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Abstract 

Background:  Despite new progress of chemotherapy in multiple myeloma (MM) clinical treatment, MM is still a 
refractory disease and new technology is needed to improve the outcomes and prolong the survival. Cold atmos-
pheric plasma is a rapidly developed technology in recent years, which has been widely applied in biomedicine. 
Although plasma could efficiently inactivate various tumor cells, the effects of plasma on tumor cell metabolism have 
not been studied yet.

Methods:  In this study, we investigated the metabolite profiling of He plasma treatment on myeloma tumor cells 
by gas-chromatography time-of-flight (GC-TOF) mass-spectrometry. Meanwhile, by bioinformatic analysis such as 
GO and KEGG analysis we try to figure out the metabolism pathway that was significantly affected by gas plasma 
treatment.

Results:  By GC-TOF mass-spectrometry, 573 signals were detected and evaluated using PCA and OPLS-DA. By KEGG 
analysis we listed all the differential metabolites and further classified into different metabolic pathways. The results 
showed that beta-alanine metabolism pathway was the most significant change after He gas plasma treatment in 
myeloma cells. Besides, propanoate metabolism and linoleic acid metabolism should also be concerned during gas 
plasma treatment of cancer cells.

Conclusions:  Cold atmospheric plasma treatment could significantly alter the metabolite profiling of myeloma 
tumor cells, among which, the beta-alanine metabolism pathway is the most susceptible to He gas plasma treatment.

Keywords:  Cold atmospheric plasma, Multiple myeloma, Metabolite profiling, Mass spectrometry, KEGG analysis, 
Beta-Alanine metabolism
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Background
Multiple myeloma (MM) is a malignant tumor caused 
by abnormal proliferation of monoclonal plasma cells, 
accounting for 1% of all tumors and 13% of hematological 
malignancies [1, 2]. After the initial onset of remission, 
relapse will occur and only 25% of patients have a sur-
vival of more than 5 years after receiving chemotherapy 

[3]. It is characterized by an increase in abnormal plasma 
cells that produce monoclonal immunoglobulin and 
malignant proliferation in the bone marrow, causing frac-
tures and bone marrow failure [4, 5]. The current clinical 
treatment of MM includes radiation therapy, bone mar-
row transplantation and chemotherapeutics treatment 
[6, 7]. Radiation therapy, however, will inevitably damage 
human normal cells while killing cancer cells. Bone mar-
row transplantation may result in postoperative autolo-
gous rejection. Chemotherapeutics may have serious 
side effects and usually lead to drug resistance. There-
fore, MM is a refractory disease and new technology and 
treatment tools need to be developed for MM therapy.
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Cold atmospheric plasma (CAP) is a new technol-
ogy rapidly developed in recent years. It is produced 
under atmospheric pressure with low gas temperature 
and high activity of reactive species, which has aroused 
widespread concern especially in biomedical applica-
tion, such as disinfection of bacteria, application in der-
matology and dentistry, cell transfection, wound healing 
and cancer treatment [8–17]. It is widely reported that 
plasma could efficiently inactive tumor cells in various 
types of cancer, including lung cancer, leukemia, intesti-
nal cancer, melanoma, cervical cancer, glioma, multiple 
myeloma, pancreatic cancer et  al. [18–28]. The induc-
tion of apoptosis in cancer cells has been widely reported, 
and the mechanism of plasma-induced apoptosis is being 
increasingly understood. However, the effects of plasma 
on tumor cell metabolism have not been reported yet. 
Cell metabolism is a general term for a series of ordered 
chemical reactions that take place in the cells to survive. 
These reaction processes allow cells to grow and repro-
duce, maintain their functions and respond to the exter-
nal environment, including the metabolism of matter and 
energy. Tumor cells provide a source of their aberrant 
proliferation through a systematic reprogramming of cel-
lular metabolism [29, 30]. These changes in metabolism 
involve the production of energy required for cell divi-
sion, the regulation of intracellular redox status, and the 
breakdown and synthesis of nutrients after ingestion, 
thereby altering the flux of metabolites inside and outside 
cells and redistributing them to the corresponding meta-
bolic pathways, to meet the needs of maintaining the 
malignant transformation phenotype of cells [31]. There-
fore, understanding the effects of gas plasma on tumor 
cell metabolism is of great significance. In this study, 
we explored the influence of gas plasma on tumor cell 
metabolism profiling for the first time. By metabonomics, 
we found that the metabolism of myeloma tumor cells 
was greatly changed after He plasma treatment. Notably, 
beta-alanine metabolism pathway was found to be the 
major target that was affected by gas plasma treatment, 
indicating that beta-alanine might play an important role 
in the interaction of gas plasma with tumor cells.

