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Abstract

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest solid tumors. The rapid progression
of PDAC results in an advanced stage of patients when diagnosed. However, the dynamic molecular mechanism
underlying PDAC progression remains far from clear.

Methods: The microarray GSE62165 containing PDAC staging samples was obtained from Gene Expression Omnibus
and the differentially expressed genes (DEGs) between normal tissue and PDAC of different stages were profiled using
R software, respectively. The software program Short Time-series Expression Miner was applied to cluster, compare,
and visualize gene expression differences between PDAC stages. Then, function annotation and pathway enrichment
of DEGs were conducted by Database for Annotation Visualization and Integrated Discovery. Further, the Cytoscape
plugin DyNetViewer was applied to construct the dynamic protein—protein interaction networks and to analyze dif-
ferent topological variation of nodes and clusters over time. The phosphosite markers of stage-specific protein kinases
were predicted by PhosphoSitePlus database. Moreover, survival analysis of candidate genes and pathways was per-
formed by Kaplan—-Meier plotter. Finally, candidate genes were validated by immunohistochemistry in PDAC tissues.

Results: Compared with normal tissues, the total DEGs number for each PDAC stage were 994 (stage 1), 967 (stage l1a),
965 (stage Ilb), 1027 (stage lll), 925 (stage V), respectively. The stage-course gene expression analysis showed that 30
distinct expressional models were clustered. Kyoto Encyclopedia of Genes and Genomes analysis indicated that the
up-regulated DEGs were commonly enriched in five fundamental pathways throughout five stages, including pathways
in cancer, small cell lung cancer, ECM-receptor interaction, amoebiasis, focal adhesion. Except for amoebiasis, these
pathways were associated with poor PDAC overall survival. Meanwhile, LAMA3, LAMB3, LAMC2, COL4A1 and FN1 were
commonly shared by these five pathways and were unfavorable factors for prognosis. Furthermore, by constructing the
stage-course dynamic protein interaction network, 45 functional molecular modules and 19 nodes were identified as
featured regulators for all PDAC stages, among which the collagen family and integrins were considered as two main
regulators for facilitating aggressive progression. Additionally, the clinical relevance analysis suggested that the stage IV
featured nodes MLF1IP and ITGB4 were significantly correlated with shorter overall survival. Moreover, 15 stage-specific
protein kinases were identified from the dynamic network and CHEK1 was particularly activated at stage IV. Experimental
validation showed that MLF1IP, LAMA3 and LAMB3 were progressively increased from tumor initiation to progression.

Conclusions: Our study provided a view for a better understanding of the dynamic landscape of molecular interac-
tion networks during PDAC progression and offered potential targets for therapeutic intervention.
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Background
Pancreatic ductal adenocarcinoma (PDAC) is one of the
most malignant solid tumors arising within the ductal
of the pancreas. The lack of early diagnosis and its rapid
progression resulted in an advanced stage of PDAC
patients when diagnosed. In the past several decades,
many efforts have been taken to unveil the molecu-
lar pathogenesis of PDAC, and to improve the patient
prognosis through various therapeutic strategies. How-
ever, limited advances have been made to prolong the
survival and to reduce the mortality. The cancer stag-
ing is one of the most important factors in determining
treatment strategies and predicting a patient’s outcome
[1]. At present, surgical resection is the standard care
for only 20% of patients with localized disease, while
most patients with surgical management will develop
cancer recurrence and die within 2 years. Moreover, the
median survival of advanced inoperable PDAC patient
with systemic chemotherapy is only about 8 months [2].
Therefore, exploring the molecular mechanism under-
lying the progression of PDAC may contribute to the
development of precise therapeutics for PDAC patients.
PDAC is a complex disease driven by time and con-
text dependent alterations of multiple genes. Consid-
erable advances have been made in demonstrating the
genetic alterations involved in the progression PDAC.
Frequent mutations in Kirsten Ras (K-RAS), TP53,
CDKN2A and SMAD4 has been identified as essential
drivers for PDAC development [3]. According to the
integrated genomic analysis, Bailey et al. [4] revealed
different mechanism of molecular evolution underlying
four redefined pancreatic cancer subtypes, which pro-
vides a new insight into potential therapeutic relevance
and patient selection. Depending on the spatiotempo-
ral proteomic analysis of pancreas cancer progression,
Mirus et al. [5] pointed out that dynamic expression
pattern of serine/threonine stress kinase 4 were asso-
ciated with early tumorigenic events. Additionally,
genome-wide transcriptome analysis by Jones et al. [6]
showed that more than 21,000 genetic altered in PDAC,
which mainly affected 12 core signaling pathways
including apoptosis, DNA damage repair, cell adhe-
sion and invasion. Besides, Janky et al. [7] screened the
master regulators of transcription involved in PDAC
progression and highlighted the HNF1A/B as a puta-
tive tumor suppressor in pancreatic cancer. However,
despite these important advances, the precise dynamic
landscape of molecular interaction networks during
PDAC progression is incompletely understood.

