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Abstract 

Background: Many studies have investigated the prognostic role of biomarkers in colorectal liver metastases (CRLM). 
However, no biomarker has been established in routine clinical practice. The aim of this study was to scrutinize the 
current literature for biomarkers evaluated by immunohistochemistry as prognostic markers in patients with resected 
CRLM.

Methods: A systematic review was performed according to the PRISMA guidelines. Articles were identified in the 
PubMed database with selected search terms and by cross-references search. The REMARK quality criteria were 
applied. Markers were included if they reported the prognostic impact of immunohistochemical markers in a multi-
variable setting in relation to overall survival (OS). A meta-analysis was conducted when more than one original article 
provided survival data of a marker.

Results: In total, 26 biomarkers were identified as independent significant markers for OS in resected CRLM. These 
biomarkers were found to be involved in multiple oncogenic signalling pathways that control cell growth, apoptosis, 
angiogenesis and evasion of immune detection. Among these biomarker candidates were Ki-67, EGFR, p53, hTERT, 
CD34, TSP-1, KISS1, Aurora kinase A and CDX2. CD34 and TSP-1 were reported as significantly associated with survival 
by more than one study and where therefore pooled in a meta-analysis.

Conclusion: A number of independent prognostic biomarkers for resected CRLM were identified. However, most 
markers were evaluated in a retrospective setting with small patient cohorts, without external validation. Large, pro-
spective, multicentre studies with standardised methods are needed before biomarkers can translated into the clinic.
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Background
Colorectal cancer is the third most common type of 
malignancy in the Western world and represents a lead-
ing cause of death worldwide [1, 2]. Within 3  years 
of diagnosis, approximately 30% of patients develop 
metastases located in the liver [3]. For colorectal liver 
metastases (CRLM) surgical resection is the preferred 
treatment, providing patients a 5-year survival of up to 

60% [4]. However, CRLM is a heterogeneous disease and 
prediction of individual outcomes after surgery remains 
a challenge [5]. To improve prognostication in resect-
able CRLM, much research efforts have been dedicated 
into prognostic and predictive variables. A scoring sys-
tem called the clinical risk score has shown to be valu-
able for estimation of prognosis in several studies [6–8]. 
Prognostic factors used in this model include resection 
margin status, extrahepatic disease, node-positive pri-
mary colorectal cancer, disease free-interval from pri-
mary to metastases, number of hepatic tumours, largest 
hepatic tumour and carcinoembryonic levels [6]. Over 
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time, several predictive models have been designed to 
more precisely estimate long-term prognosis using clini-
cal characteristics [9]. Even though these scoring systems 
have been proven to be useful to some extent, patients 
with similar risk scores may display varying outcomes. 
Therefore, a biological approach to stratify patients into 
risk categories is essential for more accurate prediction of 
disease outcome.

The molecular transformation of primary colorectal 
cancer is traditionally reported to involve accumulation 
of four key mutations, including the oncogenes APC, 
KRAS, DDC, and the tumour suppressor p53 [10]. Yet, 
studies have shown that this somatic mutation sequence 
only occurs in 10% of tumours [11]. Instead, alternative 
pathways are thought to occur in most cases of primary 
colorectal cancer [12, 13]. Additionally, further adaptions 
are required to acquire metastatic capacity and potenti-
ate spread to the liver. The variety of molecular path-
ways in primary colorectal cancer (CRC) and CRLM may 
explain the heterogeneity seen both biologically and clin-
ically. Investigation into biomarkers that can enable more 
precise estimation of prognosis and response to therapy 
could potentially function as treatment targets and also 
decrease overtreatment. The benefits of a molecular 
approach to selection of treatment have been displayed in 
diseases such as breast cancer [14].

Immunohistochemistry (IHC) is a commonly used 
staining method where selective antibodies are utilised to 
quantify and assess distribution of molecular markers in 
tumour tissue. While other more advanced methods such 
as quantitative reverse transcriptase-polymerase chain 
reaction, cDNA microarray and fluorescence in  situ 
hybridization are successively becoming more regularly 
used in clinical practice, they lack the practical properties 
of IHC and have not yet become part of routine analysis.

With the increasing interest of biomarkers as prognos-
tic and predictive indicators of outcome, a great number 
of studies have presented correlations between markers 
of tumour biology and clinical outcome. However, inter-
study differences in methodology, patient characteristics, 
statistical method and endpoint make the existing data 
difficult to interpret. The purpose of this study was to 
summarize the currently available literature on immuno-
histochemical biomarkers for predicting outcome after 
liver resection of CRLM.

