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Abstract 

Background: Cancers are caused by the acquisition of somatic mutations. Numerous efforts have been made to 
characterize the key driver genes and pathways in glioma, however, the etiology of glioma is still not completely 
known. This study was implemented to characterize driver genes in glioma independently of somatic mutation 
frequencies.

Methods: Driver genes and pathways were predicted by OncodriveCLUST, OncodriveFM, Icages, Drgap and Dendrix 
in glioma using 31,958 somatic mutations from TCGA, followed by an integrative characterization of driver genes.

Results: Overall, 685 driver genes and 215 driver pathways were determined by the five tools. FSTL5, HCN1, 
TMEM132D, TRHDE and KRT222 showed the strongest expression correlation with other genes in the co-expression 
network of glioma tissues. ST6GAL2, PIK3CA, PIK3R1, TP53 and EGFR are at the core of the protein–protein interaction 
network. 133 driver genes were up-regulated and associated to poor prognosis, 43 driver genes were down-regulated 
and related to favorable clinical outcome in glioma patients. The driver genes such as MSH6 and RUNX1T1 might serve 
as candidate prognostic biomarkers and therapeutic targets in glioma.

Conclusions: The set of new cancer genes and pathways sheds insights into the tumorigenesis of glioma and paves 
the way for developing driver gene-targeted therapy and prognostic biomarkers in glioma.
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Introduction
Gliomas are tumors that arise from glial cells and com-
mon primary brain tumors in adults, with an incidence 
rate of 6.03 per 100,000 in USA [1]. Gliomas are classified 
into a variety of subtypes, including astrocytoma, glio-
blastoma, oligodendroglioma, ependymoma, mixed gli-
oma, malignant glioma, and a few more rare histologies. 
Of them, astrocytoma accounts for about 70% of glioma 
cases [1]. Low grade glioma is a lethal disease in young 
adults, with an average survival time of 7 years, only 20% 
of low grade glioma patients survived for more than two 
decades [2].

Recently, large-scale genomics studies have been con-
ducted to determine the core genes and pathways under-
lying gliomagenesis and to define molecular subtypes 

in glioblastoma and lower-grade gliomas [3–5]. For 
instance, 87% of glioblastomas have genetic alterations 
in the TP53/MDM2/MDM4/p14ARF pathway, includ-
ing TP53 mutations or homozygous deletion (35%), 
MDM2 amplification (14%), MDM4 amplification (7%), 
or p14ARF homozygous deletion or mutation (49%) [3]. 
IDH1 mutation combined with either TP53 mutation or 
total 1p/19q loss is a frequent and early change in the 
majority of common adult gliomas but not in primary 
glioblastomas [6]. Lower-grade glioma patients with an 
IDH mutation and 1p/19q co-deletion showed favorable 
clinical outcomes in lower-grade gliomas [5]. The DNA 
repair enzyme MGMT is frequently methylated in gli-
oma, methylation of the CpG islands of the MGMT gene 
prevents transcription, which may increase the sensitivity 
of glioma to alkylating agents [7–9].

Though considerable progresses have been achieved, 
the etiology of glioma is still not completely understood. 
In this study, we performed genome-wide analyses of 
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576 gliomas, incorporating exome sequence, mRNA 
expression, protein–protein interaction, DNA copy 
number variations and clinical outcome from The Can-
cer Genome Atlas (TCGA) database. We revealed a list 
of cancer-driving genes and pathways and many driver 
genes were aberrantly expressed, co-expressed with other 
driver genes, involved in copy number variations and 
correlated with prognosis of glioma patients. Our study is 
of importance to characterize cancer biology and identify 
potential therapeutic targets and prognostic biomarkers 
in glioma.

Methods and materials
Classification of cancer mutations
31,958 somatic mutations generated by whole-exome 
sequencing of 576 pairs of glioma tumor/normal samples 
were downloaded from TCGA database at Broad Institute 
(http://firebrowse.org/?cohort=GBMLGG&download_
dialog=true, download on April 15, 2017) [10]. Func-
tional impact of somatic mutations was evaluated by 
Ensembl Variant Effect Predictor (VEP) [11] and then all 
mutations were classified into 11 categories according to 
their functional impact.

