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Abstract 

The gut microbiota can significantly affect the function of the intestinal barrier. Some intestinal probiotics (such as 
Lactobacillus, Bifidobacteria, a few Escherichia coli strains, and a new generation of probiotics including Bacteroides the-
taiotaomicron and Akkermansia muciniphila) can maintain intestinal epithelial homeostasis and promote health. This 
review first summarizes probiotics’ regulation of the intestinal epithelium via their surface compounds. Surface layer 
proteins, flagella, pili and capsular polysaccharides constitute microbial-associated molecular patterns and specifically 
bind to pattern recognition receptors, which can regulate signaling pathways to produce cytokines or inhibit apop-
tosis, thereby attenuating inflammation and enhancing the function of the gut epithelium. The review also explains 
the effects of metabolites (such as secreted proteins, organic acids, indole, extracellular vesicles and bacteriocins) of 
probiotics on host receptors and the mechanisms by which these metabolites regulate gut epithelial barrier func-
tion. Previous reviews summarized the role of the surface macromolecules or metabolites of gut microbes (including 
both probiotics and pathogens) in human health. However, these reviews were mostly focused on the interactions 
between these substances and the intestinal mucosal immune system. In the current review, we only focused on 
probiotics and discussed the molecular interaction between these bacteria and the gut epithelial barrier.
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Background
The gut is a diversiform microenvironment in which 
hundreds of types of bacteria grow [1]. Intestinal epithe-
lial cells (IECs) are generally considered to be immune 
sentinels and to play a crucial role in maintaining the 
integrity of the host’s intestinal mucosa [2]. Structurally, 
the monolayer of IECs separates the mucus produced by 
the goblet cells and the microbiota from the underlying 
immune cells to form a gut epithelial barrier (Fig. 1) [3]. 
The intestinal epithelial barrier is thus the main defense 

mechanism against infection and inflammation, and the 
disruption of its integrity is one of the primary causes of 
several intestinal disorders [4], including inflammatory 
bowel disease, necrotizing enterocolitis, diabetes, obe-
sity, and irritable bowel syndrome [5]. Although gut dis-
eases have a certain relationship with factors such as diet, 
genetics, and the environment, it is generally believed 
that dysbacteriosis is the most important factor that 
affects the intestinal barrier [6].

Probiotics are defined as “live microorganisms which 
when administered in adequate amounts confer a health 
benefit on the consumer” [7]. Commonly recognized 
intestinal probiotics include Lactobacillus, Bifidobacte-
rium, Streptococcus, and a few Escherichia coli strains [1]. 
Recent studies have also indicated that some intestinal 
symbiotic bacteria such as Akkermansia muciniphila and 
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Bacteroides thetaiotaomicron demonstrate the potency 
to comprise a new generation of probiotics [8, 9]. These 
bacteria have long been proven to regulate intestinal epi-
thelial function by facilitating the formation of mucous 
layers, secreting antibacterial factors, boosting the secre-
tion of secretory immunoglobulin A (SlgA) and com-
petitive adhesion to intestinal epithelial cells [10, 11], and 
increasing tight junction formation [12]. Although these 
protective effects have been well documented, the under-
lying molecular mechanism of probiotics on the gut bar-
rier has not been thoroughly reviewed.

The surface components of probiotics, such as 
flagella, pili, surface layer proteins (SLPs), capsu-
lar polysaccharide (CPS), lipoteichoic acid, and 

lipopolysaccharide, constitute microbial-associated 
molecular patterns (MAMPs) [13]. They can specifi-
cally bind to pattern recognition receptors (PRRs) such 
as NOD-like receptors (NLRs) and toll-like receptors 
(TLRs) (Table  1) [14, 15], and regulate nuclear factor 
kappa B (NF-κB), mitogen-activated protein kinases 
(MAPK), peroxisome proliferator-activated recep-
tor gamma, and other signaling pathways in IEC [16]. 
MAMPs also regulate a cellular protease-dependent 
signaling cascade to produce a variety of cytokines and 
chemokines that alleviate inflammation and enhance 
intestinal epithelial function [10, 17]. In addition, some 
metabolites produced by probiotics, such as secreted 
proteins (extracellular proteins), organic acids, indole, 