Methods
An electronic search of the PubMed database of the 
National Library of Medicine was executed by the first 
author to identify all applicable articles. For this sys-
tematic review, the PRISMA guidelines were applied 
[15]. Linked and exploited search terms were ‘colorec-
tal’ ‘hepatic’ ‘liver’ ‘metastasis’ ‘metastases’ ‘prognosis’ 

‘survival’ immunohistochem*’. The initial search identi-
fied 1073 records. Titles implicating irrelevant subjects 
were not further studied. Abstracts were screened, and 
a selection was made based on whether the article could 
potentially meet the inclusion criteria. Abstracts with rel-
evant content were read in full text to examine eligibility. 
References identified in the original search where cross-
checked for additional eligible articles. The search ended 
November 2, 2018.

To be eligible for inclusion, the study the biomarkers 
had to be (1) evaluated in resected CRLM, (2) use IHC, 
(3) adhere to the REMARK quality criteria [16] and (4) 
include a minimum of 50 patients. When using tissue 
microarray (TMA) methodology, the technique had to 
be described in detail including information about proto-
cols, antibodies, reagents, quantification and interpreta-
tion. If more than one articles provided data on the same 
patient set, only the most recent study was included. No 
contact was made with authors to collect unpublished 
data, as this review was limited to records that can be 
identified through electronic searches in public data-
bases. Studies presented in other languages than English 
were excluded.

Only studies presenting overall survival (OS) in a mul-
tivariable setting, with associated hazard ratio (HR), were 
included. Additionally, a study had to present 95% con-
fidence interval (CI) and p value. If a study did not pre-
sent a desired parameter, the study was still included if 
sufficient published data were included to estimate the 
parameter. If more than one article provided sufficient 
data of a biomarker, a meta-analysis was performed. 
The additional calculations and the conduction of meta-
analysis were made using Review Manager (RevMan) 
[Computer program] Version 5.3: The Nordic Cochrane 
Centre, The Cochrane Collaboration, 2014.

Results
The search strategy is depicted in Fig.  1. A total of 26 
biomarkers identified in 25 articles met the inclusion cri-
teria (Table 1). The markers were categorized according 
to the hallmarks of cancer, as defined by Hanahan and 
Weinberg [17]: sustaining proliferative signalling, evad-
ing growth suppressors, resisting cell death, enabling 
replicative immortality, inducing angiogenesis, activating 
invasion and metastasis. Three additional categories were 
added: deregulated metabolism, controlling the immune 
system, genome instability (Table 1). Several biomarkers 
had multiple oncogenic functions, fulfilling criteria for 
more than one hallmark. In these cases, the markers were 
categorized in the group according to their most docu-
mented mechanism, based on current data of their role 
in CRLM.
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Frizzled related protein (FRZB)
FRZB is a negative regulator of Wnt signalling affect-
ing many physiologic functions within the human body 
[18]. Beta-catenin is one of two pathways that can be 
activated through Wnt signalling. This pathway is one 
of the pivotal pathways in stemness and embryonic 
development. It regulates levels of signalling proteins 
such as COX-2 and MMP3, which both have docu-
mented functions in tumour development [18, 19]. 
Through this key regulatory function, FRZB has been 
found as an important oncogene that initiates meta-
static properties in human cancers [20]. Approximately 
two-thirds of CRLM display strong FRZB IHC stain-
ing [21], which indicates an upregulation compared to 
primary CRC [22]. One study analysing the correlation 
between FRZB and survival in resected CRLM was eli-
gible for this review [21]. In this study, positive IHC 
staining was found as a significant prognostic factor for 

poor survival. FRZB was also suggested as a potential 
candidate target for therapy.

Human telomerase reverse transcriptase (hTERT)
Telomeres are non-coding repeated DNA sequences 
localised at the end of each chromosome, protecting it 
from degradation and chromosomal fusion [23]. The 
length of the telomere is shortened with each cell divi-
sion, limiting cellular replicative potential [24–26]. 
hTERT is one of two functional subunits of telomerase, a 
reverse transcriptase enzyme with function of maintain-
ing telomere length. hTERT is present in most human 
cells but is generally repressed resulting in normal chro-
mosomal instability and cellular senescence after a pro-
grammed amount of cell cycles [24, 27–30]. Most human 
cancer attain carcinogenic properties through increased 
hTERT activity, leading to abnormal replicative potential 
[31–33]. The significance of telomerase activation has 
been reported in a wide range of neoplasms, including 
gastric adenocarcinomas, lung tumours, renal-cell carci-
noma and hepatocellular carcinoma [34–37]. These dis-
coveries are coherent with studies reporting a significant 
correlation between hTERT and decreased OS in primary 
CRC [38, 39]. In CRLM, the data of hTERT as a prognos-
tic marker is limited, but current data identifies it as an 
independently significant biomarker for adverse survival 
[40, 41]. Of these studies, one was found to meet the 
study inclusion criteria [40].