The molecular interactions in tumor are varying with
cancer staging. Construction and analysis of dynamic
molecular networks provide a view to understand
dynamic cellular mechanisms of different biological pro-
cess during cancer progression and offer opportunities
for therapeutic intervention. In the present study, we
analyzed the microarray from Gene Expression Omnibus
and identified the differentially expressed genes between
normal tissue and PDAC of different stages, respectively.
Further, we constructed the dynamic protein—protein
interaction networks and analyzed different topological
variation of nodes and clusters over time. Several func-
tional molecular modules and genes were identified as
key regulators for PDAC development. Through visual-
izing the dynamic networks from early to advanced stage,
our study aimed at improving our understanding of the
underlying mechanism of PDAC progression and pro-
vided novel insights for precise treatment.

Methods

Tissue samples

Human PDAC tissues with four different stages and non-
tumorous tissues were obtained from five patients who
underwent surgical resection at Zhejiang Cancer Hos-
pital. All specimens had a pathological diagnosis at the
time of assessment. Studies were approved by the Ethics
Committee of Zhejiang Cancer Hospital.

Microarray data

Microarray dataset GSE62165 containing staging pan-
creatic ductal adenocarcinoma (PDAC) and non-tumoral
pancreatic tissue was obtained from Gene Expression
Omnibus  (GEO, http://www.ncbi.nlm.nih.gov/geo/)
database in the National Center for Biotechnology Infor-
mation (NCBI), which was deposited by Janky and col-
league [7]. The GSE62165 dataset included 118 surgically
resected PDAC varying from stage I to stage IV and 13
control samples. The detail PDAC patient cohort con-
sisted of 8 stage I samples, 30 stage Ila samples, 62 stage
IIb samples, 5 stage 1II samples and 13 stage IV samples.
Additionally, the gene expression profile was detected
basing on HG-U219 (Affymetrix Human Genome U219
Array) platform.

Data processing and screening of differentially expressed
genes (DEGs)

The CEL file data of GSE62165 was read using the affy
package in the R language software (version 3.2.3,
https://www.r-project.org/). Background correction,
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normalization, expression calculation of the original
array data and log2 transformation were processed by
robust multichip average (RMA) algorithm. Empiri-
cal Bayes method was used to identify significant DEGs
between different stages of PDAC and normal pancre-
atic samples basing on the limma package in R. P values
were adjusted for multiple testing depending on the Ben-
jamini—Hochberg False Discovery Rate (FDR) method.
The strict thresholds for identifying DEGs were set as
FDR<0.01 and |log2 fold change (FC)| > 2.

Analysis of DEGs expression manner during PDAC
progression

The software program Short Time-series Expression
Miner (STEM) is designed for clustering, comparing, and
visualizing gene expression data from short time series
microarray experiments [8]. To search the differences of
gene expression between PDAC stages, the STEM tool
was applied to profile candidate genes simultaneously
from normal status to stage I'V. Briefly, the union of DEGs
from five stages was input and normalized by STEM. The
maximum number of model profiles was set as 100, and
FDR was selected as correction method. The rest param-
eters were remained unchanged. Colored clusters indi-
cated statistically significant number of genes assigned.

Function annotation and pathway enrichment of DEGs
Gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) were applied for the functional
annotation and pathway enrichment analysis of DEGs
through using the Database for Annotation Visualiza-
tion and Integrated Discovery (DAVID; https://david
.nciferf.gov/) [9-11]. Adjusted P values were calculated
by Benjamini—Hochberg FDR method and the thresholds
were set as FDR < 0.05 to indicate a statistically significant
difference.

Dynamic protein-protein interaction (PPI) network
construction and variation analysis of node centrality

and cluster

The online database Search Tool for the Retrieval of
Interacting Genes (STRING, http://string-db.org/) is
commonly used to identify the interactions between
known proteins and predict proteins and to construct
a PPI network [12]. The DEGs were input into STRING
to construct PPI network and further visualized by
Cytoscape (version 3.6.1) software. The Cytoscape plugin
DyNetViewer was applied to construct the stage-course
dynamic protein interaction network [13]. The time
course protein interaction networks (TC-PIN) algo-
rithm was chosen to constructing sub-networks and
the threshold was set as 2. For dynamic node central-
ity analysis, three typical centrality measures including
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degree centrality (DC), betweenness centrality (BC),
local average connectivity-based method (LAC) were
used. The top 20 DC, BC, and LAC of genes that uniquely
elevated at each stage were firstly identified, respectively.
Then, the common genes among the top 20 DC, BC, and
LAC lists at each stage were considered as key nodes for
dynamic network development. For dynamic module
analysis, clustering algorithm molecular complex detec-
tion (MCODE) was conducted for analyzing clusters of
dynamic networks. The degree cutoff was set as 5 and
K-core was set as 2.

