fig.  1f ). Intriguingly, we found some clusters 
exhibited stage-specific expression trends throughout 
PDAC progression. Genes in the Model 89 (115 genes 
enriched) were specifically up-regulated at stage I. The 
Model 6 contained 166 genes and particularly elevated at 
stage IIa. The Model 3 (113 genes enriched) and Model 
2 (45 genes enriched) were stage IIb- and stage III-spe-
cific gene clusters, respectively. Additionally, the Model 1 
associated genes specifically increased at stage IV. These 
dynamic expression patterns suggested that distinct 
molecular signals were required for particular PDAC 
stages. Notably, we also found six genes that dramati-
cally changed from normal status to stage IV (Fig. 1g–h). 
TNNT1, the troponin T type 1 encoding gene, was up-
regulated increasingly from cancer initiation to advanced 
stage. Other five genes, including BSPRY, C8ORF47, 
FAM3B, HOOK1 and REG1A, were clustered in Model 
16 and significantly decreased during cancer progres-
sion. These six genes may act as key regulators for driving 
PDAC progression via their special expression manners.

Gene function annotation of DEGs at different stage
To further investigate the biological function of DEGs 
between different PDAC stages and normal tissues, gene 

ontology (GO) analysis was performed using the DAVID 
online analysis tool. Basing on the results of GO biologi-
cal process (BP) enrichment (Fig.  2a–f), we found up-
regulated DEGs of five stages were commonly enriched 
in six biological processes, including cell adhesion, extra-
cellular matrix organization, immune response, colla-
gen fibril organization, collagen catabolic process, and 
endodermal cell differentiation. Moreover, extracellular 
matrix disassembly was shared by stage I, IIa, IIb, and 
IV. Notably, wound healing was enriched at stage IIa, IIb, 
III, and IV. Leukocyte migration was found in stage I, IIa, 
and III. Besides, type I interferon signaling pathway was 
commonly enriched by stage I, IIb, IV. Angiogenesis was 
particularly found in advanced PDAC including stage III 
and IV. Interestingly, inflammatory response was only 
found at early stage (stage I).

Functional annotation of down-regulated DEGs 
indicated that 8 biological processes were commonly 
enriched at each PDAC stage (Fig.  2a–e, g), including 
lipid digestion, cellular response to zinc ion, lipid cata-
bolic process, reactive oxygen species metabolic process, 
cobalamin metabolic process, proteolysis, cellular amino 
acid metabolic process, digestion. Transmembrane trans-
port was shared by stage I and IIa, while negative regula-
tion of growth was conspicuously found at stage IIb, III, 
and IV. Additionally, meiotic gene conversion, cellular 
amino acid biosynthetic process, amino acid transport, 
cellular response to cadmium ion, and metabolic process 
were specifically enriched at each stage, respectively.

Pathway enrichment of DEGs at different stages
Subsequently, KEGG pathway analysis demonstrated 
that the up-regulated DEGs of different PDAC stages 
were commonly enriched in five key pathways including 
pathways in cancer, small cell lung cancer, ECM-recep-
tor interaction, amoebiasis, focal adhesion (Fig.  3a–f). 
Staphylococcus aureus infection was enriched at every 
stage except stage IV. Phagosome was shared by stage I, 
IIa, III, while rheumatoid arthritis was only found at stage 
I and IIa. Protein digestion and absorption occurred at all 
stages except stage IIa. PI3K-Akt signaling pathway was 
enriched at stage I, III, and IV. Three pathways including 
p53 signaling pathway, platelet activation, and cell cycle 
were specifically enriched at stage IV.

The down-regulated DEGs of different PDAC stages 
were commonly enriched in five key pathways includ-
ing metabolic pathways, glycine, serine and threonine 
metabolism, pancreatic secretion, protein digestion and 
absorption, fat digestion and absorption (Fig.  3a–e, g). 
Three pathways including mineral absorption, bile secre-
tion, proximal tubule bicarbonate reclamation were 
found in all PDAC stages except stage IV. Biosynthesis 
of amino acids occurred at early stage (stage I, IIa, IIb). 
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Fig. 1 Identification and hierarchical clustering analysis of DEGs at different PDAC stages and the profiling of DEGs expression patterns. a–e Top 10 
up and down-regulated DEGs of different stages were hierarchically clustered and displayed by heatmaps, respectively. f Gene expression patterns 
from normal tissue to PDAC stages were clustered, compared, and visualized by the STEM software. Colored clusters indicated statistically significant 
number of genes enriched. The number in bottom left indicated number of genes assigned. The number in the top left represented model 
identifier. g–h Classic gene expression trends were plotted from normal tissue (NT) to advanced PDAC stage
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Maturity onset diabetes of the young was shared by stage 
I, IIb, III, IV. Metabolism of xenobiotics by cytochrome 
P450 was found in advanced PDAC at stage III and IV. 
For stage IV, three pathways were particularly enriched, 
including chemical carcinogenesis, drug metabolism—
cytochrome P450, and retinol metabolism.