p53
The p53 tumour suppressor gene has critical functions 
in numerous steps of malignant cell transformation. It 
regulates apoptosis by controlling Bcl2 and Bax [42]. It 
is involved in DNA repair mechanisms and acts as a cell 
cycle regulator in the late G1 phase [43]. Also, it regu-
lates TSP-1, which in turn is suggested to have angioge-
netic and tumour invasive properties, as describes above 
[44]. The p53 gene is the most common genetic abnor-
mality found in human cancers [45]. The expression of 
p53 is reported to be altered in 30–65% of primary CRC 
[46–56]. There have been reports of increased expres-
sion of p53 in CRLM compared to primary CRC [57]. 
The frequency of p53 alterations in CRLM are described 
as approximately 65% [58, 59]. Numerous studies have 
associated altered p53 activity with more advanced stages 
[46–48, 51, 52, 54, 55] and unfavourable survival in pri-
mary CRC [46, 47, 49–56]. The prognostic impact of 
p53 in CRLM is not as obvious. One study meeting the 
inclusion criteria found a statistically significant correla-
tion between p53 expression and survival [59]. The asso-
ciation between mutated p53 and decreased survival was 
confirmed by two studies, however, these studies did not 

Fig. 1 Search strategy
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meet the inclusion criteria for this review as other sta-
tistical methods were applied [47, 60]. In contrast, sev-
eral studies investigating the impact of p53 expression 
on survival found no significant correlation [61–65]. As 
for the TP53 gene in CRLM, reports of both significant 

associations with survival [66–68] and no associations 
[69, 70] have been presented in studies using other meth-
ods than IHC.

Table 1 Independent prognostic biomarkers in resected colorectal liver metastases

a Percentage of samples higher than cutoff
b Patient cohort divided into separate analysis
c Inverted HR

Biomarker References Year N Hazard ratio (95% CI) Detection  ratea p-value

Self-sufficiency in growth signals

 Ki-67 Ivanecz et al. [64] 2014 98 0.82 (0.68–0.98) 27/98 (28%) 0.038

 EGFR Goos et al. [120] 2014 323 1.54 (1.07–2.22)c 121/323 (37%) 0.02

 RKIP Kim et al. [77] 2012 68 0.19 (0.09–0.45)c 22/68 (32%) 0.014

Insensitivity to anti-growth signals

 p53 Nitti et al. [59] 1998 69 2.53 (1.84–3.22) 44/69 (64%) 0.008

Evading programmed cell death

 TRX-1 Noike et al. [142] 2008 84 0.41 (0.24–0.71) 37/84 (44%) 0.002

 FAS/CD95 Onodera et al. [191] 2005 85 3.254 (1.00–10.49) 30/85 (35%) 0.048

Limitless replicative potential

 hTERT Dômont et al. [40] 2005 201 2.03 (1.46–2.82) 86/201 (43%) < 0.001

Sustained angiogenesis

 CD34 Miyagawa et al. [131] 2002 71 2.46 (1.13–5.37) 38/71 (54%) 0.023

Nanashima et al. [132] 2009 139 2.71 (1.15–6.42) 69/139 (50%) 0.023

 PTGS2/COX-2 Goos et al. [120] 2014 351 1.59 (1.14–2.26)c 85/351 (24%) 0.01

 VEGFA Goos et al. [198] 2016 335 1.50 (1.066–2.111)c 101/335 (30%) 0.02

Activating invasion and metastasis

 TSP-1 Sutton et al. [159] 2005 182 1.82 (1.00–3.10) 45/182 (25%) 0.01

Teraoku et al. [160] 2016 94 0.38 (0.12–0.99)c 35/94 (63%) < 0.05

 CAV-1 Neofytou et al. [156] 2017 108 0.40 (0.21–0.78)c 61/108 (56%) 0.007

 KISS1 Zhu et al. [172] 2015 55 0.20 (0.05–0.91) 19/55 (35%) 0.037

 FRZB Shen et al. [21] 2015 136 2.552 (1.86–3.64) 89/136 (65%) < 0.001

Deregulated metabolism

 Glucose transporter 1 
(GLUT1/SLC2A1)