Identification of PDAC stage-specific activated kinases

and phosphosite markers

To identify the stage-specific activated kinase during
PDAC progression, total protein kinase list was acquired
from the human kinome database (kinase.com) [14] and
was intersected with DEGs. Then, the dynamic DC, BC
and LAC of intersection kinases were retrieved from the
results of dynamic node centrality analysis described
above. Furthermore, the substrates of kinases were
searched from PhosphoSitePlus (https://www.phosphosit
e.org) online tool. The sequence characteristics of kinase
substrates were depicted by sequence logo to indicate the
phosphosite markers.

Kaplan—Meier survival analysis of key genes in PDAC

The online database Kaplan—Meier plotter (www.kmplo
t.com) is capable to retrieve gene expression data and
clinical information from GEO, European Genome-
phenome Archive (EGA) and The Cancer Genome
Atlas (TCGA) [15]. To evaluate the prognostic value
of candidate genes, the patient samples were split into
two cohorts according to the best cutoff of gene expres-
sion computed by Kaplan—Meier plotter. To analyze
the relationship between particular pathways and over-
all survival, the mean expression of pathway associ-
ated signature genes and best cutoftf were calculated by
Kaplan—Meier plotter. Besides, the log rank P value and
hazard ratio (HR) with 95% confidence intervals were
also computed.

GEPIA is a newly developed interactive web server for
estimating the RNA sequencing expression data from the
TCGA and Genotype-Tissue Expression (GTEx) dataset
projects [16]. Candidate genes were queried by GEPIA
to explore their expression levels at different stages using
TCGA-pancreatic adenocarcinoma data.

Immunohistochemistry

Paraffin-embedded sections were deparaffinized and
rehydrated firstly. Then, 1 mM EDTA (pH 8.0) was
applied to retrieve the antigen. Endogenous peroxide
activity was block by 0.3% hydrogen peroxide. Before
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incubating with primary antibody, 5% goat serum in TBS
was used to avoid non-specific binding. The primary
antibodies contained rabbit anti-MFL1IP (1:100, Protein-
tech, USA), rabbit anti-LAMA3 (1:200, Abbkine, China)
and rabbit anti-LAMB3 (1:200, Abbkine, China). After
incubating with biotinylated secondary antibodies, sec-
tions were developed using DAB (Beyotime, China) and
counterstained with hematoxylin.

Results

Identification of DEGs at different pancreatic ductal
adenocarcinoma (PDAC) stages and analysis of DEGs
expression patterns

The microarray dataset GSE62165 was acquired from
GEO. Differentially expressed genes (DEGs) (FDR<0.01,
|log2 FC|>2) of different PDAC stages were screened
out basing on the R analysis, respectively. Compared with
normal tissues, the total DEGs number for each stage
were 994 (stage I), 967 (stage IIa), 965 (stage IIb), 1027
(stage III), 925 (stage IV). Then, the heatmaps of the top
10 up and down-regulated DEGs at each stage were hier-
archically clustered and displayed, respectively (Fig. la—
e). As the results showed in Fig. 1a—e, these top 20 DEGs
could clearly distinguish each PDAC stage from normal
pancreatic tissues.

To explore the differences of gene expression between
PDAC stages, the STEM tool was applied to profile stage-
course gene expression patterns. A total of 30 expression
manners were enriched among 100 assumed expression
models (Fig. 1f). Intriguingly, we found some clusters
exhibited stage-specific expression trends throughout
PDAC progression. Genes in the Model 89 (115 genes
enriched) were specifically up-regulated at stage I. The
Model 6 contained 166 genes and particularly elevated at
stage Ila. The Model 3 (113 genes enriched) and Model
2 (45 genes enriched) were stage IIb- and stage III-spe-
cific gene clusters, respectively. Additionally, the Model 1
associated genes specifically increased at stage IV. These
dynamic expression patterns suggested that distinct
molecular signals were required for particular PDAC
stages. Notably, we also found six genes that dramati-
cally changed from normal status to stage IV (Fig. 1g-h).
TNNT]I, the troponin T type 1 encoding gene, was up-
regulated increasingly from cancer initiation to advanced
stage. Other five genes, including BSPRY, C8ORF47,
FAM3B, HOOKI1 and REG1A, were clustered in Model
16 and significantly decreased during cancer progres-
sion. These six genes may act as key regulators for driving
PDAC progression via their special expression manners.