Prediction of driver genes and pathways
Driver gene candidates were predicted by five distinct 
tools, including OncodriveCLUST [12], OncodriveFM 
[13] (https://www.intogen.org), drgap [14] (https://code.
google.com/archive/p/drgap), icages [15] (http://icages.
wglab.org/) and Dendrix [16] (http://compbio.cs.brown.
edu/projects/dendrix/) with default parameters. The fol-
lowing criteria were applied to determine driver genes 
or pathways: (1) genes have q values smaller than 0.05 
(OncodriveCLUST and OncodriveFM), (2) genes or 
pathways have adjusted P values less than 0.05 (drgap), 
(3) genes were classified as drivers by icages and showed 
icagesGeneScores above 0.5 (icages), (4) the selected 
genes were sampled at least 10% (100/1000) of the times 
in the mutually exclusive analysis (Dendrix). Then, 576 
glioma patients were stratified into IDH1-mutated (236) 
and non-IDH1-mutated (340) groups. Driver gene and 
pathway analyses were performed in the two groups 
using the same methods as described above.

GO, KEGG pathway enrichment analyses
In order to characterize the functional enrichment of 
driver genes, GO term and KEGG pathway enrichment 
analyses were implemented for all the driver genes on the 
home page of STRING [17] (http://string.embl.de/). GO 
terms and KEGG pathways were considered to be signifi-
cantly enriched for driver genes with the cutoff of false 
discovery rate (FDR) < 0.05.

Expression and co‑expression network analyses
RNA-seq data of 75 glioma and 17 normal brain tissues 
were obtained from the study of Gill et  al. (GSE59612) 
[18]. Gene expression values expressed as Fragments 
per kilobase of exon per million fragments mapped 
(FPKM) were compared between glioma and normal 
brain tissues for all driver genes with t test, P values were 
adjusted using False Discovery Rate (FDR) in R. Genes 
were regarded as significantly differentially expressed 
with the cutoff of adjusted P value  <  0.05. Next, Co-
expression network was constructed by weighted correla-
tion network analysis (WGCNA) using gene expression 
log2(FPKM + 1) [19]. All parameters were used with the 
default values except for the softpower (12) and thresh-
old (0.004). Degree centrality is defined as the number of 
connections one node has to another. Hub genes which 
have the highest degrees connect most adjacent genes 
and build the structure of the network.

Protein–protein interaction network analysis
Protein–protein interaction (PPI) network was con-
structed using STRING to prioritize the core driver genes 
in glioma. As for each driver gene, combined STRING 
scores of all protein–protein interactions were summed 
as total STRING score which represents the number of 
interactions the driver gene has with other genes.

Sources of copy number variation and survival analyses
Focal copy number variations (CNVs) were acquired 
from 52 glioma samples at broad institute [10] (http://
f irebrowse.org/?cohort=GBMLG G&download_
dialog=true#). TCGA RNAseq and clinical outcome 
data were retrieved to assess whether the expression of 
driver genes could be associated to patients’ survival in 
glioma. Multivariate Cox regressions were performed 
with the coxph function from the R survival library using 
gene expression, sex, age, and grade or histology as mul-
tivariates [20]. Kaplan–Meier survival curves were plot-
ted on the website of oncolnc [21] (http://www.oncolnc.
org/), log rank test was used to compare the survival rates 
between high and low expression groups which refer to 
25% (127/508) of glioma patients that have the highest or 
lowest RNA expression levels respectively.

Results
The catalogue of somatic mutations
31,958 somatic mutations comprise 30,216 single-nucle-
otide variants (SNVs) and 1742 small insertions or dele-
tions (indels). The SNVs included 7818 silent, 20,311 
missense, 1248 nonsense, 713 splice-site, 119 RNA, 71 
translation start site and 24 nonstop mutations, 1259 
indels caused reading frame shifts, 404 indels were in 
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frame mutations. Over 67.46% (21,559/31,958) of vari-
ants were non-synonymous mutations (Fig.  1a). C>T/
G>A, T>C/A>G and T>A/A>T accounted for 54.18, 
17.38 and 13.05% of the variant types in the non-CpG 
sites, 6.90, 1.06 and 0.98% of variant types in the CpG 
islands respectively. Therefore, C>T/G>A, T>C/A>G and 
T>A/A>T were the three predominant transitions in gli-
oma (Fig. 1b).