Goos et al. [198] 2016 350 0.65 (0.51–0.863)c 179/350 (51%) < 0.01

Immune evasion/suppression

 MHChiCD3hi Turcotte et al. [213] 2014 154 0.36 (0.20–0.67) 31/154 (20%) 0.001

 CD3+CD8 Wang et al. [212] 2018 249 0.69 (0.59–0.80) 90/249 (36%) < 0.001

 CD45RO Brunner et al. [211] 2014 201b 0.46 (0.28–0.73)c 155/201 (77%) 0.001

2014 201b 0.25 (0.10–0.64)c 155/201 (77%) 0.004

 plgR Liu et al. [179] 2014 136 2.673 (1.87–3.76) 86/136 (63%) < 0.001

 CD83 Miyagawa et al. [210] 2004 70 0.42 (0.23–0.76)c 44/70 (63%) 0.004

 Tryptase Suzuki et al. [209] 2015 135 17.3 (4.80–62) 73/135 (54%) < 0.01

 CD68 Miyagawa et al. [131] 2002 71 2.127 (1.01–4.50) 36/71 (51%) 0.049

Genome instability

 Aurora kinase A Goos et al. [109] 2013 343 1.66 (1.08–2.54)c 115/243 (34%) 0.02

Other markers

 CD133 Yamamoto et al. [91] 2014 103 0.320 (0.13–0.81) 46/103 (45%) 0.016

 APOBEC3G Lan et al. [185] 2014 136 2.582 (1.83–3.63) 91/136 (67%) < 0.001

 CDX2 Shigematsu et al. [217] 2018 396 0.415 (0.26–0.66) 360/396 (91%) < 0.001
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Raf-1 kinase inhibitory protein (RKIP)
RKIP contributes to preserving cells from malignant 
transformation. It inhibits Raf-1 kinase, an activator of 
the MAPK signalling pathway which is shown to have 
an important part in cancer progression [71, 72]. There 
is also evidence that the MAPK signalling pathway can 
dysregulate the cell cycle, induce overexpression of 
VEGF and enable cell mobility through activation of 
matrix metalloproteinases [73]. In several types of can-
cer, including primary CRC, reduced expression of RKIP 
has been associated with advanced cancer stage, meta-
static spread and poor survival [74–76]. In primary CRC, 
RKIP expression has been identified as an independent 
prognostic risk factor for poor survival [74, 75]. As for 
resected CRLM, available data demonstrates RKIP as an 
independent prognostic biomarker for OS [77]. Approxi-
mately one-third of CRLM lesions are positive for RKIP 
[77]. Lastly, RKIP has been suggested to potentiate apop-
tosis induced by chemotherapy and radiotherapy [78, 79].

Ki-67
KI-67 is an established marker for cellular proliferation 
[80]. It is absent in quiescent cells (g0 phase) but is pre-
sent in cell nuclei during interphase and chromosomes 
during mitosis [81, 82]. The expression is increased 
through progression of synthesis phase of the cell cycle 
[83]. In primary CRC, an association between prolifera-
tion and tumour aggressiveness has been displayed [84]. 
In CRLM, 28–62% of tumours have been estimated as 
ki-67 overexpressed [64, 85]. Several studies have esti-
mated survival rates in CRLM with proliferation through 
KI-67 expression. Most data suggest KI-67 overexpres-
sion to be of negative impact on survival in patients 
undergoing resection of CRLM [41, 85–87]. Contrary to 
this, one study presented an inverse consequence of ki-67 
overexpression [64].

Cd133
Analysis of CD133 is an established method for identify-
ing cancer stem cells, and is currently the most frequently 
used marker in analyses of human cancers [88]. It is 
believed that CD133 organizes plasma membrane topol-
ogy, yet the exact mechanism of action remains unknown 
[89]. However, more is known of the clinical impact of 
CD133 status. Expression of CD133 has shown to be of 
importance in many malignancies, among them primary 
CRC and CRLM [90, 91]. Lack of CD133 expression was 
identified as an independent marker for decreased OS 
after resection of CRLM [91]. One study found an insig-
nificant trend towards CD133-expression and decreased 
OS after liver resection, although a significant association 
between CD133 status on disease-free survival was found 
[92]. Approximately 60% of CRLM lesions have been 

found to stain positive for CD133 [91]. Furthermore, 
CD133 is thought to be predictive of chemotherapy 
response, as expression intensity has been linked to drug 
resistance [93]. Clinical studies in breast cancer have pre-
sented supporting evidence that CD133 has a function in 
therapy resistance [94], but no studies were found to have 
presented data of such an investigation in CRLM.