Gene function annotation of DEGs at different stage
To further investigate the biological function of DEGs
between different PDAC stages and normal tissues, gene
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ontology (GO) analysis was performed using the DAVID
online analysis tool. Basing on the results of GO biologi-
cal process (BP) enrichment (Fig. 2a—f), we found up-
regulated DEGs of five stages were commonly enriched
in six biological processes, including cell adhesion, extra-
cellular matrix organization, immune response, colla-
gen fibril organization, collagen catabolic process, and
endodermal cell differentiation. Moreover, extracellular
matrix disassembly was shared by stage I, Ila, IIb, and
IV. Notably, wound healing was enriched at stage IIa, IIb,
II1, and IV. Leukocyte migration was found in stage I, Ila,
and III. Besides, type I interferon signaling pathway was
commonly enriched by stage I, IIb, IV. Angiogenesis was
particularly found in advanced PDAC including stage III
and IV. Interestingly, inflammatory response was only
found at early stage (stage I).

Functional annotation of down-regulated DEGs
indicated that 8 biological processes were commonly
enriched at each PDAC stage (Fig. 2a—e, g), including
lipid digestion, cellular response to zinc ion, lipid cata-
bolic process, reactive oxygen species metabolic process,
cobalamin metabolic process, proteolysis, cellular amino
acid metabolic process, digestion. Transmembrane trans-
port was shared by stage I and IIa, while negative regula-
tion of growth was conspicuously found at stage IIb, III,
and IV. Additionally, meiotic gene conversion, cellular
amino acid biosynthetic process, amino acid transport,
cellular response to cadmium ion, and metabolic process
were specifically enriched at each stage, respectively.

Pathway enrichment of DEGs at different stages
Subsequently, KEGG pathway analysis demonstrated
that the up-regulated DEGs of different PDAC stages
were commonly enriched in five key pathways including
pathways in cancer, small cell lung cancer, ECM-recep-
tor interaction, amoebiasis, focal adhesion (Fig. 3a—f).
Staphylococcus aureus infection was enriched at every
stage except stage IV. Phagosome was shared by stage I,
IIa, ITI, while rheumatoid arthritis was only found at stage
I and IIa. Protein digestion and absorption occurred at all
stages except stage Ila. PI3K-Akt signaling pathway was
enriched at stage I, III, and IV. Three pathways including
p53 signaling pathway, platelet activation, and cell cycle
were specifically enriched at stage IV.

The down-regulated DEGs of different PDAC stages
were commonly enriched in five key pathways includ-
ing metabolic pathways, glycine, serine and threonine
metabolism, pancreatic secretion, protein digestion and
absorption, fat digestion and absorption (Fig. 3a—e, g).
Three pathways including mineral absorption, bile secre-
tion, proximal tubule bicarbonate reclamation were
found in all PDAC stages except stage IV. Biosynthesis
of amino acids occurred at early stage (stage I, Ila, IIb).
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Fig. 1 Identification and hierarchical clustering analysis of DEGs at different PDAC stages and the profiling of DEGs expression patterns. a—e Top 10
up and down-regulated DEGs of different stages were hierarchically clustered and displayed by heatmaps, respectively. f Gene expression patterns
from normal tissue to PDAC stages were clustered, compared, and visualized by the STEM software. Colored clusters indicated statistically significant
number of genes enriched. The number in bottom left indicated number of genes assigned. The number in the top left represented model
identifier. g—h Classic gene expression trends were plotted from normal tissue (NT) to advanced PDAC stage
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Fig. 2 Top ten enriched GO (Biological Process) terms of up-regulated and down-regulated DEGs at different stages. a—e Gene function annotation
of DEGs at stage |, lla, I, ll, and IV. f Venn diagram displayed common biological processes of up-regulated DEGs shared by five stages. g Venn
diagram displayed common biological processes of down-regulated DEGs shared by five stages

Maturity onset diabetes of the young was shared by stage
I, IIb, III, IV. Metabolism of xenobiotics by cytochrome
P450 was found in advanced PDAC at stage III and IV.
For stage IV, three pathways were particularly enriched,
including chemical carcinogenesis, drug metabolism—
cytochrome P450, and retinol metabolism.

Kaplan-Meier survival analysis of key pathways

and signature genes

To analyze the prognostic relevance of five key path-
ways shared by all PDAC stages, mean expression value

of pathway associated genes and best cutoff were calcu-
lated by Kaplan—Meier plotter. As shown in Fig. 4a—e,
pathways in cancer (P=0.0047), small cell lung cancer
(P=0.0024), ECM-receptor interaction (P=0.039) and
focal adhesion (P=0.048) were negatively associated
with overall survival (OS). Moreover, the intersection of
five pathways associated genes indicated that LAMBS3,
LAMA3, COL4Al1, LAMC2 and FEN1 were commonly
enriched in these pathways (Fig. 4f). Kaplan—Meier sur-
vival analysis suggested that these five genes were unfa-
vorable factors of prognosis (Fig. 4g—k).
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Fig. 3 Top ten enriched KEGG pathways of up-regulated and down-regulated DEGs at different stages. a—e Pathway enrichment of DEGs at stage
I, 113, b, lll, and IV, respectively. f Venn diagram displayed common pathways of up-regulated DEGs shared by five stages. g Venn diagram displayed
common pathways of down-regulated DEGs shared by five stages

Protein-protein interaction (PPI) network construction

The PPI networks of the DEGs between PDAC and
normal pancreatic tissues at different stages were con-
structed by the online database STRING. The typical PPI
network of stage IV was shown in Fig. 5, and the net-
work consisted of 868 nodes interacting via 4717 edges.
Expression level of up-regulated DEGs and down-reg-
ulated DEGs in the PPI network was shown in red and

blue.