Methods
Gas plasma generation
In this study, we used a plasma jet which was described in 
our previous research to generate the cold atmospheric 
plasma. Characters of the plasma generation and elec-
tronic parameters were illustrated in our previous works 
[17, 28, 32]. The He plasma was generated at 10 kHz/8 kV 
with a He gas flow of 2 SLM.

Cell culture condition
The LP-1 multiple myeloma cell line was used in this 
study. LP-1 cells were grown in Roswell Park Memo-
rial Institute (RPMI) 1640 medium supplemented with 
10% fetal calf serum, 100 U/mL penicillin, and 50 µg/mL 
streptomycin (Gibco-Invitrogen, Carlsbad, CA, 15140-
122). The cells were cultured at 37  °C in an incubator 
(Thermo Scientific, Waltham, MA, USA) containing 5% 
CO2. The medium was refreshed 24 h before performing 
experiments.

Cell viability assessment
Cell viability was measured by A Cell-Titer-Glo® lumi-
nescent cell viability assay kit (Promega, Madison, WI, 
USA) which based on the production of ATP in viable 
cells. 100  μL of samples and 100  μL of Cell-Titer-Glo® 
reagent were added to the opaque-walled plate and was 
incubated at room temperature for 10  min. The lumi-
nescence was detected by a microplate reader (Thermo 
Scientific Varioskan Flash, Waltham, MA, USA) with the 
protocol of “luminometric” measurement.

Solvents and reagents
We bought L-2-chlorophenylalanine from Hengbai Bio-
technology Co Ltd (Shanghai, China), while Methoxy 
amination hydrochloride (chromatographic grade), pyri-
dine and chloroform (HPLC grade) were from Admas 
(Shanghai, China). Moreover, BSTFA (including 1% 
TMCS, v/v) was purchased from REGIS Technologies 
Inc (Morton Grove, IL, USA) and methyl alcohol (HPLC 
grade) was purchased from ANPEL Laboratory Technol-
ogies Inc (Shanghai, China). Saturated fatty acid methyl 
fat (C8, C9, C10, C12, C14, C16, C18, C20, C22, C24) 
was bought from Dr. Ehrenstorfer (Augsburg, Germany). 
Deionized water was used throughout this experiment 
(Thermo; Waltham, MA, USA).

Sample collection
3 × 105  cells/well in 300  μL of medium were seeded in 
24-well plate, then the wells which treated with 40 s of He 
plasma were considered as plasma treatment group and 
the remains were control group, and each group had 5 
duplicates/samples. After 24 h incubation, cells were col-
lected and counted to ensure the cell number was about 
1 × 107 cells/sample. Cells were harvested by centrifuga-
tion at 4  °C for 5  min with the speed of 1200  rpm and 
washed with PBS three times at 4  °C for 3 min with the 
speed of 900 rpm. Then the cell pellet in EP tube was rap-
idly put in liquid nitrogen for 5 min and stored in − 80 °C 
refrigerator until analysis.
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Sample preparation
Before metabolite analysis, sample was mixed with 
0.6  mL of extraction liquid (Vmethanol:VChlorofrom = 3:1) 
in 2  mL EP tube and 10  μL of L-2-chlorophenylalanine 
(1  mg/mL stock in dH2O) which was regarded as inter-
nal standard. After 30 s of vortex mixing, steel balls were 
added and grinded for 4 min at 45 Hz followed by treat-
ing with ultrasound for 5 min in ice water, then repeating 
this step for 3 times. The supernatant (0.5 mL) was trans-
ferred into a fresh 2 mL GC/MS glass vial after centrifug-
ing for 15  min at 13,000  rpm, 4  °C. Next, the extracted 
metabolites were dried in a vacuum concentrator without 
heating and 30  μL of methoxy amination hydrochloride 
was added. After incubating in oven at 80 °C for 30 min, 
40  μL of the BSTFA regent (1% TMCS, v/v) was mixed 
well with the sample aliquots and cultured for 1.5 h for 
70  °C to obtain the derived metabolites for GC–MS 
analysis.