Aurora kinase A (AURKA)
AURKA regulates the cell cycle by regulating chromo-
some segregation [95]. The AURKA gene is located on a 
chromosomal region that is often genetically disrupted 
during primary CRC development and is associated with 
malign features and poor prognosis [96–102]. When 
mutated, cell viability, chromosomal stability, growth 
and invasion is altered [103–107]. Also, evidence sug-
gests that ARUKA mutation initiates, rather than fol-
lows these malignant processes [105, 108]. In resected 
CRLM, ARUKA protein expression has been displayed 
as an independent prognostic marker for OS [109], which 
is coherent with previous data that correlates AURKA 
status to survival in primary CRC [110, 111]. A study 
showed displayed that AURKA status is concordant in 
approximately 63% of primary CRC-CRLM pairs [109].

Epidermal growth factor receptor (EGFR)
EGFR is a receptor known to mediate proliferation and 
angiogenesis. It acts by acting the MAPK pathway, which 
is one of the most understood signalling pathways in 
human cells [112]. Drugs aimed specifically for EGFR 
have become part of standardised treatment in numerous 
mutation positive cancers, and is today a included in rou-
tine drug regimen in primary CRC [113]. EGFR has an 
advanced interplay with COX-2, which also functions as 
a target for therapy. EGFR initiates COX-2 upregulation 
and COX-2 can potentiate EGFR activation [114–116]. 
COX-2 inhibitors have found to be a treatment option 
in anti-EGFR resistant cancers of metastatic CRC [117–
119]. In a large patient cohort, EGFR expression has been 
identified as an independent marker for OS in patients 
with resected CRLM [120]. The worsening impact of 
EGFR seems to be of more importance in patients who 
did not receive chemotherapy. It was therefore suggested 
that EGFR is one of the targets of commonly used chem-
otherapy regimen such as 5-FU. Current data suggests 
that EGFR is an independent prognostic biomarker for 
survival in resected CRLM [120], however, the optimal 
use of anti-EGFR agents in treatment of patients with 
CRLM is not yet concluded. Furthermore, data shows 
that EGFR status in primary CRC cannot predict EGFR 
status in CRLM [120–122].
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Cox-2/ptgs2
PTGS-2, also known as COX-2, is one of two cyclooxy-
genases, converting arachidonic acid to prostaglandin 
H2. It also promotes PGE2 production, which in turn 
upregulates cell growth in neoplastic cells [123]. COX-2 
inhibitors such as aspirin have been associated with 
increased survival following resection of primary CRC 
and decreased incidence of primary CRC overall [119, 
124]. As previously described, COX-2 signalling is closely 
related to EGFR upregulation. In similarity to EGFR, 
COX-2 overexpression has been found as an independent 
risk factor for decreased survival in CRLM patients after 
surgery, especially within patients who did not receive 
chemotherapy [120]. COX-2 expression is concordant 
between primary CRC and CRLM [120, 125, 126].

Cd34
CD34 is a frequently used marker for quantifica-
tion of microvessel density in tumour tissue. Tumour 
angiogenesis is a fundamental attribute in supporting 
tumour growth and a hallmark of cancer [17]. The sig-
nificance of microvessel density in in primary CRC has 
not been clear. Correlation between a high microves-
sel density and a poor prognosis has been observed in 
several studies [127–129]. Contraindicatory, the oppo-
site has also been shown [130]. Two articles have found 
a correlation between increased staining intensity of 
CD34 and decreased OS in resected CRLM [131, 132]. 
Another study found that microvessel density decreases 
in resected CRLM with standard neoadjuvant chemo-
therapy [133]. CRLM lesions have been found to have a 
higher mean microvessel density compared to primary 
lesions [127]. A meta-analysis was conducted on pro-
vided survival data for CD34, which is presented as a for-
est plot (Fig. 2).

Thioredoxin-1 (Trx-1)
Thioredoxins are a group of redox proteins that are cru-
cial for human life [134, 135]. Redox activity has been 
shown as a regulating factor for cellular induction apop-
tosis and angiogenesis [136]. Current data suggests that 
Trx-1 levels are increased within cancer cells driven by 

persistent oxidative stress [137]. Expression of redox 
proteins is a vital attribute for cancer cells for survival 
in environments with high oxidative stress [137–139]. 
Overexpression of Trx-1 has been displayed in numer-
ous forms of human cancer tissue and cancer cell lines, 
including primary CRC, lymph node metastases from 
primary CRC and CRLM [140, 141]. Almost 45% of 
CRLM overexpress Trx-1 [142]. A study presented a 
significant concordance in staining intensity of Trx-1 
between primary CRC and CRLM [142]. High levels of 
Trx-1 has been associated with decreased survival in pri-
mary CRC [141]. In resected CRLM, staining intensity of 
Trx-1 was found to be an independent prognostic factor 
for decreased OS by multivariate analysis [142]. Addi-
tionally, evidence shows that redox status has a part in 
cisplatin resistance, a common chemotherapy agent often 
used in CRLM treatment [143, 144].