Cluster analysis of dynamic networks

DyNetViewer is a novel Cytoscape app for constructing,
analyzing, and visualizing dynamic molecular interac-
tion networks. To analyze the dynamic cluster attribu-
tion for PDAC progression, the networks from five stages
were input into DyNetViewer and calculated by MCODE
algorithm over time. The clusters at each stage which
exhibited highly interconnected regions were considered
as key regulators for promoting networks development.
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Fig. 5 The protein—protein interaction network of DEGs at stage IV. The PPI network was constructed by STRING and visualized by Cytoscape
software. Red nodes represented up-regulated DEGs. Blue nodes represented down-regulated DEGs

A total of 45 featured molecular modules were identi-
fied for all PDAC stages (Additional file 1: Figures S1—
S5). At stage I, 11 clusters that contributed to network
were specifically screened out, among which the cluster
11 also contributed to the network of stage Ila and IIb
(Fig. 6a). These 11 gene clusters were enriched in path-
ways of influenza A, cell cycle, rheumatoid arthritis,
Staphylococcus aureus infection, amoebiasis, protein
digestion and absorption, ECM-receptor interaction
and platelet activation (Fig. 6f). Furthermore, we found
that key genes including IL1A, CXCL8, ICAM1, ITGB2,

ITGAM, COL1A1 and COL1A2 participated in as much
as four pathways at stage I, respectively (Fig. 6f). Then,
we found that ten clusters were particularly involved
in the network of stage Ila, and the cluster 13 was also
identified at stage IIb (Fig. 6b). Pathway enrichment
showed that these clusters were mainly enriched in cell
cycle, chemokine signaling pathway, influenza A, vascu-
lar smooth muscle contraction, focal adhesion, leishma-
niasis, Staphylococcus aureus infection, protein digestion
and absorption, ECM-receptor interaction, complement
and coagulation cascades, basal cell carcinoma and
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Fig. 6 Clusters analysis of dynamic network during PDAC progression. a—e The charts of dynamic cluster attributes identified from dynamic
networks at different stages. The dynamic cluster attributes for five stages were calculated by DyNetViewer (MCODE algorithm) over time. f-j
Network of pathway analysis at each stage by ClueGO. Gene clusters of each stage were enriched for KEGG pathways and the interaction of
pathways at five stages were further constructed by ClueGO, respectively
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platelet activation (Fig. 6g). CXCL8, ADCY7, ITGAM,
ITGB2, ITGB1, IL1A, ICAM1, ITGA2, THBS2, SDCI1,
COL3A1, COL1A2 and COL1A1 were commonly shared
by four or more pathways, respectively (Fig. 6g). In the
network of stage IIb, ten clusters were found acting as
key modules for the protein interaction network (Fig. 6¢).
These clusters were associated with cell cycle, vascular
smooth muscle contraction, influenza A, Staphylococ-
cus aureus infection, focal adhesion, complement and
coagulation cascades, protein digestion and absorp-
tion and ECM-receptor interaction (Fig. 6h). ADCY7,
ITGAM, ITGB2, MYL9 were shared by four or more
pathways, respectively (Fig. 6h). For stage III, we found
9 unique clusters were essential for its network (Fig. 6d).
These gene clusters mainly involved in cell cycle, vascular
smooth muscle contraction, arrhythmogenic right ven-
tricular cardiomyopathy, amoebiasis, complement and
coagulation cascades, protein digestion and absorption
and ECM-receptor interaction (Fig. 6i). Two key genes
including CXCL8 and TGFB3 were shared by as much as
four pathways, respectively (Fig. 6i). Moreover, a total of
8 clusters specifically participated in the network of stage
IV (Fig. 6e). These clusters mainly enriched in cell cycle,
vascular smooth muscle contraction, dilated cardiomyo-
pathy, IL-17 signaling pathway, protein digestion and
absorption and ECM-receptor interaction (Fig. 6j). No
genes were found shared by more than two pathways at
stage IV (Fig. 6j).