Fig. 1  Structure, function, and probiotics of intestinal epithelial barrier. The mucus secreted by goblet cells continuously replenishes the mucosal 
layer that covers the intestinal epithelium, which acts as the first physical barrier against pathogenic bacteria. The symbiotic bacteria in the outer 
mucus layer can ferment dietary fiber into SCFAs, providing important energy sources for colonic intestinal cells and goblet cells. Paneth cells 
secrete a variety of antibacterial substances, such as antimicrobial peptides and Reg3γ. These antibacterial substances and secretory IgA are 
secreted into mucus to protect against commensal pathogens. The microorganism-associated molecular patterns (MAMPs) of probiotics can be 
recognized by PRRs such as TLRs, which induces the response of dendritic cells (DCs) to provide the protection on gut epithelial barrier. PRRs pattern 
recognition receptors, SCFAs short-chain fatty acids
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bacteriocins, H2O2, and NO, protect the gut’s epithe-
lial barrier by boosting mucus secretion by goblet cells, 
increasing the production of antimicrobial peptides, or 
enhancing the expression of tight junctions (Fig. 1) [18].

Based on the above mentioned analyses on the poten-
tial role of the surface compounds and metabolites of 
probiotics in gut barrier function, [10–13, 18] this review 
provides updated and comprehensive information on the 
molecular interaction between intestinal probiotics and 
the gut barrier and summarizes the effects of the surface 
macromolecules and metabolites of probiotics on intesti-
nal receptors and pathways.

Regulation of intestinal barrier function by surface 
molecules of probiotics
A number of previous studies have shown that the sur-
face molecules of probiotics including SLPs, flagella, fim-
briae and CPS can be recognized by PRRs and play a role 
in maintaining intestinal homeostasis and promoting gut 
health (Fig. 2) [13, 14, 16].

Surface layer proteins
Bacterial surface layers are supramolecular cell envelope 
structures that are abundant in Archaea and in Gram-
negative and Gram-positive bacteria [19, 20]. Chemical 
analyses of isolated S-layers showed that they are mostly 
composed of a single species of protein or multiple spe-
cies of glycoproteins, with apparent relative molecular 
weights of 40,000 to 200,000 [21, 22]. These proteins were 
named as S-layer proteins (SLPs) [21, 22]. SLPs form a 
regular lattice monolayer via self-assembly and attach 
to the extracellular membrane by noncovalent interac-
tions [21, 23]. As the outermost structure of the cell, the 
surface layer lattice is generally considered to be the first 

bacterial components that have a direct interaction with 
the host’s epithelium.

In previous studies, L. helveticus R0052 inhibited the 
adhesion of E. coli O157:H7 to Caco-2 cells [24], and its 
surface protein extract was able to co-aggregate with 
Salmonella typhimurium FP1 [25]. The function of SLPs 
in bacterial adhesion and gut barrier protection can be 
attributed to SLPs’ competition with pathogens such as 
enterohemorrhagic E. coli (EHEC), enteroinvasive E. coli 
(EIEC) and enteropathogenic E. coli (EPEC) for adhesion 
sites on the intestinal cell surface. It can also be attrib-
uted to their surface hydrophobicity [26], surface charge 
distribution [27], and co-aggregation of pathogenic bac-
teria [19].

A recent study indicated that purified SLPs from L. 
plantarum exert a protective effect on Caco-2 cells 
infected with EPEC by increasing their transepithelial 
resistance (TER) and down-regulating their permeability 
[28]. The SLPs of L. acidophilus have also been reported 
to protect the intestinal epithelium and inhibit its inva-
sion by Salmonella enterica serovar Typhimurium by 
recovering TER [29]. SLPs can protect the intestinal bar-
rier by affecting F-actin distribution and modulating the 
tight junction proteins at the mRNA and protein levels 
[30]. They can also increase extracellular signal-regulated 
kinase (ERK) phosphorylation, reducing the level of cell 
apoptosis [28].