Caveolin-1 (CAV-1)
Awareness of tumour microenviroment as a central com-
ponent in carcinogenic properties has increased. Inter-
play between malignant cells and tumour stroma has 
been recognised as a key component of malignant trans-
formation [145]. One of the most investigated stromal 
biomarkers is Caveolin-1, a scaffolding protein shown 
to have a prognostic significance in numerous cancers 
[146–152], among them primary CRC [152]. Decreased 
expression of Caveolin-1 has been identified as a main 
cause of how malignant cells are provided with nutri-
ents [153–155]. One study was found to investigate the 
role of CAV-1 in survival after resection of CRLM [156]. 
This study demonstrated decreased stromal CAV1 stain-
ing intensity to be a significant biomarker for decreased 
overall survival by multivariate analysis. A total of 35% of 
CRLM cells displayed weak CAV1 expression.

Thrombospondin-1 (TSP-1)
The exact mechanism of TSP-1 in carcinogenesis remains 
uncertain. However, many potential functions of have 
been studied such as thrombocyte aggregation, tissue 
regeneration, regulation of protease activity and cellular 
activities such as adhesion, motility, and growth. One 

Fig. 2 Forest plot of association between CD34 expression and survival after resection of CRLM. A fixed-effect model was used for meta-analysis
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study suggested that TSP-1 has both pro- and antian-
giogenic properties [157]. Another study showed that 
cell motility and migration is stimulated by TSP-1 via 
chemotaxis response [158]. Evidence of TSP-1 as a sig-
nificant independent marker for OS in CRLM have been 
presented [159, 160]. Both studies presented signifi-
cant results, however, one of them found an association 
between adverse surgical outcome and decreased cyto-
plasmic TSP-1 [160] and the other one increased stromal 
TSP-1 to adverse outcome [159]. Interestingly, decreased 
cytoplasmic expression has been correlated with poor 
prognosis in cervical [161], lung [162] and breast [163] 
cancer whilst strong stromal expression has been corre-
lated with poor prognosis in melanoma [164], intraductal 
papillary mucinous neoplasms [165] and pancreatic car-
cinoma [166]. Possibly, TSP has different modes of action 
and a varying significance according to its location. The 
survival data of TSP-1 was pooled in a meta-analysis 
(Fig. 3). The different modes of action depending on loca-
tion of TSP-1 should be noted when interpreting the 
results presented in the forest plot.

Kisspeptin 1 (KISS1)
KISS1 is an established tumour suppressor, discovered 
to be absent in metastatic cells but present in non-met-
astatic cells [167]. Acquirement of metastatic potential 
through KISS1 activity has been identified as a central 
feature in a variety of cancers, including primary CRC 
[168–171]. Expression of KISS1 has also been correlated 
with poor survival in human cancers, however, expres-
sion patterns differ between different types of malignan-
cies [168–171]. In primary CRC, reduced expression 
of KISS1 has been suggested as an independent factor 
for decreased survival and metastatic spread [170]. In 
CRLM, the impact of low KISS1 expression have been 
found to be a significant biomarker for decreased OS 
[172]. The same study found KISS1 expression to be 
lower in CRLM than in primary lesion. A significant cor-
relation between KISS1 in CRLM and lymphatic spread 
was also observed.

Polymeric immunoglobulin receptor (plgR)
plgR is a transporter of immunoglobulins IgA and IgG 
over epithelial membranes. The expression is strongly 
promoted by cytokines, thus plgR has a physiologic func-
tion as a link between innate and adaptive immunity 
[173–176]. The clinical impact of plgR in malignant dis-
eases is not fully understood. Increased expression has 
been detected in many forms of cancer, including pri-
mary CRC [177]. Increased circulating levels of plgR has 
been detected in CRLM [178]. In one study, plgR expres-
sion in CRLM tissue was found to be an independent 
predictor for survival after resection [179]. plgR was also 
found to indicate high risk of metastatic spread in pri-
mary CRC. Almost two-thirds of patients were found to 
display high staining intensity of plgR in the same study.