Node centrality analysis of dynamic networks

To elucidated the key genes that participated in the
dynamic networks, the node centrality at each PDAC
stage were calculated. Three typical centrality measures
including Betweenness Centrality (BC), Degree Cen-
trality (DC), Local Average Connectivity-based method
(LAC) were applied in our study. We screened out 19 key
genes that potentially involved in the dynamic network
development (Fig. 7a—c). Five genes including NDC80,
KIF2C, KIF20A, OIP5, ZWINT were specifically found
at stage I with highest DC, BC, and LAC. FGA, CRP
and ITGB1 were featured nodes for stage II. WNT5A
was essential for maintaining the network at stage Ila
and IIb. F5 was uniquely found at stage IIb. Addition-
ally, five genes including ITGA4, COL6A2, ITGAY,
THBS1 and SERPINE1 were characteristic nodes at stage
III. Four nodes including ITGB4, MLF1P, TRIM22 and
CDC25B were potential key genes for promoting the
advanced status of PDAC. Finally, we also sorted the top
ten nodes ranked by standard deviation of DC, among
which NCD80, KIF20A, ITGB1 and KIF2C also existed
in the 19 key nodes mentioned above (Fig. 7d). The
remaining genes including NCAPG, CENPE, KIAA0101,
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RACGAP1, ITGB5 and AURKA were also dynamically
changed at particular stage (Fig. 7d).

Kaplan-Meier survival analysis of key nodes

According to the node centrality analysis above, we chose
the featured nodes of stage IV to determine their clinical
relevance. Kaplan—Meier survival analysis showed that
high expression level of MLF1IP (also known as CENPU)
and ITGB4 were significantly correlated with shorter
overall survival, respectively (Fig. 8a). Furthermore, we
also analyzed the expression manner of featured nodes
(MLF1IP/CDC25B/ITGB4/TRIM22) during PDAC pro-
gression (Fig. 8b). The expression level of these four genes
at stage IV showed no significant changes compared with
other stages, which indicated that these nodes potentially
promoted cancer progression by directly maintaining the
molecular network without depending on their expres-
sion level (Fig. 8b).

Identification of PDAC stage-specific activated protein
kinases and the phosphosite markers

Considerable studies have shown a causal role of protein
kinase mutations or dysregulations in tumorigenesis and
cancer progression. Cancer research has been trying to
turn these molecules into valid drug candidates for emer-
gence targeted therapies. Depending on the dynamic
networks, the PDAC stage-specific activated protein
kinases were also identified. As shown in Fig. 9a—f, a total
of 15 kinases involved in the dynamic networks with dis-
tinct patterns. TTK, AURKA, BUB1, CDK1 and NEK2
were fundamental kinases with high node degree, which
may be required for maintaining the molecular signals
underlying tumor progression (Fig. 9a). Besides, we also
found CHEK1, the checkpoint kinase 1 coding gene
(degree =32), specifically activated at stage IV (Fig. 9d),
which may indicate a potential drug target for advanced
PDAC. The kinase ABR was the featured node for stage
111, though getting low node degree (Fig. 9d). Addition-
ally, PDGFRB was particularly found at stage IIa, IIb and
III in the dynamic network (Fig. 9d). Finally, we also pre-
dicted the phospho-targets of eight candidate kinases.
The protein kinases AurA (encoded by AURKA), CDK1,
Chk1 (encoded by CHEK1), NEK2 and TTK phosphoryl-
ated their substrates by targeting serine, threonine and
tyrosine, while BUB1 and skMLCK (encoded by MYLK)
targeted the serine and threonine for phosphorylation
(Fig. 9g). Tyrosine was the only phosphorylation site of
PDGERB substrates (Fig. 9g). Moreover, the consensus
sequences of kinase substrates were depicted by sequence
logo to indicate the phosphosite markers (Fig. 9g).
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Fig. 7 Node centrality of dynamic network during PDAC progression. a-c Featured nodes with values of DC, LAC and BC from dynamic networks at
different stages. b The list of top ten nodes ranked by standard deviation of DC from dynamic network

Validation of gene expression patterns in PDAC tissues

To investigate the expression patterns of MLF1IP,
LAMAS3 and LAMB3 during PDAC progression, we per-
formed the immunohistochemistry (IHC) analysis. As
a featured node of stage IV, MLF1IP expressed weekly
in normal pancreatic tissue (Fig. 10). With the progres-
sion of PDAC, MLF1IP dramatically increased in PDAC
tissues and was cytoplasmic and nuclear localization.
LAMA3 and LAMB3 were common genes shared by
five fundamental pathways throughout different PDAC
stages. The IHC analysis showed that LAMA3 and
LAMB3 were positively stained in PDAC tissues with a
progressive increase manner (Fig. 10). Interestingly, we
found that LAMB3 positively expressed in normal pan-
creatic connective tissue. With the initiation of PDAC,
LAMB3 mainly existed in stroma and cytoplasm of can-
cer cells. However, LAMB3 gradually translocated into
the nucleus of cancer cells at advanced PDAC stages. This

special expression manner may indicate the pathologic
molecular basis of tumorigenesis and progression.