Micro integral membrane proteins (MIMPs) were iden-
tified as the smallest domain from the SLPs of L. plan-
tarum [31]. Previous studies have shown that MIMPs of 
L. plantarum CGMCC 1258 can restore tight junctional 
injury by increasing the expression of tight junction pro-
teins including JAM-1, occludin, and claudin-1, which 
can allow the transportation of ions and small molecules 
of soluble substances through gut barrier, but prevent 

Table 1  Examples of interactions between MAMPs of probiotics and PRRs of hosts

PRRs pattern recognition receptors, MAMPs microbial-associated molecular patterns, TLRs toll-like receptors, EGFR epidermal growth factor receptor, DC-SIGN dendritic 
cell specific intercellular adhesion molecule grabbing nonintegrin, Slp surface layer protein, CPS capsule polysaccharide, NOD nucleotide binding oligomerization 
domain containing protein, LPS lipopolysaccharide, LTA lipoteichoic acid; p75 and p40, cell wall associated hydrolase, PG peptidoglycan

MAMP Probiotic

PRR PRR location Co-receptor Species Refs

SlpA DC-SIGN Cell membrane Unknown L. acidophilus [29]

Flagellin TLR5 Cell membrane Unknown E. Coli Nissle 1917 [35]

Pili TLR4 Cell membrane Mannose glycoproteins E. Coli Nissle 1917 (type 1 pili) [42]

CPS Unknown Unknown Unknown B. thetaiotaomicron [48]

LTA TLR2 Cell membrane CD14 and CD36 L. plantarum [113]

PG TLR2-NOD1 (or NOD2) Cell membrane–Cyto-
plasmic

CD14 L. plantarum
DAP-PG

[114]

p40
p75

Unknown Unknown EGFR L. rhamnosus GG [55]

Indole TLP4 Cell membrane Unknown B. infantis [65]
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the passage of toxic large molecules and microorganisms 
[32].

Flagellin
Flagellin is a structural component of bacterial flagella 
produced by pathogenic, symbiotic bacteria and neutral 
bacteria [33]. The interaction between flagellin and intes-
tinal epithelium has mostly been studied on E. coli Nissle 
1917 (EcN) [34]. Flagellin can induce inflammation in 
intestinal epithelial cells, whereas this proinflammatory 
effect is dismissed without contact with the basolateral 
membrane of the gut epithelia. This explains why flagel-
lin-producing symbiotic microbes have not been found 
to induce inflammation in the gut lumen [35]. It has been 
reported that flagellin serves to activate phosphatidylin-
ositol-3-kinase (PI3K)/AKT signaling pathway in the 
gut epithelium via a TLR5-dependent mechanism [36, 
37]. The rapid activation of the PI3K pathway by TLR5 
can limit the MAPK signaling pathway, thereby limiting 
the expression of proinflammatory genes and inhibiting 

inflammation [37]. It has also been reported that flagellin 
produced by the EcN can induce the secretion of beta-
defensin 2 (HBD-2) [38], an antimicrobial peptide syn-
thesized by intestinal epithelial cells. A follow-up study 
showed that the flagella-induced induction of HBD-2 
is related to the NF-κB and activating protein-1 (AP-1) 
signaling pathways and thus offers antagonism against 
pathogens [34, 39]. It has been reported that the flagel-
lum of the EcN, a main adhesin of intestinal mucous, 
can bind to receptors such as the mucus component glu-
conate and mediate its adhesion to mucin 2 [40]. These 
action modes can exclude pathogens and protect the 
intestinal epithelial barrier.