Apobec3 g
APOBEC3G is a regulator of protein synthesis with a 
central role in anti-viral host defence, especially against 
HIV [180–183]. Increased expression of APOBEC3G has 
been documented in CRLM [184]. Two of three CRLM 
samples has been found to be positive for APOBEC3G 
[185]. Evaluation of APOBEC3G staining intensity in 
correlation to survival have identified positive expres-
sion as an independent prognostic biomarker in resected 
CRLM [185]. The same study also suggests that presence 
of APOBEC3G is a risk factor for metastatic spread in 
CRLM.

First apoptotic signal (FAS/CD95)
The FAS receptor, also known as CD95, initiates down-
stream signalling that results in apoptosis [186]. Stimula-
tion of FAS is one of the two pathways known to induce 
cellular apoptosis [187]. Resistance to apoptosis has been 
described as an important part of CRLM progression and 
other apoptotic markers have been significantly corre-
lated with patient outcome [47, 59, 60, 188]. Also, a cor-
relation between sensitivity to apoptosis and metastatic 
potential has been suggested [189, 190]. In a study where 
FAS/CD95 index was analysed in relation to survival after 
resection of CRLM, it was found to be a strong independ-
ent indicator of survival [191]. In the same study, 35% of 
patients were found to stain positive for FAS.

Fig. 3 Forest plot of association between TSP-1 expression and survival after resection of CRLM. A fixed-effect model was used for meta-analysis



Page 8 of 16Torén et al. Cancer Cell Int          (2018) 18:217 

Glucose transporter 1 (GLUT1/SLC2A1)
In the malignant transformation of human cells, the 
metabolism shifts to be more dependent of the anaerobic 
process glycolysis. This results in an increased demand 
of glucose. Consequently, an upregulation of membrane 
glucose transporters has been associated with cancer-
ous properties [192–195]. The expression of GLUT1, 
also known as SLC2A1, can potentially be regulated 
by local glucose levels [196]. A meta-analysis found 
GLUT1 expression to be of importance for survival in 
solid human tumours, including primary CRC [197]. In 
CRLM, high expression of GLUT1 was associated with 
good prognosis [198]. Furthermore, F-FDG PET imag-
ing visualises glucose uptake in tissues via GLUT1 and 
an increased tracer uptake has been correlated to shorter 
survival after resection in CRLM [199]. Tumours with 
a higher metabolic rate can have an increased response 
to systemic treatment, as cells that are in active phases 
of the cell cycle are more susceptible to chemotherapy 
[200–202]. Amplified expression of GLUT-1 could there-
fore potentially identify patients with higher benefit of 
treatment.

Vascular endothelial growth factor A (VEGFA)
VEGFs are a group of proteins that stimulate growth of 
blood vessels. They are often overexpressed in neoplas-
tic tumours and have been correlated to malign behav-
iour and decreased prognosis in various types of cancer, 
including primary CRC [203–205]. Immunotherapy 
against VEGF has improved survival in patients with 
primary CRC [206]. In CRLM, neoadjuvant anti-VEGF 
treatment has been shown to increase rate of radically 
resected tumours and long-term survival [207]. Increased 
staining of VEGFA has been proposed as an independent 
prognostic biomarker for worse survival after resection 
of CRLM (original). In combination with GLUT1 expres-
sion, patients with even worse prognosis could be iden-
tified [198]. Furthermore, VEGFA expression seemed to 
have the most impact on prognosis in patent groups that 
did not receive systemic chemotherapy (original) which 
could indicate that conventional chemotherapy affects 
VEGFA-related processes. Whether VEGFA expression 
can be used as a predictive marker for anti-VEGF treat-
ment effect is yet to be determined [198, 208].

Markers of immunologic cells and immunoscores
Analysis of immunologic cells is in cancers is believed 
to play a significant role in determining tumour aggres-
siveness. In recent years, the volume of published data of 
immunologic markers and immunotherapy has remark-
ably increased. Presence of different cells can indicate 
properties such as induction of inflammation or eva-
sion of the immune system. Data continuously provide 

evidence that density of different immunologic cells can 
function as prognostic markers after resection of CRLM. 
An accumulation of activated macrophages identified by 
PG-M1 (antibodies against CD68) was associated with 
shorter survival after hepatic resection [131]. A high infil-
tration of masts cells identified with tryptase have been 
correlated to worse outcome following CRLM resec-
tion [209]. A low infiltration of mature dendritic cells 
has been linked to worse survival [210]. Low presence of 
CD45RO-positive cells, a marker present in most thymo-
cytes, T-cells and a subset of B-cells, was identified as a 
risk factor for shorter survival in resected CRLM [211]. 
Some articles have evaluated immunologic profiling by 
combining more than one marker to generate so called 
immunologic scores. A combination of CD3–CD8 (36% 
detection rate) [212] and high MCH-1CD3 (20% detec-
tion rate) [213] independently enable identification of 
patients with favourable survival. Lastly, it has been sug-
gested that infiltration of immunologic cells may predict 
response to chemotherapy [214].