Cancer driver genes and pathways in glioma
Overall, there were 15, 68, 221 and 445 driver genes 
determined by OncodriveCLUST, OncodriveFM, icages 
and drgap respectively (Additional file  1: Table S1). 
Dendrix reported 11,814 genes mutated in at least one 
patient. We performed Dendrix analyses for sets of size 
ranging from 2 to 4. When k  =  2, the pair IDH1 and 
PTEN was sampled 95.3% (953/1000) of the times. When 
k ≥ 3, the triple IDH1, Unknown and PTEN, IDH1, EGFR 
and PTEN were sampled 69.2% (692/1000) and 30.7% 
(307/1000) of the times respectively. Therefore, IDH1, 
PTEN and EGFR showed mutational exclusivity in gli-
oma (Additional file 1: Table S1). EGFR is the only com-
mon gene detected by all five tools (Fig.  2a), suggesting 
that EGFR plays a pivotal role in the tumorigenesis of 
glioma. Of 685 driver genes, the majority of driver genes 
are low-frequency mutated genes in glioma, with an aver-
age mutation rate of 1.39% (Fig. 2b). IDH1, TP53, ATRX, 
TTN, PTEN, EGFR and MUC16 were known recurrently 
mutated genes and showed mutation rates of 40.97, 
39.93, 23.78, 22.92, 17.88,16.32 and 15.10% across all 
samples (Fig. 2c). Besides the list of driver genes, Drgap 
also reported 215 driver pathways in glioma, such as 
Hedgehog signaling pathway, mTOR signaling pathway, 

glioma and acute myeloid leukemia (Additional file  1: 
Table S2).

The IDH1 gene encoding isocitrate dehydrogenase 1 
(IDH1) catalyzes the oxidative carboxylation of isoci-
trate to a-ketoglutarate, causing production of NADPH 
in the citric acid (Krebs) cycle [22]. IDH1 is frequently 
mutated in the majority of low grade gliomas and sec-
ondary high grade gliomas. IDH1 mutations change the 
function of the enzymes, increase DNA methylation and 
correlate with improved prognosis in glioma [23]. 576 
glioma patients were classified into IDH1-mutated (236 
patients) and non-IDH1-mutated groups (340 patients) 
based on the occurrence of IDH1 mutation. Then we 
applied OncodriveCLUST, OncodriveFM, icages, drgap 
and Dendrix to detect driver genes and pathways in the 
two distinct groups. The number of driver genes detected 
by the five tools was largely different between IDH1-
mutated and non-IDH1-mutated groups. There were 
only 2, 5, 46, 8 and 1 overlapping driver genes predicted 
by OncodriveCLUST, OncodriveFM, icages, drgap and 
Dendrix respectively (Additional file 1: Figure S1, Tables 
S3, S4). Moreover, a set of driver genes were predicted 
to be IDH1-associated, such as IDH1, NOTCH1, FUBP1, 
ARID1A, KAT6B and ARID2, while others were IDH1-
independent, such as EGFR, PIK3CA, BRAF, RB1 and 
PTGS2 (Additional file 1: Tables S3, S4, Figure S1). How-
ever, the majority of driver pathways (196/209, 93.78%) 
unraveled by drgap in glioma patients with IDH1 muta-
tions overlapped with those (196/214, 91.59%) in glioma 
patients without IDH1 mutations. All the results suggest 
that IDH1 and non-IDH1 mutated glioma subtypes are 
caused by mutational disruption of different genes but 
similar pathways.

Fig. 1 Characterization of somatic mutations in glioma. a The number and proportion of mutation classes with different functional impact in 
glioma. b The somatic mutation signatures in glioma
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GO term and KEGG pathway enrichment analyses
The enrichment of GO terms and KEGG pathways 
was analyzed for 685 driver genes on the home page of 
STRING. GO enrichment analysis indicated driver genes 
were significantly enriched in 1750 biological processes 
(FDR  <  0.05). The main GO biological process terms 
showed a wide spectrum of functional processes ranging 
from cellular developmental process, cell differentiation, 
programmed cell death, apoptotic process to regula-
tion of metabolic processes (Additional file 1: Table S5). 
STRING also revealed 145 KEGG pathways significantly 
enriched for driver genes, such as glioma, melanoma, 

thyroid cancer, pancreatic cancer, renal cell carcinoma, 
bladder cancer, colorectal cancer, non-small cell lung 
cancer, endometrial cancer, prostate cancer, acute mye-
loid leukemia, MAPK signaling pathway, mTOR signal-
ing pathway and cell cycle (FDR < 0.05, Additional file 1: 
Table S6).