Kaplan–Meier survival analysis of key pathways 
and signature genes
To analyze the prognostic relevance of five key path-
ways shared by all PDAC stages, mean expression value 

of pathway associated genes and best cutoff were calcu-
lated by Kaplan–Meier plotter. As shown in Fig.  4a–e, 
pathways in cancer (P = 0.0047), small cell lung cancer 
(P = 0.0024), ECM-receptor interaction (P = 0.039) and 
focal adhesion (P = 0.048) were negatively associated 
with overall survival (OS). Moreover, the intersection of 
five pathways associated genes indicated that LAMB3, 
LAMA3, COL4A1, LAMC2 and FN1 were commonly 
enriched in these pathways (Fig. 4f ). Kaplan–Meier sur-
vival analysis suggested that these five genes were unfa-
vorable factors of prognosis (Fig. 4g–k).

a

c

e f g

d

b

Fig. 2 Top ten enriched GO (Biological Process) terms of up-regulated and down-regulated DEGs at different stages. a–e Gene function annotation 
of DEGs at stage I, IIa, IIb, III, and IV. f Venn diagram displayed common biological processes of up-regulated DEGs shared by five stages. g Venn 
diagram displayed common biological processes of down-regulated DEGs shared by five stages
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Protein–protein interaction (PPI) network construction
The PPI networks of the DEGs between PDAC and 
normal pancreatic tissues at different stages were con-
structed by the online database STRING. The typical PPI 
network of stage IV was shown in Fig.  5, and the net-
work consisted of 868 nodes interacting via 4717 edges. 
Expression level of up-regulated DEGs and down-reg-
ulated DEGs in the PPI network was shown in red and 
blue.

Cluster analysis of dynamic networks
DyNetViewer is a novel Cytoscape app for constructing, 
analyzing, and visualizing dynamic molecular interac-
tion networks. To analyze the dynamic cluster attribu-
tion for PDAC progression, the networks from five stages 
were input into DyNetViewer and calculated by MCODE 
algorithm over time. The clusters at each stage which 
exhibited highly interconnected regions were considered 
as key regulators for promoting networks development. 

a b

dc

e
f g

Fig. 3 Top ten enriched KEGG pathways of up-regulated and down-regulated DEGs at different stages. a–e Pathway enrichment of DEGs at stage 
I, IIa, IIb, III, and IV, respectively. f Venn diagram displayed common pathways of up-regulated DEGs shared by five stages. g Venn diagram displayed 
common pathways of down-regulated DEGs shared by five stages
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plotter. Log-rank test was used to evaluate significance. f Intersection of five fundamental pathways associated genes. g–k Overall survival analysis 
of five candidate genes by Kaplan–Meier plotter. Log-rank test was used to evaluate significance
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A total of 45 featured molecular modules were identi-
fied for all PDAC stages (Additional file  1: Figures  S1–
S5). At stage I, 11 clusters that contributed to network 
were specifically screened out, among which the cluster 
11 also contributed to the network of stage IIa and IIb 
(Fig.  6a). These 11 gene clusters were enriched in path-
ways of influenza A, cell cycle, rheumatoid arthritis, 
Staphylococcus aureus infection, amoebiasis, protein 
digestion and absorption, ECM-receptor interaction 
and platelet activation (Fig.  6f ). Furthermore, we found 
that key genes including IL1A, CXCL8, ICAM1, ITGB2, 