Homeobox transcription factor 2 (CDX2)
CDX2 regulates the maturation of epithelial cells in the 
gastrointestinal tract. Loss of CDX2 has been shown 
to negatively impact survival in primary CRC [215]. 
According to a recent study, the expression of CDX2 is 
highly concordant between primary CRC and CRLM, 
independent of whether chemotherapy has been admin-
istered prior to primary resection [216]. The prognos-
tic impact of CDX2 expression was investigated in 396 
patients with CRLM, where loss of CDX2 expression cor-
related to decreased survival [217]. CDX2 status has been 
associated with mismatch repair dysfunction, a hallmark 
of hereditary CRC (e.g. Lynch syndrome), which is also 
observed in approximately 10% of sporadic primary CRC 
[218]. The significance of mismatch repair proteins in 
CRLM remains to be further investigated.

Discussion
This is to our knowledge the first systematic review on 
immunohistochemical prognostic biomarkers in resected 
CRLM. We identified 26 independent prognostic bio-
marker proteins for resected CRLM  (Fig.  4). Although 
IHC/TMA is an effective and established technique for 
analysing tumour markers, the lack of standardization is 
a problem. As highlighted by the National Cancer Insti-
tute (NCI) and European Organization for Research and 
Treatment of Cancer (EORTC), issues concerning varia-
tions in material (e.g. antibodies), execution (e.g. incuba-
tion time) and interpretation (e.g. cut-offs, subjectivity in 
scoring), are still to be resolved [16]. Additionally, there 
is no consensus on how survival analyses should be best 
performed. End points and statistical approach vary 
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between studies and are chosen at the discretion of the 
authors. Altogether, this makes pooling of studies and 
conduction of meta-analyses difficult. Subsequently, 
the likelihood of using biomarkers in clinical practice is 
impeded by a lack of validation. This highlights the need 
of prospective multicentre studies with standardised 
protocols.

Much progress has been made in the molecular pathol-
ogy of CRLM. A recent study examined the evolutionary 
relationship between primary CRC and metastases [219]. 
It was found that CRLM may arise from multiple inde-
pendent seeding processes, and therefore originate from 
unique subclones of the primary lesion. It appears that 
both the primary tumour and the metastases accumulate 
mutations after metastatic processes have been initiated. 
This would mean there is heterogeneity not only between 
patients, but also between the primary tumour and 
metastasis and even between different metastases within 
the same patient. Therefore, there could be a diversity in 
invasive properties and therapy response between malig-
nant cells within a single tumour. The accumulation of 
mutations in metastatic lesions can lead to discrepancy in 
protein expression compared to the primary tumour. This 

is in contrast to previous studies, where it was reported 
that CRLM maintains protein expression profiles when 
compared to corresponding primary [220, 221], which 
seems to be the case only for selected biomarkers. This is 
important to take into consideration in a future perspec-
tive when biomarkers are to be implemented in clinical 
practice. For example, the decision of whether a patient 
should receive anti-EGFR therapy for CRLM cannot 
solely be based on the expression of EGFR in the primary 
tumour if the expression levels are not corresponding to 
those in multiple metastases. Furthermore, the complex 
evolution of primary CRC to CRLM results in many pos-
sible mutation cascades, indicating that biological phe-
notype cannot be judged by only one biomarker. If the 
prognosis of CRLM is to be better understood and pre-
dicted, a panel of biomarkers is required.

Some limitations need to be considered when inter-
preting this study. Most articles used a retrospective 
study design, making a reporting and selection bias pos-
sible. There was also heterogeneity in the patient cohorts, 
with variations in factors such as age, gender, ethnicity, 
comorbidity and tumour characteristics. Methodology of 

Fig. 4 Functional relevance of selected biomarker candidates
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IHC varied. Lastly, most biomarkers lacked validation in 
external cohorts by independent investigators.

Conclusions
We identified several independent prognostic biomark-
ers for resected CRLM. Larger multicentre studies are 
needed to investigate the real world impact of these bio-
marker candidates. In the future, these protein markers 
may potentially be included in biomarker panels to aid in 
clinical management, such as stratification of patients in 
risk groups, selection of individual treatments and devel-
opment of new types of precision drugs.
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