Expression profiling in glioma
In order to analyze the driver gene expression profile in 
glioma, RNA-seq data of 75 glioma and 17 normal brain 
tissues were obtained from Gill’s study. Overall, we found 
428 differentially expressed driver genes, including 330 

Fig. 2 Driver genes in glioma. a The overlap of driver genes predicted by five distinct methods. b The distribution of mutation frequencies of driver 
genes. c The mutation patterns of top 20 most frequently mutated driver genes across 576 glioma samples
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up-regulated and 98 down-regulated genes (Additional 
file 1: Figure S2). Next, we built co-expression networks 
based on the expression correlation of differentially 
expressed driver genes in cancer tissues and normal brain 
tissues respectively. The genes which have high degrees 
possess intensive interactions with other genes and may 
act as key genes in the co-expression network. As shown 
Fig.  3, FSTL5, HCN1, TMEM132D, TRHDE, KRT222, 
CACNA1B, CDH9, SLC22A9, GABRA1 and GABRB2 
showed the strongest expression correlation with other 
genes in glioma tissues (Additional file 1: Table S7), while, 
PRKAR2B, CCND2, C1orf173, WBSCR17, STXBP5L, 
PRKCE, KIF3A, GRAMD1B, SLC1A6 and ADCY1 were 
the hub genes in the co-expression network of normal 
brain tissues (Fig. 4; Additional file 1: Table S8).

Protein–protein interaction network analysis
In addition to co-expression analysis on driver genes at 
the mRNA level, we also wanted to know the interac-
tions of driver genes in glioma at the protein level. To 

this aim, we applied STRING to construct a protein–pro-
tein interaction network using 685 driver genes. A high 
degree protein regulates or is regulated by many other 
proteins, suggesting an important role in the network of 
interactions. SRC, ST6GAL2, PIK3CA, PIK3R1, CREBBP, 
TP53, SOS1, EGFR, EGR1 and EIF1AX are at the core of 
the protein–protein interaction network (Total STRING 
score > 29.20, Additional file 1: Table S9, Figure S3). They 
are responsible for regulation of programmed cell death, 
protein metabolic process, apoptotic process, EGFR sign-
aling pathway and signaling transduction, suggesting they 
may play key roles in glioma [24].

Copy number variations in glioma
We also obtained focal CNVs of 52 glioma samples at 
broad institute. Significant focal gains and deletions 
(q  <  0.25) were found in 29 samples (29/52, 55.77%) at 
5 loci (3 amplifications and 2 deletions). Among them, 
deletions at 9p21.3, 7p11.2 and amplification at 1q32.1 
were the most frequent CNVs in glioma, with occurrence 

Fig. 3 Co-expressed differentially expressed driver genes and their network in glioma tissues; Of note, the greater the sizes of nodes are, the 
stronger the differentially expressed driver genes are co-expressed with surrounding genes. The nodes that have the same color belong to the 
same module detected by WGCNA
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rates of 32.69% (17/52), 26.92% (14/52) and 13.46% (7/52) 
respectively (Additional file 1: Figure S4). 10 driver genes 
were involved in CNVs, including known tumor suppres-
sors and oncogenes, such as EGFR (amplification, 7p11.2) 
and MET (amplification, 12q14.1). Many driver genes 
were also found to be implicated in the CNVs, including 
PIP4K2C (amplification, 12q14.1), REN (amplification, 
1q32.1), PIK3C2B (amplification, 1q32.1), CDKN2B and 
CDKN2A (deletion, 9p21.3), COL6A3 and NEU2 (dele-
tion, 2q37.3) and HDAC4 (deletion, 2q37.3).

Survival analyses in glioma
We acquired RNAseq and clinical outcome data from 
TCGA to evaluate whether the expression of driver 
genes is associated to survival of glioma patients. Over-
all, Kaplan–Meier survival analyses showed that the 
expression of 268 driver genes was significantly related 
to clinical outcomes of glioma patients. The high expres-
sion of 162 driver genes was negatively correlated with 
survival rates of glioma patients, such as SAMD9L, 
SAMD9, VAV3, FLNA, KDELC2, BRCA2, MAP3K1, 
BRCA1, LAMA2 and PDGFD (Additional file  1: Table 
S10). By contrast, 106 driver genes showed positive 

correlation with patients’ prognosis, such as BMP2, 
CSMD3, SMOC1, FAM110B, SLC1A6, GABRB3, BAG1, 
SNAP91, CALN1 and MAPK9 (Additional file  1: Table 
S10). 133 driver genes were up-regulated and associated 
to poor prognoses in glioma patients, such as NOTCH2, 
STAT3, IDH1, ARID1A and MSH6 (Fig. 5a). On the con-
trary, 43 driver genes were down-regulated expression 
and related to favorable clinical outcomes in glioma 
patients, such as PIK3R1, FLT3, PIK3R1 and RUNX1T1 
(Fig. 5b). These driver genes might be potential prognos-
tic biomarkers for glioma patients in the future.