ITGAM, COL1A1 and COL1A2 participated in as much 
as four pathways at stage I, respectively (Fig.  6f ). Then, 
we found that ten clusters were particularly involved 
in the network of stage IIa, and the cluster 13 was also 
identified at stage IIb (Fig.  6b). Pathway enrichment 
showed that these clusters were mainly enriched in cell 
cycle, chemokine signaling pathway, influenza A, vascu-
lar smooth muscle contraction, focal adhesion, leishma-
niasis, Staphylococcus aureus infection, protein digestion 
and absorption, ECM-receptor interaction, complement 
and coagulation cascades, basal cell carcinoma and 
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Fig. 5 The protein–protein interaction network of DEGs at stage IV. The PPI network was constructed by STRING and visualized by Cytoscape 
software. Red nodes represented up-regulated DEGs. Blue nodes represented down-regulated DEGs
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platelet activation (Fig.  6g). CXCL8, ADCY7, ITGAM, 
ITGB2, ITGB1, IL1A, ICAM1, ITGA2, THBS2, SDC1, 
COL3A1, COL1A2 and COL1A1 were commonly shared 
by four or more pathways, respectively (Fig.  6g). In the 
network of stage IIb, ten clusters were found acting as 
key modules for the protein interaction network (Fig. 6c). 
These clusters were associated with cell cycle, vascular 
smooth muscle contraction, influenza A, Staphylococ-
cus aureus infection, focal adhesion, complement and 
coagulation cascades, protein digestion and absorp-
tion and ECM-receptor interaction (Fig.  6h). ADCY7, 
ITGAM, ITGB2, MYL9 were shared by four or more 
pathways, respectively (Fig.  6h). For stage III, we found 
9 unique clusters were essential for its network (Fig. 6d). 
These gene clusters mainly involved in cell cycle, vascular 
smooth muscle contraction, arrhythmogenic right ven-
tricular cardiomyopathy, amoebiasis, complement and 
coagulation cascades, protein digestion and absorption 
and ECM-receptor interaction (Fig.  6i). Two key genes 
including CXCL8 and TGFB3 were shared by as much as 
four pathways, respectively (Fig. 6i). Moreover, a total of 
8 clusters specifically participated in the network of stage 
IV (Fig. 6e). These clusters mainly enriched in cell cycle, 
vascular smooth muscle contraction, dilated cardiomyo-
pathy, IL-17 signaling pathway, protein digestion and 
absorption and ECM-receptor interaction (Fig.  6j). No 
genes were found shared by more than two pathways at 
stage IV (Fig. 6j).

Node centrality analysis of dynamic networks
To elucidated the key genes that participated in the 
dynamic networks, the node centrality at each PDAC 
stage were calculated. Three typical centrality measures 
including Betweenness Centrality (BC), Degree Cen-
trality (DC), Local Average Connectivity-based method 
(LAC) were applied in our study. We screened out 19 key 
genes that potentially involved in the dynamic network 
development (Fig.  7a–c). Five genes including NDC80, 
KIF2C, KIF20A, OIP5, ZWINT were specifically found 
at stage I with highest DC, BC, and LAC. FGA, CRP 
and ITGB1 were featured nodes for stage II. WNT5A 
was essential for maintaining the network at stage IIa 
and IIb. F5 was uniquely found at stage IIb. Addition-
ally, five genes including ITGA4, COL6A2, ITGA9, 
THBS1 and SERPINE1 were characteristic nodes at stage 
III. Four nodes including ITGB4, MLF1P, TRIM22 and 
CDC25B were potential key genes for promoting the 
advanced status of PDAC. Finally, we also sorted the top 
ten nodes ranked by standard deviation of DC, among 
which NCD80, KIF20A, ITGB1 and KIF2C also existed 
in the 19 key nodes mentioned above (Fig.  7d). The 
remaining genes including NCAPG, CENPE, KIAA0101, 

RACGAP1, ITGB5 and AURKA were also dynamically 
changed at particular stage (Fig. 7d).

Kaplan–Meier survival analysis of key nodes
According to the node centrality analysis above, we chose 
the featured nodes of stage IV to determine their clinical 
relevance. Kaplan–Meier survival analysis showed that 
high expression level of MLF1IP (also known as CENPU) 
and ITGB4 were significantly correlated with shorter 
overall survival, respectively (Fig.  8a). Furthermore, we 
also analyzed the expression manner of featured nodes 
(MLF1IP/CDC25B/ITGB4/TRIM22) during PDAC pro-
gression (Fig. 8b). The expression level of these four genes 
at stage IV showed no significant changes compared with 
other stages, which indicated that these nodes potentially 
promoted cancer progression by directly maintaining the 
molecular network without depending on their expres-
sion level (Fig. 8b).