Pili
Pili is a filamentous accessory organ on the surface of 
bacteria, which plays an important role in the adhesion 
between bacteria and host’s intestinal epithelium [41]. 
Pili is divided into 6 types (type I–type VI), based on 
their morphology, number, distribution on the surface 

Fig. 2  Effects of surface molecular of probiotics on intestinal epithelial barrier. Flagellin, pili, and CPS can be bind to TIR domain in TLRs, thus 
interacting with adaptor molecules such as MyD88 to activate AP-1 and NF-κB signaling pathways in IEC. Flagellin of EcN can finally induce the 
expression of HBD-2 in the gut, which is beneficial for the prevention of pathogens. F1C pili of EcN can finally up-regulate the expression of tight 
junction to enhance gut barrier function. CPS of EcN can finally induce the secretion of cytokines such as IL-10 and IL-12 for the alleviation of 
intestinal inflammation. SlpA of Lactobacillus acidophilus can bind to DC-SIGN and increase ERK phosphorylation, which mediates interaction 
with NF-κB and then reduce the expression level of cell apoptosis. SLPs surface layer proteins, CPS capsular polysaccharide, TLRs toll-like receptors, 
DC-SIGN dendritic cell specific intercellular adhesion molecule grabbing nonintegrin, NF-κB nuclear factor kappa B, AP-1 activating protein-1, IECs 
intestinal epithelial cells, ERK extracellular signal-regulated kinase, MAPK mitogen-activated protein kinase, HBD-2 beta-defensin 2
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of bacteria, adhesion characteristics, antigenicity and 
genetic locus [41]. Studies have revealed that EcN pro-
duces three main kinds of adhesins: F17-like pili, type 1 
pili, and F1C pili [42]. Both F17-like and type 1 pili con-
tribute to intestinal colonization and show significant 
binding to the epithelium in mice [42]. F1C pili can 
attach to mannosylated glycoproteins in the intestine 
and motivate TLR4 in a MyD88-dependent manner, 
thus improving the colonization and biofilm formation 
of EcN in the gut [42].

In vitro and in  vivo experiments have demonstrated 
that the tight adhesion (Tad) pili of B. breve UCC2003 
is a subclass of the type IVb pili. Tad has been reported 
to promote the proliferation of intestinal epithelial cells 
in mice [43]. The probiotic effect of Bifidobacterium 
Tad pili on the intestinal epithelial barrier can stimu-
late neonatal mucosal growth and intestinal maturation 
by producing a specific extracellular protein structural 
scaffold [44]. Subsequent reports have revealed that 
this beneficial proliferation response depends largely 
on the pili subunit TadE [44]. It has also been shown 
that SpaC fimbriae of probiotics are essential for adhe-
sion to Caco-2 intestinal epithelium lines [45, 46]. The 
SpaC pilin of L. rhamnosus GG (LGG) has been con-
firmed to induce the generation of reactive oxygen spe-
cies (ROS) in epithelium and play a role in stimulating 
ERK phosphorylation and protecting the gut’s epithelial 
barrier [47].

Capsular polysaccharide
The CPS of bacteria is homopolymers or heteropoly-
mers formed by repeated monosaccharides linked by 
glycosidic bonds [19]. CPS molecules in probiotics have 
a positive effect on adaptation to the intestinal micro-
environment. B. thetaiotaomicron can express and 
dynamically transform various types of CPS in  vivo, 
the most prevalent being CPS5, which can enhance 
the competition and colonization of bacteria in the 
gut of mice [48]. CPS5 also enhances the tolerance of 
B. thetaiotaomicron to antibiotic stress [48]. Further-
more, some studies revealed that the K5 capsule of 
EcN stimulates TLR5 in gut epithelial cells and induces 
chemokine expression via the mitogen-activated pro-
tein kinase pathway [49, 50].

To summarize, the surface substances of probiot-
ics share a common regulatory mechanism as they can 
bind to PRRs including TLRs, NLRs, DC-SIGN and 
CLRs. Upon exposure to these surface substances, PRRs 
respond by activating associated adaptor proteins that 
are linked to NF-κB and MAPK signaling cascades, 
which further affects the expression of genes encoding 
cytokines, chemokines and antimicrobial peptides.