Discussion
In this study, we applied OncodriveCLUST, Onco-
driveFM, Icages, Drgap and Dendrixto 576 pairs of gli-
oma tumor/normal samples and identified 685 driver 
genes and 215 driver pathways in glioma. Only a small 
number of driver genes are recurrently mutated in glioma 
samples, such as IDH1, TP53, ATRX, TTN, PTEN, EGFR 
and MUC16. By comparing the list of driver genes to 
annotated oncogene [25] and tumor suppressor gene [26] 
databases, we found 76 known oncogenes, such as BRAF, 
FOXO1, KRAS,MET and MTOR as well as 61 tumor 

Fig. 4 Co-expression networks of differentially expressed driver genes in normal brain tissue
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suppressor genes, such as ATM, BRCA1,CHEK1, FOXO1 
and NOTCH1. The majority of driver genes showed low 
or middle mutation frequencies and were first deter-
mined as driver genes in glioma, such as BCOR, FRG1B, 
GABRA6 and LRP1B. In addition, multiple IDH1-
dependent driver genes were also detected by Onco-
drive-FM and drgap, for instance NOTCH1 and ARID1A, 
suggesting these drivers might be therapeutic targets for 
IDH1-mutated gliomas.

In addition, we also uncovered 428 differentially 
expressed driver genes, including 330 up-regulated and 
98 down-regulated genes, as well as 10 driver genes 
involved in CNVs, suggesting these genes might con-
tribute to gliomagenesis in a variety of fashions. On the 
basis of the 428 differentially expressed driver genes, we 
built gene co-expression networks in glioma tissues and 
normal brain tissues. No significant loss of connections 
between genes were observed in glioma, which contrasts 

Fig. 5 Correlation of MSH6 and RUNX1T1 expression with patients’ prognosis in glioma. a Patients with high expression of MSH6 (log2 normalized 
count was above 146.48, red) showed a poor survival rate as compared to glioma patients with low expression of MSH6 (log2 normalized count 
was smaller than 47.69, blue). b Glioma patients with high expression of RUNX1T1 (log2 normalized count was above 1035.7, red) showed a better 
prognosis than patients with low expression of RUNX1TX (log2 normalized count was less than 759.39, blue)
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with Hao Li’s study [27], in which most of the gene–gene 
interactions and linkages in normal tissues had been bro-
ken or lost in the gastric cancer tissues. The inconsistent 
findings might be attributed to two factors. First of all, 
cancer types are greatly different in the two studies. Sec-
ondly, the co-expression networks were built using two 
distinct subset of genes, including differentially expressed 
driver genes in our study and differentially expressed 
genes in Hao’s study. The PPI network analysis indicated 
the top ranking genes are responsible for regulation of 
programmed cell death, protein metabolic process, apop-
totic process, EGFR signaling pathway and signaling 
transduction, suggesting they may play pivotal roles in 
glioma [24].

Lastly, 268 driver genes were significantly correlated 
to clinical outcomes of glioma patients. Of them, two 
driver genes, MSH6 and RUNX1T1, drew our attention, 
as they have been repeatedly reported to be involved in 
multiple cancer types [28–39]. The MSH6 is a member 
of mismatch repair (MMR) genes, germline mutations 
in MMR genes, predominantly in MLH1, MSH2 and 
MSH6, are responsible for hereditary nonpolyposis colo-
rectal cancer [28, 29], prostate cancer [30] and endome-
trial cancer [31]. In line with our study, high expression 
of MSH6 was significantly associated with poor survival 
rates in melanoma [32] and osteosarcoma [33]. The sec-
ond gene, RUNX1T1, encodes a member of myeloid 
translocation genes. The chromosomal translocation 
t(8;21)(q22;q22) generates the RUNX1/RUNX1T1 fusion 
gene, which supports human haematopoietic stem cell 
self-renewal as well as leukaemic proliferation and clo-
nogenicity in vivo [34–37]. The expression of RUNX1T1 
was severely down-regulated in colorectal cancer (CRC), 
increased expression of RUNX1T1 suppressed cellular 
proliferation and sensitized CRC cells to 5-fluorouracil 
[38]. RUNX1T1 was frequently hypermethylated in ovar-
ian tumors with high clinical stages and primary ovarian 
cancer-initiating cells. Enhanced RUNX1T1 expression 
inhibited ovarian cancer cell growth [39]. The results 
obtained in our study in combination with published 
reports support that MSH6 and RUNX1T1 have onco-
genic and tumor suppressive functions respectively in 
cancers.

Conclusions
In conclusion, we performed an integrative study on the 
set of driver genes detected by five distinct computa-
tional tools, which enhanced our understanding of tumo-
rigenesis and progression of glioma. The driver genes and 
pathways identified herein such as MSH6 and RUNX1T1 
might be candidate prognostic biomarkers and therapeu-
tic targets in glioma.
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