Discussion

PDAC is one of the most lethal tumors with limited sur-
vival improvement over the last decades. The rapid pro-
gression of PDAC results in an advanced stage of patients
when diagnosed. Kong et al. [17] utilized inflammation-
accelerated Kras®'*P-driven PDAC mouse model to
illustrate the dynamic landscape of pancreatic carcino-
genesis. Their high temporal resolution transcriptional
data defined a transcriptional signature of early pancre-
atic carcinogenesis and a molecular network driving for-
mation of preneoplastic lesions. However, the dynamic
molecular mechanism underlying PDAC progression
remains far from clear. In this study, we analyzed the
microarray from GEO and identified the DEGs between
normal tissue and different staging PDAC, respectively.
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Further, we constructed a dynamic molecular interaction
networks and identified the functional modules and fea-
tured nodes for each PDAC stage, which may be respon-
sible for PDAC progression.

The molecular basis of different PDAC stages were
complex and dynamic. The stage-course gene expression
patterns profiled landscape of differences between PDAC
stages. TNNT1, encoding slow skeletal muscle troponin
T, kept increasing significantly from early to advanced
stage. TNNT1 was up-regulated in human induced pluri-
potent stem cells and immortalized retinal pigment epi-
thelial [18]. Studies demonstrated that TNNT1 involved
in breast cancer cell proliferation and highly expressed
in leiomyosarcoma metastases [19, 20], while its role in
PDAC remained mystic. Li et al. [21] found that HOOK1
negatively regulated epithelial-mesenchymal transi-
tion by inhibiting the activity of SHP2. The dramatically
decrease of HOOK1 in PDAC may suggest a molecular
basis of aberrant EMT during cancer progression. Path-
way enrichment showed that pathways in cancer, small
cell lung cancer, ECM-receptor interaction, amoebiasis,
focal adhesion were commonly enriched from early to
advanced stage, which should be essential for maintain-
ing the pathological status of PDAC. Except for amoe-
biasis, these pathways were significantly associated with
poor PDAC overall survival. Further study suggested

that LAMA3, LAMB3, LAMC2, COL4A1 and FN1 were
commonly shared by these five key pathways and nega-
tively correlated with overall survival. LAMA3, LAMB3
and LAMC?2 encoded the subunits of laminin, which was
component the basement membrane and involved in cell
migration. Recently study demonstrated that combina-
tion of serum LAMC2, CA19.9 and CA125 was able to
significantly improve upon the performance of CA19.9
alone in detecting PDAC [22], while the exact function of
LAMC2 need to be fully elucidated. The role of LAMA3
and LAMB3 in PDAC were rarely studied, too. We found
that LAMA3 and LAMB3 were robustly expressed at
each PDAC stage when compared with normal tis-
sue, which should be essential for tumorigenesis and
progression.

There were also some pathways enriched at particu-
lar stage. Rheumatoid arthritis was specifically found at
stage I and Ila, which indicated that immune dysregula-
tion occurred early during tumorigenesis. A recent study
from Ikeura et al. [23] also showed that autoimmune
pancreatitis has the increased risk for pancreatic cancer
after 62.4 months of mean follow-up period. Thus, the
relationship between autoimmune and pancreatic cancer
need to be closely concerned. For stage IV, three pathways
including p53 signaling pathway, platelet activation, and
cell cycle were specifically identified. Missense mutations
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in the p53 tumor suppressor inactivated its antiprolif-
erative properties but could also promote metastasis
through a gain-of-function activity [24]. Aberrant p53
signaling were predominately seen in some in situ lesions
as well as invasive PDAC, indicating this signaling may
occur mid-to-late stage in the pathogenesis of this dis-
ease [25]. Deregulation of cell cycle has also been impli-
cated in PDAC progression. Six genes including CHEK1,
CCNB1, CCNB2, CDK1, CDKN2A and SEN were shared
by p53 signaling pathway and cell cycle. Due to the poor
outcome of advanced PDAC, promising therapies like
cell cycle inhibitors are currently under development
[26]. Extravasated platelet activation in pancreatic cancer

and stroma were associated with tumor metastasis [27].
Inhibition of platelet activation prevented the P-selec-
tin and integrin-dependent accumulation of cancer cell
microparticles and reduced tumor growth and metasta-
sis [28]. Moreover, activated platelet that interacted with
cancer cells was also sufficient to prime cisplatin insen-
sitivity in pancreatic cancer cells [29]. In our study, we
found a total of 12 genes were enriched in platelet acti-
vation, among which half of them were collagen fam-
ily members (COL1A1, COL1A2, COL3A1l, COL5A2,
COL11A1). These results may indicate a novel role of
collagens in facilitating PDAC development. However,
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collagen-mediated platelet activation during PDAC pro-
gression still need to be fully demonstrated.