GC‑TOFMS analysis
GC-TOFMS analysis was performed using an Agi-
lent 7890 gas chromatograph system coupled with a 
Pegasus HT time-of-flight mass spectrometer. The sys-
tem utilized a DB-5MS capillary column coated with 
5% diphenyl cross-linked with 95% dimethylpolysilox-
ane (30 m × 250 μm inner diameter, 0.25 μm film thick-
ness; J&W Scientific, Folsom, CA, USA). A 1 μL aliquot 
of the analyte was injected in splitless mode. Helium 
was used as the carrier gas, the front inlet purge flow 
was 3 mL min−1, and the gas flow rate through the col-
umn was 1 mL min−1. The initial temperature was kept 
at 80  °C for 1  min, then raised to 290  °C at a rate of 
10  °C min−1, then kept for 12 min at 290  °C. The injec-
tion, transfer line, and ion source temperatures were 280, 
295, and 220 °C, respectively. The energy was − 70 eV in 
electron impact mode. The mass spectrometry data were 
acquired in full-scan mode with the m/z range of 50–600 
at a rate of 12.02 spectra per second after a solvent delay 
of 8.45 min.

Results
Metabolic profiling of gas plasma‑treated cells samples 
by GC‑TOF
We investigated a total of 12 samples. Six were LP-1 cells 
with gas flow as control group, another six samples were 
LP-1 cells treated with He plasma for 1  min. With gas 
chromatography-time of flight mass spectrometry (GC-
TOF), around 573 signals were detected per sample using 
mass spectral deconvolution software for peak detection. 
However, some of these signals were not consistently 
found in other samples or were of too low abundance or 
too poor spectral quality to be unambiguously assigned 
to unique metabolites. We have normalized with internal 

standard (IS) and finally 561 valid peaks were remained 
for further analysis. Details of these 561 peaks were listed 
in Additional file 1: Table S1. Figure 1 shows the overall 
representative GC-TOF chromatograms of control group 
and plasma treatment group.

Unsupervised evaluation of metabolite signatures using 
PCA and OPLS‑DA
After obtaining the raw data, we carry out a series of 
multivariate variable pattern recognition analysis, which 
is the principal component analysis (PCA). Using the 
SIMCA software (V14.1, MKS Data Analytics Solutions, 
Umea, Sweden), the data is logarithmic (LOG) format-
ted (CTR) formatted and then automatically modeled 
[6]. The parameters of the PCA model are shown in the 
statistical model parameter Table 1. Since the two groups 
of samples are not very significant, the sample is basically 
in the 95% confidence interval (Hotelling’s T-squared 
ellipse), this data need to be further analyzed.

Therefore, we use the orthogonal least squares—dis-
criminant analysis (orthogonal projection to latent 
structures-discriminant analysis, OPLS-DA) statisti-
cal methods to further analyze the results. Through the 
OPLS-DA analysis, we can filter out the orthogonal vari-
ables that are not related to the categorical variables in 
the metabolites, and analyze the differences between the 
non-orthogonal and orthogonal variables to obtain the 
more reliable metabolites. LOGG software was added to 
the data using SIMCA software (V14.1, MKS Data Ana-
lytics Solutions, Umea, Sweden). First, the first principal 
component was analyzed by OPLS-DA model. The qual-
ity of the model was verified by sevenfold cross valida-
tion (model-to-class variability Y) and Q2 (predictability 
of the model) to determine the validity of the model by 
cross validation. Finally, Permutation test), randomly dif-
ferent times to change the order of the variable Y order 
to get a different random Q2 value, the model validity for 
further testing. For more information on the OPLS-DA 
model, refer to the statistical model parameter Table 2.

As shown in Fig. 2a, the abscissa t [1] P represents the 
predicted principal component score of the first princi-
pal component, and the ordinate t [1] O represents the 
orthogonal principal component score, and the scatter 
shape and color represent different experimental groups. 
It shows that the two groups of samples are more signifi-
cant, the sample is basically in the 95% confidence inter-
val (Hotelling’s T-squared ellipse). The permutation test 
establishes the corresponding OPLS-DA model to obtain 
the random model R2 and Q2 values by randomly chang-
ing the permutation order of the categorical variable Y, 
the number of times (n = 200), the avoidance of the over-
fitting of the test model and the evaluation of the model 
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Fig. 1  Representative GC-TOF chromatograms of control group and plasma treatment group by mass spectra
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Significance has an important role. Figure 2b shows the 
replacement test for the OPLS-DA model.