Regulation of intestinal barrier function by main 
metabolites of probiotics
Some metabolites produced by probiotics, such as 
secreted proteins (extracellular proteins), indole, extra-
cellular vesicles, short-chain fatty acids, and bacteri-
ocins also protect the intestinal epithelial barrier by 
interacting with some receptors or directly promoting 
mucus secretion by goblet cells, increasing the secre-
tion of antimicrobial peptides, or enhancing the expres-
sion of tight junctions [18].

Secreted protein of probiotics
A number of previous studies indicated that secreted 
proteins (extracellular proteins) are proteins secreted 
and released into the environment by probiotic [51–
53]. The secreted proteins of probiotics have also been 
reported to participate in the interaction between sym-
biotic bacteria and the host. The extracellular proteins 
secreted by L. plantarum BMCM12 effectively attenu-
ate the adherence of pathogens and protect the intes-
tinal barrier [51]. Two proteins produced by LGG, p40 
and p75, have been shown to promote IEC homeosta-
sis. The mechanism is as follows. First, the soluble pro-
teins P75 and p40 transactivate the epidermal growth 
factor receptor (EGFR) [52] and then up-regulate the 
expression of a proliferation-inducing ligand (APRIL) 
in the epithelium (Fig.  3) [53]. This in turn promotes 
the production of immunoglobulin A and attenuates 
cytokine-induced apoptosis in mouse small intestine 
epithelial cells [53]. Second, these two proteins stimu-
late the intestinal epithelial cells to produce protective 
heat stress proteins Hsp72 and Hsp25, which protect 
tight junction proteins and activate the Akt pathway 
in a phosphatidylinositol 3-kinase (PIK3)-dependent 
manner to enhance the proliferation and survival of gut 
epithelial cells (Fig. 2) [54]. Alternatively, other studies 
have demonstrated that neonatal supplementation of 
P40 and p75 can promotes intestinal development and 
prevents colitis in adulthood [55, 56]. Moreover, these 
two proteins also prevent H2O2-induced tight junc-
tional disruption by protein kinase C (PKC)-dependent 
mechanisms [57].

Similarly, a novel LGG-soluble protein HM0539, has 
been reported to protect intestinal integrity by medi-
ating tight junction expression and mucus secretion 
[58]. Furthermore, Ewaschuk et al. used a mouse model 
with and without interleukin (IL)-10 and found that an 
extracellular protein secreted by B. infantis positively 
regulated occludin and ZO-1 proteins and increased 
TER, thus reducing colonic permeability and strength-
ening the mucosal barrier [59].
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Indole
Indole is usually produced by bacteria that contain tryp-
tophanase and has been reported to be a specific intes-
tinal symbiotic bacteria signal [60, 61]. Studies have 
indicated that indole produced by symbiotic E. coli can 
inhibit the chemotaxis of pathogenic E. coli [62]. E. coli-
secreted indole can also inhibit the attachment of path-
ogens to the epithelium by increasing the expression of 
genes involved in intestinal epithelial function, such as 
actin cytoskeleton, adhesion junctions, and tight junc-
tions [63]. Furthermore, this bacterial signal increased 

TER in polarized HCT-8 gut epithelium and attenuated 
tumor necrosis factor α-mediated NF-κB activation and 
IL-8 secretion, thus facilitating epithelial function [63].

The pregnane X receptor (PXR) is a physiologic regu-
lator associated with gut permeability, which is con-
sidered to regulate the intestinal barrier mediated by 
TLR4 [64–66]. Indole 3-propionic acid (IPA) has been 
reported as a ligand for epithelial PXR [61, 67], and the 
administration of IPA can up-regulate tight junction 
protein-coding mRNAs and augment the expression of 
claudins and occludins [65]. It has been reported that the 