Identification of PDAC stage‑specific activated protein 
kinases and the phosphosite markers
Considerable studies have shown a causal role of protein 
kinase mutations or dysregulations in tumorigenesis and 
cancer progression. Cancer research has been trying to 
turn these molecules into valid drug candidates for emer-
gence targeted therapies. Depending on the dynamic 
networks, the PDAC stage-specific activated protein 
kinases were also identified. As shown in Fig. 9a–f, a total 
of 15 kinases involved in the dynamic networks with dis-
tinct patterns. TTK, AURKA, BUB1, CDK1 and NEK2 
were fundamental kinases with high node degree, which 
may be required for maintaining the molecular signals 
underlying tumor progression (Fig. 9a). Besides, we also 
found CHEK1, the checkpoint kinase 1 coding gene 
(degree = 32), specifically activated at stage IV (Fig. 9d), 
which may indicate a potential drug target for advanced 
PDAC. The kinase ABR was the featured node for stage 
III, though getting low node degree (Fig.  9d). Addition-
ally, PDGFRB was particularly found at stage IIa, IIb and 
III in the dynamic network (Fig. 9d). Finally, we also pre-
dicted the phospho-targets of eight candidate kinases. 
The protein kinases AurA (encoded by AURKA), CDK1, 
Chk1 (encoded by CHEK1), NEK2 and TTK phosphoryl-
ated their substrates by targeting serine, threonine and 
tyrosine, while BUB1 and skMLCK (encoded by MYLK) 
targeted the serine and threonine for phosphorylation 
(Fig.  9g). Tyrosine was the only phosphorylation site of 
PDGFRB substrates (Fig.  9g). Moreover, the consensus 
sequences of kinase substrates were depicted by sequence 
logo to indicate the phosphosite markers (Fig. 9g).
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Validation of gene expression patterns in PDAC tissues
To investigate the expression patterns of MLF1IP, 
LAMA3 and LAMB3 during PDAC progression, we per-
formed the immunohistochemistry (IHC) analysis. As 
a featured node of stage IV, MLF1IP expressed weekly 
in normal pancreatic tissue (Fig.  10). With the progres-
sion of PDAC, MLF1IP dramatically increased in PDAC 
tissues and was cytoplasmic and nuclear localization. 
LAMA3 and LAMB3 were common genes shared by 
five fundamental pathways throughout different PDAC 
stages. The IHC analysis showed that LAMA3 and 
LAMB3 were positively stained in PDAC tissues with a 
progressive increase manner (Fig.  10). Interestingly, we 
found that LAMB3 positively expressed in normal pan-
creatic connective tissue. With the initiation of PDAC, 
LAMB3 mainly existed in stroma and cytoplasm of can-
cer cells. However, LAMB3 gradually translocated into 
the nucleus of cancer cells at advanced PDAC stages. This 

special expression manner may indicate the pathologic 
molecular basis of tumorigenesis and progression.

Discussion
PDAC is one of the most lethal tumors with limited sur-
vival improvement over the last decades. The rapid pro-
gression of PDAC results in an advanced stage of patients 
when diagnosed. Kong et al. [17] utilized inflammation-
accelerated  KrasG12D-driven PDAC mouse model to 
illustrate the dynamic landscape of pancreatic carcino-
genesis. Their high temporal resolution transcriptional 
data defined a transcriptional signature of early pancre-
atic carcinogenesis and a molecular network driving for-
mation of preneoplastic lesions. However, the dynamic 
molecular mechanism underlying PDAC progression 
remains far from clear. In this study, we analyzed the 
microarray from GEO and identified the DEGs between 
normal tissue and different staging PDAC, respectively. 
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Further, we constructed a dynamic molecular interaction 
networks and identified the functional modules and fea-
tured nodes for each PDAC stage, which may be respon-
sible for PDAC progression.

The molecular basis of different PDAC stages were 
complex and dynamic. The stage-course gene expression 
patterns profiled landscape of differences between PDAC 
stages. TNNT1, encoding slow skeletal muscle troponin 
T, kept increasing significantly from early to advanced 
stage. TNNT1 was up-regulated in human induced pluri-
potent stem cells and immortalized retinal pigment epi-
thelial [18]. Studies demonstrated that TNNT1 involved 
in breast cancer cell proliferation and highly expressed 
in leiomyosarcoma metastases [19, 20], while its role in 
PDAC remained mystic. Li et al. [21] found that HOOK1 
negatively regulated epithelial–mesenchymal transi-
tion by inhibiting the activity of SHP2. The dramatically 
decrease of HOOK1 in PDAC may suggest a molecular 
basis of aberrant EMT during cancer progression. Path-
way enrichment showed that pathways in cancer, small 
cell lung cancer, ECM-receptor interaction, amoebiasis, 
focal adhesion were commonly enriched from early to 
advanced stage, which should be essential for maintain-
ing the pathological status of PDAC. Except for amoe-
biasis, these pathways were significantly associated with 
poor PDAC overall survival. Further study suggested 