The progression of PDAC exhibited dynamic molecu-
lar interaction networks from early to advanced stage,
among which highly interconnected regions were con-
sidered as key regulators for maintaining molecular
networks. We identified a total of 45 unique clusters for
five stages, and these clusters showed special expression
pattern at different stages. Pathways enrichment indi-
cated that cell cycle, protein digestion and absorption
and ECM-receptor interaction were fundamental signal-
ing for all five PDAC stages. Moreover, the collagen fam-
ily and integrins were two main regulators for protein

digestion and absorption and ECM-receptor interaction.
PDAC is characterized by the excessive deposition of
extracellular matrix (ECM), which is thought to contrib-
ute to its malignant behavior. Duan et al. [30] found that
type I collagen could promote epithelial-mesenchymal
transition in pancreatic cancer by activating p1-integrin
coupling with the Hedgehog pathway. In our study, we
found high expression of integrin subunit beta 4 (ITGB4)
in PDAC was correlated with poor prognosis. This result
was in consistent with Masugi’s study [31], whose group
noted that upregulation of integrin p4 promoted epithe-
lial-mesenchymal transition and was a novel prognostic
marker in PDAC. Intriguingly, we also found that ITGB4
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typically contributed to molecular network of stage IV,
which suggested a temporal dependent manner of ITGB4
for promoting PDAC progression. Due to the essential
role of ITGB4 in advanced PDAC, the underlying mecha-
nism need to be further elucidated.

In the dynamic molecular interaction network, topo-
logical variation of nodes was essential for network
progress. Basing on the typical centrality measures, we
found total 19 key nodes uniquely contributed to five
stages, respectively. At early stage, aberrant cell mitosis
and motility were frequently required for tumorigen-
esis. Featured nodes including NDC80, ZWINT, OIP5,
KIF2C and KIF20A were mainly associated with chromo-
some segregation and spindle checkpoint activity. Over-
expression of NDC80 was correlated with prognosis of
pancreatic cancer and regulated cell cycle and prolifera-
tion [32]. With the progression of PDAC, tumor stroma
became more and more abundant. As mentioned above,
cancer cells actively involved in the production of extra-
cellular matrix proteins and interacted with ECM by
integrins. Integrins played a role in cell migration, mor-
phologic development, differentiation, and metastasis.
Node centrality analysis showed that ITGB1 (stage Ila),
ITGA4 (stage III), ITGA9 (stage III), ITGB4 (stage 1V)
specifically functioned at particular stage, which indi-
cated an essential role of integrins during PDAC progres-
sion. Moreover, a total of four key nodes were identified
at stage IV, which may facilitate the aggressiveness of
PDAC. The clinical relevance analysis suggested that
MLFI1IP (also known as CENPU) and ITGB4 were sig-
nificantly correlated with shorter overall survival. Role of
MLF1IP had been preliminarily elucidated in some can-
cers including bladder cancer, ovarian cancer and pros-
tate cancer, while little is known in PDAC progression
[33-35]. The precise function of MLF1IP in PDAC need
to be further investigated.

Protein kinases have been widely investigated in can-
cers, since they are promising molecular targets for
cancer treatment. Depending on the dynamic molecu-
lar interaction networks, several PDAC stage-specific
kinases were identified. TTK, AURKA, BUB1, CDK1
and NEK2 were fundamental kinases that participated
in cell cycle and mitosis. The AURKA selective inhibi-
tor alisertib could induced cell cycle arrest and facili-
tated autophagic cell death in pancreatic cancer cells
[36]. The phase I trial (NCT01924260) was carrying out
to investigate the safety and efficacy of alisertib in pan-
creatic cancer patients when given in combination with
gemcitabine. CHEK1 was required for checkpoint-medi-
ated cell cycle arrest and preserving the integrity of the
genome. Recent study pointed that patients with inacti-
vating homologous recombination repair (HRR) related
gene mutations showed significantly longer PES than
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those without HRR-related gene mutations after oxali-
platin-based chemotherapy [37]. In our study, we found
that CHEK1 was highly activated in stage IV, which may
reveal the malignant evolution of PDAC and potential
therapeutic target.

Conclusions

In summary, we screened the DEGs of different PDAC
stages and constructed dynamic molecular interac-
tion network to illustrate the underlying mechanism of
PDAC progression. Five genes that commonly shared
by five fundamental pathways may act as key regula-
tors throughout all PDAC stages. Meanwhile, collagen
family and integrins were identified as potential regula-
tors for driving PDAC progression. Additionally, PDAC
stage-specific protein kinases were also identified for
potentially targeted therapy. These timing and context
dependent nodes and pathways could be pivotal mecha-
nism for promoting the dynamic progression of PDAC.
Our study provided a view for a better understanding of
the dynamic landscape of molecular interaction networks
during PDAC progression and offered potential opportu-
nities for therapeutic intervention. Further studies such
as single-cell sequencing or other multi-omics analy-
sis are needed to comprehensively reveal the intricate
mechanism of cancer cells and tumor microenvironment
changes during PDAC progression.
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