Fig. 3  Effects of metabolites of probiotics on intestinal epithelial barrier. Indole 3-propionic acid can bind to PXR and up-regulate the expression 
of tight junction protein. The indole-3-lactic acid activates AhRs of the gut epithelium and promotes the expression of IL-22. The soluble proteins 
P40 and p75 isolated from LGG can activate EGFR and then up-regulate the expression of an APRIL in the epithelium, thus stimulating the secretion 
of lgA by B cells. Besides, P40 and p75 can activate EGFR–PIK3–Akt signaling pathway to maintain gut homeostasis. Moreover, these two proteins 
also prevent tight junctional disruption by protein kinase C (PKC)-dependent mechanisms. Butyrate is able to bind to the GPCR including GPR41, 
GPR109A, and GPR43 and induce the production of IL-18 in the colonic epithelium. Furthermore, butyrate also motivates the O2 consumption of 
the gut epithelium to maintain HIF stability and increase the expression of barrier-protective HIF target genes. In addition, bacteriocins produced 
by probiotics act as colonizing peptides to encourage producers to gain a competitive advantage over other strains and to occupy established 
niches in the intestines. Alternatively, bacteriocins can act as a killing peptide, directly inhibiting the adhesion of pathogens to the mucus layer 
and protecting the first barrier of the intestinal tract. HIF hypoxia-inducible factor, GPR109A G-protein-coupled receptors 109A, AhRs aryl hydrogen 
receptors, P75 and P40 cell wall-associated hydrolase, EGFR epidermal growth factor receptor, PI3K phosphatidylinositol-3-kinase, PKC protein kinase 
C, PXR pregnane X receptor, APRIL a proliferation-inducing ligand, PKC protein kinase C
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indole-3-lactic acid produced by B. infantis activates the 
aryl hydrogen receptors (AhRs) of the gut epithelium by 
increasing their nuclear localization and up-regulating 
the protein expression of CYP1A1 [68]. The activation of 
AhRs then leads to lL-22 transcription, which can further 
increase the expression of antimicrobial peptides and 
improve colonization resistance against Candida albi-
cans in the gastrointestinal tract [68].

Extracellular vesicles
Extracellular vesicles (EVs), nanoscale membrane vesi-
cles, are lipid bilayer structures secreted by the intestinal 
microbiota that are composed mainly of nucleic acids, 
proteins, lipids, and lipopolysaccharides [69, 70]. EVs 
are involved in bacteria-host communication and in the 
maintenance of gut homeostasis. It has been reported 
that oral application of A. muciniphila derived EVs can 
alleviate dextran sulfate sodium-induced colitis by recov-
ering inflammatory cell infiltration of the colon wall and 
alterations in colon length [71]. These phenomena can be 
explained by the fact that A. muciniphila derived EVs up-
regulate the expression of claudin-3 and reduce intestinal 
permeability in diabetic mice in an AMP-activated pro-
tein kinase (AMPK)-dependent manner [72–74].

The EVs of most bacteria are obtained by blistering the 
outer membrane and ultimately pinching off the bacte-
rial cytoderm, so they are referred to as outer membrane 
vesicles (OMVs). Studies have shown that OMVs secreted 
by E. coli ECOR63 and EcN can upregulate tight junction 
proteins such as claudin-14 and ZO-1 [75, 76]. Probiotic 
EcN derived OMVs can also induce IL-22 expression in 
colonic explants, thereby preventing allergens and patho-
genic microorganisms from entering the systemic circu-
lation [75].

Short‑chain fatty acids
Short-chain fatty acids, which comprise mainly butyrate, 
propionate, and acetate, are metabolites secreted by 
intestinal microbiota from undigested dietary carbo-
hydrates and proteins [77]. As butyrate is the preferen-
tial source of energy for colonic epithelial cell among all 
short-chain fatty acids, the relationship between butyrate 
and the intestinal epithelial barrier is the most-studied 
[78].

