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HYPOTHESIS

Simultaneous dual targeting of Par‑4 
and G6PD: a promising new approach in cancer 
therapy? Quintessence of a literature review 
on survival requirements of tumor cells
Ingeborg Elisabeth Cernaj*

Abstract 

The aim of this hypothesis is to propose a new approach in targeted therapy of cancer: The simultaneous, dual 
targeting of two single molecules, Par-4 and G6PD, rather than inhibition of full-length signaling pathways. Rationale: 
Targeted inhibition of especially two survival signaling pathways (PI3K/AKT/mTOR and MAPK/ERK) is frequently tried, 
however, a major breakthrough has not yet been reported. Inhibition of complete pathways naturally goes along 
with a variety of dose-limiting side effects thus contributing to poor efficacy of the administered drugs. This essay 
offers a synopsis of relevant studies to support the above mentioned idea—targeting of two single molecules which 
either are crucial for tumor growth and cancer-cell-survival: on one side, Par-4-activation selectively triggers apoptosis 
of tumor cells thus reversing their characteristic feature—immortality. On the other side inhibition of G6PD breaks 
the energy supply of tumor cells, weakens their defence against oxidative stress and thereby enhances the sensitiv-
ity of tumor cells to oxidative agents (e.g. chemotherapy). Advantage of the proposed dual Par-4/G6PD-therapy is 
good tolerability and—especially when administered along with conventional therapy—less frequent emergence of 
resistance.
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Background
Targeted inhibition of especially two survival signaling 
pathways (PI3K/AKT/mTOR and MAPK/ERK) is fre-
quently tried, however, a major breakthrough has not yet 
been reported. Inhibition of complete pathways naturally 
goes along with a variety of dose-limiting side effects thus 
contributing to poor efficacy of the administered drugs. 
There is a good case to believe that modulation of sin-
gle molecules which are crucial for the survival of tumor 
cells might be more successful.

Hypothesis
This manuscript deals with the assumption that two well-
known molecules—glucose-6-phosphate dehydrogenase 
(G6PD) and prostate apoptosis response-4 (Par-4)—are 

some kind of physiological antagonists: G6PD is vital for 
cell survival whereas Par-4, on the contrary, is required 
for programmed cell death, apoptosis.

The idea arose that inhibition of the one (G6PD) and 
strenghtening of the other (Par-4) could be helpful in 
cancer therapy.

Supportive evidence
G6PD strengthens the oxidative defence of tumor cells
Dramatically increased activity of G6PD in cancer cells 
when compared with the nontransformed type was 
reported as early as in the middle of the past century 
[1–7]. This fact has repeatedly been confirmed in more 
recent studies [8–14] indicating that G6PD plays an 
important role in the metabolism of cancer cells.

G6PD—the rate limiting step of the pentose phosphate 
pathway (PPP)—is one of the endpoints of the mTOR-
pathway [8, 15, 16] and is therefore regulated by the 
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PI3K/Akt/mTOR-signaling. The activity of G6PD ensures 
steady supply of pentoses required for the synthesis of 
nucleic acids and, even more important, for stabilization 
of the NADP/NADPH-equilibrium which is crucial for 
antioxidative defence [17]. Both supply with NADPH and 
with pentoses is an essential prerequisite for the uncon-
trolled growth and proliferation of cells in general and 
particularly of tumor cells [8, 15, 18].

Prostate apoptosis response‑4 (Par‑4)
Likewise, another molecule plays a central role in tumor 
development and growth: the tumor suppressor Par-4. 
Evidence is given that Par-4, which was identified in 1994 
in prostate cancer cells [19], plays a key function in apop-
tosis (for review see [20]).

One of the characteristic features of cancer cells—
immortality—is based on deactivation of the Par-
4-function to enable the tumor cells to escape apoptosis. 
Therefore, downregulation of Par-4-expression seems to 
be a decisive step in tumorigenesis which is vital for the 
viability of tumor cells [21, 22].

Over the years vast quantities of results dealing with 
the relevance of the two molecules—G6PD and Par-4—in 
tumor growth were published. This hypothesis is based 
on the results gained from search in relevant scientific 
literature.

Beginning in the late 1970-ies data regarding glucose-
6-phosphate dehydrogenase (G6PD)—especially those 
relating to cell proliferation, oxidative defence and tumor 
growth—were recorded and analyzed. Research was ini-
tially carried out in university- and other scientific librar-
ies. Since online access exists search was continued in 
large scientific databases like PubMed.

After discovering of prostate apoptosis response-4 
(Par-4) by the end of 1990 data regarding this molecule 
were recorded and analyzed, too, and interpreted in the 
context of knowledge about the role of G6PD in normal 
cells as well as in tumor ones.