that LAMA3, LAMB3, LAMC2, COL4A1 and FN1 were 
commonly shared by these five key pathways and nega-
tively correlated with overall survival. LAMA3, LAMB3 
and LAMC2 encoded the subunits of laminin, which was 
component the basement membrane and involved in cell 
migration. Recently study demonstrated that combina-
tion of serum LAMC2, CA19.9 and CA125 was able to 
significantly improve upon the performance of CA19.9 
alone in detecting PDAC [22], while the exact function of 
LAMC2 need to be fully elucidated. The role of LAMA3 
and LAMB3 in PDAC were rarely studied, too. We found 
that LAMA3 and LAMB3 were robustly expressed at 
each PDAC stage when compared with normal tis-
sue, which should be essential for tumorigenesis and 
progression.

There were also some pathways enriched at particu-
lar stage. Rheumatoid arthritis was specifically found at 
stage I and IIa, which indicated that immune dysregula-
tion occurred early during tumorigenesis. A recent study 
from Ikeura et  al. [23] also showed that autoimmune 
pancreatitis has the increased risk for pancreatic cancer 
after 62.4  months of mean follow-up period. Thus, the 
relationship between autoimmune and pancreatic cancer 
need to be closely concerned. For stage IV, three pathways 
including p53 signaling pathway, platelet activation, and 
cell cycle were specifically identified. Missense mutations 
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in the p53 tumor suppressor inactivated its antiprolif-
erative properties but could also promote metastasis 
through a gain-of-function activity [24]. Aberrant p53 
signaling were predominately seen in some in situ lesions 
as well as invasive PDAC, indicating this signaling may 
occur mid-to-late stage in the pathogenesis of this dis-
ease [25]. Deregulation of cell cycle has also been impli-
cated in PDAC progression. Six genes including CHEK1, 
CCNB1, CCNB2, CDK1, CDKN2A and SFN were shared 
by p53 signaling pathway and cell cycle. Due to the poor 
outcome of advanced PDAC, promising therapies like 
cell cycle inhibitors are currently under development 
[26]. Extravasated platelet activation in pancreatic cancer 

and stroma were associated with tumor metastasis [27]. 
Inhibition of platelet activation prevented the P-selec-
tin and integrin-dependent accumulation of cancer cell 
microparticles and reduced tumor growth and metasta-
sis [28]. Moreover, activated platelet that interacted with 
cancer cells was also sufficient to prime cisplatin insen-
sitivity in pancreatic cancer cells [29]. In our study, we 
found a total of 12 genes were enriched in platelet acti-
vation, among which half of them were collagen fam-
ily members (COL1A1, COL1A2, COL3A1, COL5A2, 
COL11A1). These results may indicate a novel role of 
collagens in facilitating PDAC development. However, 
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collagen-mediated platelet activation during PDAC pro-
gression still need to be fully demonstrated.

The progression of PDAC exhibited dynamic molecu-
lar interaction networks from early to advanced stage, 
among which highly interconnected regions were con-
sidered as key regulators for maintaining molecular 
networks. We identified a total of 45 unique clusters for 
five stages, and these clusters showed special expression 
pattern at different stages. Pathways enrichment indi-
cated that cell cycle, protein digestion and absorption 
and ECM-receptor interaction were fundamental signal-
ing for all five PDAC stages. Moreover, the collagen fam-
ily and integrins were two main regulators for protein 