Identification of differential metabolites by supervised 
analysis
We used the generally recognized standard by academia, 
that is P value of student’s t test is less than 0.05, and 
the variable importance in the projection (VIP) of the 
first principal component of OPLS-DA model is greater 
than 1, to determine the differential metabolites between 
control and plasma treatment group. Additional file  1: 
Table S1 lists all the differences in metabolite screening, 
and was further illustrated in the form of volcano plot 
(Fig.  3). As shown in the final screening result, the sig-
nificant uptake of the metabolites was displayed in red, 
while the significant down-regulation of the metabolites 
was shown in blue.

KEGG analysis of differential metabolites
The complex metabolic responses and their regulation 
in organisms are not carried out separately, and often 
complex pathways and networks are formed by different 
genes and proteins. Their interaction and mutual regula-
tion eventually lead to systemic changes in the metabolic 
group. The analysis of these metabolic and regulatory 
pathways can provide a more comprehensive and sys-
tematic understanding of the biological processes such as 
changes in the biological processes, the pathogenesis of 
the disease or the mechanism of the drug.

The kyoto encyclopedia of genes and genomes (KEGG) 
pathway database (http://www.kegg.jp/kegg/pathway.
html) is based on the functional information of genes and 
genomes, and the metabolic response is clues, the possi-
ble metabolic pathways and the corresponding regulatory 
proteins, in a graphical way to show the cell physiological 
and biochemical processes. First, we mapped all the 561 
metabolites to the Homo sapiens in the KEGG PATH-
WAY database. The mapping results are shown in Addi-
tional file 1.

Based on the mapping results, we sort out all the path-
ways for the differential metabolite mapping, as shown 
in Additional file 2. After that, we labeled the differential 

metabolites on the KEGG pathway. As shown in Fig.  4, 
red represented up-regulation while bright blue repre-
sented down-regulation. And the black indicated that 
metabolites were detected but not significantly different.

Metabolic pathway analysis of differential metabolites
KEGG analysis only found all the pathways that was rel-
evant to these differential metabolites, to further ana-
lyze the most relevant pathways associated with these 
metabolite differences, a comprehensive analysis of the 
pathways of differential metabolites (including enrich-
ment analysis and topological analysis) was carried out. 
We mapped these differential metabolites to the metab-
olites database such as KEGG, PubChem et  al. and the 
metabolite mapping table was shown in Additional file 3. 
After obtaining the matching information of the differ-
ent metabolites, we searched and analyzed the metabolic 
pathways in Homo sapiens database. An example of a 
metabolic pathway analysis table is given in Additional 
file 4. The results of the metabolic pathway analysis were 
presented as a bubble chart (Fig.  5). Each bubble in the 
bubble diagram represents a metabolic pathway. The 
abscissa and bubble size of the bubble indicate the size of 
the influence factor in the topology analysis. The larger 
the size is, the greater the influence factor is. The vertical 
and bubble color of the bubble indicate the enrichment 
analysis P value (negative natural logarithm, that is-ln P 
value), the deeper the color P value is smaller, the more 
significant degree of enrichment. From this chart we 
could clear figure out that beta-alanine metabolism path-
way was the most significant changes after He gas plasma 
treatment in LP-1 cells. Besides, propanoate metabolism 
and linoleic acid metabolism should also be concerned 
during gas plasma treatment of cancer cells.

Hierarchical clustering analysis of differential metabolites
The differential metabolites obtained by the above analy-
sis are often biologically consistent and functional simi-
larity/complementarity, or positive regulation/negative 
regulation by the same metabolic pathway, which will 
present similar or opposite expression characteristics 
between different experimental groups. The hierarchical 
clustering analysis of these characteristics will clear clas-
sify the metabolites with the same and different charac-
teristics between the experimental groups.

We calculated the Euclidean distance matrix from 
the plasma treatment group to quantify the differen-
tial metabolites of the control group. The results were 

Table 1  Statistical model parameters table of PCA model

Model Type A N R2X (cum)

Model 1 PCA 3 12 0.569

Table 2  Statistical model parameters table of OPLS-DA model

Model Type A N R2X (cum) R2Y (cum) Q2 (cum)

Model 2 OPLS-DA 1 + 1 + 0 12 0.486 0.985 0.81

http://www.kegg.jp/kegg/pathway.html
http://www.kegg.jp/kegg/pathway.html
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visualized in a heatmap that was combined with hierar-
chical clustering of samples and metabolites (Fig. 6). The 
color patches at different positions represent the relative 

expression levels of the corresponding metabolites. It can 
be seen that there are obvious differences in metabolic 
grouping patterns after He plasma treatment.