Research, analyse and interpretation of the findings was 
done by the author itself over an about 40-year period, 
beginning with elaboration of PhD thesis in 1976 (“Role 
of G6PD and its isozymes in human organism”) and con-
tinued by personal interest and curiosity until today.

Significant reduction of Par-4-activity was documented 
in almost all examined tumor-types, among others in 
kidney- [23], different neurological [24, 25], endome-
trial [26], breast- [27], prostate- [28], colon- [29] as well 
as in cholangiocarcinoma-cells [30] thus confirming that 
reduced Par-4-activity is an important feature of tumor 
cells.

Evidence is given that this feature is—one could say—
programmed straight from the first step of carcinogen-
esis. The vast majority of tumors develop because of 

oncogenic mutations in the PI3K, Akt, PTEN, [31–35], 
ras [36–39], and other key genes [21, 31, 40, 41]. These 
genes are—among others—directly involved in initiating 
of PI3K/Akt/mTOR and/or MAPK/ERK signaling path-
ways which are vital for fast growing cells and cell prolif-
eration [35]. Mutations of these genes frequently go along 
with accidental activation of either survival pathways. 
Both PI3K/Akt/mTOR and MAPK/ERK pathways act in 
activated state as Par-4-suppressors (see Fig. 1).

Downregulation of Par‑4 via MAPK/ERK
Activation of MEK via ras (MAPK/ERK-pathway) 
induces upregulation of DNA-methylases (Dnmt-1 and 
Dnmt-3) which for their part methylate specific sites in 
the promoter of the Par-4 gene hereby inactivating Par-
4. The causative relation between ras, MAPK/ERK and 
Par-4 was confirmed: Inhibition of MEK causes down-
regulation of both the DNA-methylases whereon the 
function of the Par-4 promoter is restored and the Par-
4-activity raises again [42, 43].

Downregulation of Par‑4 via PI3K/Akt/mTOR
Likewise, PI3K/Akt/mTOR-signaling is directly involved 
in downregulation of Par-4. Activated Akt phosphoryl-
ates the Par-4 molecule at serine residue 249 in this man-
ner triggering downregulation of the Par-4 activity [44].

As already mentioned several therapeutic approaches 
based on inhibition of the PI3K/Akt/mTOR and MAPK/
ERK pathways were developed [32], i.e. mTOR-Inhibi-
tor Everolimus [45] and BRAF-Inhibitors Vemurafenib 
and Dobrafenib [46, 47]. These therapies didn’t fulfill 
the hopes because of dose-limiting side effects [46, 48, 
49] and/or development of resistance to the inhibitor 
[50–53].

Restoration of Par‑4‑acitivity causes tumor reduction
In many cases, tumor reduction after restoring of Par-
4-activity was reported. So Chakraborty and colleagues 
observed that injection of Par-4 via adenovirus into 
prostate tumor induced apoptosis in cancer cells fol-
lowed by dramatic reduction in tumor volume [54]. 
Similar findings were reported after Par-4 transfection 
in melanomas [55]. Vetterkind and colleagues reported 
that ectopic expression of Par-4 was sufficient to induce 
apoptosis in tumor cells of the central nervous system 
[25]. In animal experiments intravenous injection of 
recombinant Par-4 was sufficient to inhibit the forma-
tion of metastases [56]. Yang et colleagues noticed that 
in  vitro activation of Par-4-expression by small activat-
ing RNA (saRNA) induced growth inhibition and apop-
tosis in tumor cells [42].

Treatment of therapy resistant glioma stem cells with 
a combination of ectopic Par-4 and Tamoxifen caused 
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inhibition of the Akt- and the ERK-pathways followed by 
subsequent apoptosis in the tumor stem cells. This suc-
cess was seen only in combination of the two substances 
while monotherapy either with Tamoxifen or with Par-4 
alone failed [57].

Thus, the proapoptotic protein Par-4 seems to be cru-
cial for apoptosis induction in tumor cells; many (if not 
the vast majority of ) cancers are able to develop only 
because of inactivity (or reduced activity) of this tumor 
suppressor.

Inhibition of G6PD arrests tumor growth
Likewise, a direct connection between tumor growth 
and G6PD was confirmed. Several researchers consider a 
high G6PD activity in tumors as an independent negative 
prognostic marker in cancer [8, 56]. Overexpression of 
G6PD is considered as a predictor of high risk of recur-
rent metastasis in breast cancer patients [58].