digestion and absorption and ECM-receptor interaction. 
PDAC is characterized by the excessive deposition of 
extracellular matrix (ECM), which is thought to contrib-
ute to its malignant behavior. Duan et al. [30] found that 
type I collagen could promote epithelial–mesenchymal 
transition in pancreatic cancer by activating β1-integrin 
coupling with the Hedgehog pathway. In our study, we 
found high expression of integrin subunit beta 4 (ITGB4) 
in PDAC was correlated with poor prognosis. This result 
was in consistent with Masugi’s study [31], whose group 
noted that upregulation of integrin β4 promoted epithe-
lial–mesenchymal transition and was a novel prognostic 
marker in PDAC. Intriguingly, we also found that ITGB4 
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Fig. 10 Experimental validation of gene expression patterns in PDAC tissues. Expression manners of MLF1IP, LAMA3 and LAMB3 in different PDAC 
staging tissues and normal pancreatic tissues were performed by immunohistochemistry
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typically contributed to molecular network of stage IV, 
which suggested a temporal dependent manner of ITGB4 
for promoting PDAC progression. Due to the essential 
role of ITGB4 in advanced PDAC, the underlying mecha-
nism need to be further elucidated.

In the dynamic molecular interaction network, topo-
logical variation of nodes was essential for network 
progress. Basing on the typical centrality measures, we 
found total 19 key nodes uniquely contributed to five 
stages, respectively. At early stage, aberrant cell mitosis 
and motility were frequently required for tumorigen-
esis. Featured nodes including NDC80, ZWINT, OIP5, 
KIF2C and KIF20A were mainly associated with chromo-
some segregation and spindle checkpoint activity. Over-
expression of NDC80 was correlated with prognosis of 
pancreatic cancer and regulated cell cycle and prolifera-
tion [32]. With the progression of PDAC, tumor stroma 
became more and more abundant. As mentioned above, 
cancer cells actively involved in the production of extra-
cellular matrix proteins and interacted with ECM by 
integrins. Integrins played a role in cell migration, mor-
phologic development, differentiation, and metastasis. 
Node centrality analysis showed that ITGB1 (stage IIa), 
ITGA4 (stage III), ITGA9 (stage III), ITGB4 (stage IV) 
specifically functioned at particular stage, which indi-
cated an essential role of integrins during PDAC progres-
sion. Moreover, a total of four key nodes were identified 
at stage IV, which may facilitate the aggressiveness of 
PDAC. The clinical relevance analysis suggested that 
MLF1IP (also known as CENPU) and ITGB4 were sig-
nificantly correlated with shorter overall survival. Role of 
MLF1IP had been preliminarily elucidated in some can-
cers including bladder cancer, ovarian cancer and pros-
tate cancer, while little is known in PDAC progression 
[33–35]. The precise function of MLF1IP in PDAC need 
to be further investigated.

Protein kinases have been widely investigated in can-
cers, since they are promising molecular targets for 
cancer treatment. Depending on the dynamic molecu-
lar interaction networks, several PDAC stage-specific 
kinases were identified. TTK, AURKA, BUB1, CDK1 
and NEK2 were fundamental kinases that participated 
in cell cycle and mitosis. The AURKA selective inhibi-
tor alisertib could induced cell cycle arrest and facili-
tated autophagic cell death in pancreatic cancer cells 
[36]. The phase I trial (NCT01924260) was carrying out 
to investigate the safety and efficacy of alisertib in pan-
creatic cancer patients when given in combination with 
gemcitabine. CHEK1 was required for checkpoint-medi-
ated cell cycle arrest and preserving the integrity of the 
genome. Recent study pointed that patients with inacti-
vating homologous recombination repair (HRR) related 
gene mutations showed significantly longer PFS than 

those without HRR-related gene mutations after oxali-
platin-based chemotherapy [37]. In our study, we found 
that CHEK1 was highly activated in stage IV, which may 
reveal the malignant evolution of PDAC and potential 
therapeutic target.

Conclusions
In summary, we screened the DEGs of different PDAC 
stages and constructed dynamic molecular interac-
tion network to illustrate the underlying mechanism of 
PDAC progression. Five genes that commonly shared 
by five fundamental pathways may act as key regula-
tors throughout all PDAC stages. Meanwhile, collagen 
family and integrins were identified as potential regula-
tors for driving PDAC progression. Additionally, PDAC 
stage-specific protein kinases were also identified for 
potentially targeted therapy. These timing and context 
dependent nodes and pathways could be pivotal mecha-
nism for promoting the dynamic progression of PDAC. 
Our study provided a view for a better understanding of 
the dynamic landscape of molecular interaction networks 
during PDAC progression and offered potential opportu-
nities for therapeutic intervention. Further studies such 
as single-cell sequencing or other multi-omics analy-
sis are needed to comprehensively reveal the intricate 
mechanism of cancer cells and tumor microenvironment 
changes during PDAC progression.
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