Fig. 2  The score scatter plot of (a) OPLS-DA model and permutation test of (b) OPLS-DA model
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Fig. 3  Volcano plot for differential metabolites between control and plasma treatment group

Fig. 4  Metabolic pathways with red/blue dots representing the differentially expressed compounds



Page 8 of 11Xu et al. Cancer Cell Int  (2018) 18:42 

Discussion
Energy and material metabolism is the basic guarantee for 
cell survival. Adenosine triphosphate (ATP) is a currency 
in the cell that is used to store and deliver energy. In nor-
mal tissues, 90% of the ATP comes from oxidative phos-
phorylation, whereas only 10% comes from glycolysis [33]. 
In aerobic conditions, glycolysis is inhibited, known as the 
Pasteur effect. However, Warburg found that tumor cells 
are still prevalent with high rates of glucose uptake even 
under oxygenated conditions. The increased glycolytic 
metabolism and increased metabolites of lactate, which 
are ubiquitous in various tumor cells, called as the War-
burg effect [34, 35]. Although the efficiency of glycolysis is 
low, tumor cells can benefit from glycolysis: Firstly, Due to 
the rapid growth of tumor cells, there is a great demand for 
energy and more glycolytic production of ATP is required. 
Secondary, glycolysis intermediates such as 6-phosphate 
glucose, pyruvate can synthesize fatty acids, nucleic acids 
which are important for cell metabolism and biosynthesis. 
Therefore, the energy and material metabolism of tumor 

cells and normal cells are quite different. Atmospheric 
cold plasma, as a newly developed technology, can selec-
tively induce tumor cell death. In addition, some related 
apoptosis pathway factors were reported although more 
mechanism need to be investigated. In our study, instead 
of study on the single apoptotic protein, we investigated 
the whole metabolism profiling to understand the effect 
of plasma on the metabolism of tumor cells. Because 
the metabolomic data typically contains a large number 
of variables that are interrelated, multivariate statistical 
methods such as PCA and OPLS-DA were used in this 
study [36]. We demonstrated the large scale metabolic 
profiling using GC-TOF mass spectrometry and found 
numerous significant differences between the gas con-
trol group and the plasma treatment group in myeloma 
tumor cells. By KEGG analysis of the metabolic pathways 
we found that beta-alanine metabolism pathway was the 
most significant changes after He gas plasma treatment 
in myeloma LP-1 cells. Alanine, beta-alanine and sarco-
sine share the same chemical formula C3H7NO2, but are 
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Fig. 5  Bubble chart of the metabolic pathway analysis
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structurally different. By GC–TOFMS analysis, beta-ala-
nine is easy to separate from alanine and sarcosine duo 
to its distinct mass spectrum [37]. Beta-alanine is a direct 
precursor of pantothenic acid (PA) which is needed for 
the synthesis of coenzyme A (CoA). In the tricarboxylic 
acid (TCA) cycle, CoA is important for pyruvate to enter 
as acetyl-CoA, and for α-ketoglutarate to be transformed 
to succinyl-CoA [38]. In addition, CoA is involved in the 
biosynthesis of many important compounds such as fatty 
acids, cholesterol, and acetylcholine [39]. Therefore, by He 
plasma treatment, beta-alanine metabolism in myeloma 
tumor cells was suppressed, which disturbing the energy 
and material metabolism of the tumor cells and results in 
tumor cells death. Our data illustrated some details about 
the dysregulation of metabolism profiling by gas plasma 
for the first time. Although more researches need to be 
done to further analyze the mechanism under molecular 
microstructure, this study gives a general direction for 
further study. Meanwhile, more tumor cell lines and the 
treatment by different types of gas plasma devices will be 
done for metabolite profiling analysis, to further illustrate 

the biological effects in various tumor cells by different 
reactive species in gas plasma.

Conclusions
In conclusion, we demonstrated the effects of gas plasma 
on tumor cell metabolism by GC-TOF mass-spectrom-
etry for the first time. By bioinformatics analysis we 
showed that plasma treatment could significantly alter 
the metabolite profiling of tumor cells. In addition, beta-
alanine metabolism pathway was the most susceptible to 
plasma treatment, which might be instructive to further 
detail the mechanism of biological effects induced by 
plasma treatment in tumor cells.

Additional files

Additional file 1: Table S1. KEGG metabolite mapping.

Additional file 2: Table S2. KEGG pathway.

Additional file 3: Table S3. Pathway metabolite mapping.

Additional file 4: Table S4. Pathway analysis.
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