First evidence that reduction of G6PD activity may 
be capable to reduce tumor growth was given as early 
as in the 1970-ies [59]; the same was recently approved 

Fig. 1  Molecular links between the two major survival pathways MAPK/ERK and PI3K/AKT/mTOR. The vast majority of tumors develop because of 
oncogenic mutations in the PI3K, Akt, PTEN, ras and related key genes, which are directly involved in initiating of PI3K/Akt/mTOR and/or MAPK/ERK 
signaling pathways. These pathways are vital for fast growing cells and cell proliferation. In tumor cells, MAPK/ERK and PI3K/AKT/mTOR pathways 
cooperate in downregulating of the pro-apoptotic tumor suppressor Par-4. Activation of MEK via ras (MAPK/ERK-pathway) induces upregulation of 
DNA-methylases (Dnmt-1 and Dnmt-3) which methylate specific sites in the promoter of the Par-4 gene hereby silencing the Par-4-gene. On the 
other hand, activated Akt, a key member of PI3K/Akt/mTOR-signaling, phosphorylates the Par-4 molecule at serine residue 249 hereby triggering 
downregulation of the Par-4 activity. Deactivation of the Par-4-function enables tumor cells to escape apoptosis and thus ensures their longevity. At 
the same time, activated PI3K/Akt/mTOR-signaling regulates the activity of G6PD via SREBP1-c. Activated G6PD supplies tumor cells with pentoses 
for the synthesis of nucleic acids and, even more important, ensures NADP/NADPH-equilibrium, which is vital for antioxidative defense. Withaferin A 
and 3,3′-diindolylmethane are known Par-4-activators. Aspirin, nicotinamide, steroids are inhibitors of G6PD
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by more modern methods [9]. It has been shown that 
reduction of the G6PD activity in tumor cells up to 80% 
is sufficient for significant reduction of cell prolifera-
tion, migration and invasiveness as well as for significant 
decrease of colony forming efficiency; coincidentally the 
rate of tumor cell apoptosis increased [9]. Furthermore, it 
has been shown that inhibition of G6PD activity triggers 
the sensitivity of tumor cells against oxidative stress and 
consequently leads to an increased susceptibility of these 
cells to apoptosis [9, 60].

Adult organisms are only marginally dependent 
on G6PD‑activity
In resting cells the G6PD-activity is often barely detect-
able; only regenerating [61] and embryonic cells [62] 
and, as above mentioned, tumor cells, are dependent on 
sufficient G6PD-activity. As early as in 1965 Beacons-
field realized that cancer mortality seemed to be lower 
in populations where G6PD-deficiency is common due 
to endemic occurrence of deficient G6PD-variants [63]. 
The well-known finding that regular use of medications 
with G6PD-inhibiting properties (e.g. aspirin) goes along 
with a lower cancer risk when compared with the general 
population underpins the crucial role of active G6PD in 
tumor formation and growth [64, 65].

Discussion and conclusions
Targeted inhibition of the prosurvival, antiapoptotic 
G6PD-activity combined with simultaneous or consecu-
tive targeted activation of the pro-apoptotic tumor sup-
pressor Par-4 might be a promising approach in cancer 
therapy. Of particular advantage seems to be the fact 
that combination of the proposed dual targeted therapy 
with conventional cancer therapies promises to be more 
effective than either monotherapy [57] notably because 
of the additional increase of the sensitivity of tumor cells 
against chemotherapy because of impairment of antioxi-
dative defence mechanisms [66].

Targeting of G6PD and Par‑4 is well tolerated
Controlled G6PD-inhibition is generally well tolerated: 
serious adverse effects from G6PD-inhibition—at least 
for a defined period—are in general scarce to be expected 
(except in case of pregnancy or regenerating processes). In 
G6PD-deficient individuals hemolytic anemia possibly can 
occur which has to be clinically managed. The most suita-
ble Inhibitors of G6PD-activity are aspirin [67, 68] and, yet 
better tolerated, Niacin (6-Aminonicotinamide) [69].

Likewise, Par-4-activation is well tolerated. The proa-
poptotic effect of Par-4 is selectively restricted to tumor 
cells. Even activated Par-4 is not capable to induce apop-
tosis in normal cells; instead of that cells with active Par-4 
are senisitized towards apoptotic signals [54, 70, 71].

Evidence is given from vitro- and in vivo-animal stud-
ies that several steroids of plant origin (Withaferin A; 
3,3′-diindolylmethane) are known as Par-4-activators 
and are capable to induce apoptosis and growth arrests 
in prostate [72], cholangio-[73] and other carcinoma cells 
[73–78]. These natural occuring compounds are gener-
ally well tolerated (e.g. Withaferin A is well known from 
Ayurveda therapy).

Summary: The special advantage of a dual targeted 
G6PD- and Par-4-therapy rather than inhibition of com-
plete signaling pathways (e.g. PI3K/Akt/mTOR and/or 
MAPK/ERK) might be good tolerability, no mentionable 
adverse effects, and—especially in combination with con-
ventional oncological therapy—less frequent emergence 
of resistance.
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