Studies have revealed the protective effect of a low 
concentration of butyrate (≤ 2  mM) on the single-layer 
barrier of Caco-2 cells, such as the increase in TER and 
the decrease in inulin permeability [79, 80]. Moreover, 
microbial-derived butyrate boosts the expression of tight 
junction proteins and represses paracellular permeabil-
ity in  vivo [81], and it stimulates goblet cells to secrete 
mucin, especially MUC2, which prevents pathogenic bac-
teria from destroying enterocytes [82]. A mucin-related 

peptide that can repair the intestinal mucosa, trefoil fac-
tor, can also be upregulated by butyrate [77]. Butyrate 
contributes to activate hypoxia-inducible factor (HIF) 
in the hypoxic region of the colon, which further pro-
motes intestinal epithelial barrier function, antimicrobial 
defense, and mucus production [83, 84].

Butyrate is a histone deacetylase inhibitor and has been 
reported to bind to specific G-protein-coupled recep-
tors, including GPR109A, GPR43, and GPR41 [85, 86]. 
Of these, GPR109A is crucial for the production of IL-18 
in the colonic epithelium and has been confirmed to 
have an important effect on the maintenance of intesti-
nal homeostasis (Fig. 3) [81, 87]. One of the mechanisms 
by which butyrate improves gut epithelial barrier func-
tion is the activation of AMP-activated protein kinase 
[87, 88]. Second, low concentrations of butyrate can aug-
ment the MUC2 mRNA level by promoting AP-1 binding 
to the MUC2 promoter [82]. At the same time, butyrate 
can boost the acetylation of histones H4 and H3 and the 
methylation of H3 on the MUC2 promoter, thereby safe-
guarding the mucosal barrier [82]. Butyrate also inhibits 
permeability-promoted claudin-2 tight junction protein 
expression via an IL-10RA-dependent mechanism [89]. 
Furthermore, the production of antimicrobial cathelici-
din, such as LL-37 in the body has also been specifically 
linked to butyrate [90]. In addition, butyrate can motivate 
the O2 consumption of the gut epithelium to the extent 
of HIF stability and increase the expression of barrier-
protective HIF target genes, connecting microbes and 
epithelial barriers (Fig. 3) [91, 92].

Bacteriocins
Bacteriocins are a class of ribosomally synthesized anti-
microbial peptides [93–95] and can be divided into two 
specific classes: lanthionine-containing bacteriocins/
lbacteria (class I) and non-lanthionine-containing bacte-
riocins (class II). [96]. The class I bacteriocins comprise 
single peptide chain and polypeptide chain lantibiotics. 
These bacteriocins, including lacticin 481, lacticin 3147, 
and nisin, are ribosomally-synthesised antimicrobial pep-
tides produced by Gram-positive bacteria. [97, 98]. The 
class II bacteriocins are mainly composed of subclass I, 
subclass II, subclass III and subclass IV. The common 
bacteriocins in class II are pediocin pa-1, lactacin F, lac-
tococcin A and reuterin 6. We have added an introduc-
tion to the classification of bacteriocins [99].

Bacteriocins have been reported to act as colonizing 
peptides of certain intestinal micro-organisms, pro-
moting these bacteria to acquire a competitive advan-
tage over other strains and occupy established niches 
in the intestines [100]. Studies have shown that EcN 
can secrete microcin H47 and microcin M, two anti-
microbial peptides with low molecular weight that can 
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be discerned by the catecholate siderophore receptors 
and thus enhance the competitiveness of EcN with 
other microorganisms [101]. Bacteriocin produced by 
the strain Enterococcus faecium KH24 conspicuously 
affects the microbiome in the feces of mice [102]. In 
addition to reducing the number of E. coli, this bacteri-
ocin can significantly increase the abundance of Lacto-
bacillus [102].

Alternatively, bacteriocins function as killing peptides 
since they can interfere with the growth of pathogens 
(especially Gram-negative bacteria) by penetrating the 
inner membrane or disrupting cell wall synthesis. [103]. 
L. reuteri can secrete a secondary metabolite with broad-
spectrum antibacterial activity, called reuterin, that 
directly inhibits pathogens [104]. Moreover, nisin, which 
is mainly produced by Streptococcus lactis and Lactococ-
cus lactis, can restrain the growth and reproduction of 
most Gram-positive bacteria and their spores, especially 
against S. aureus and Streptococcus hemolyticus [105]. 
Furthermore, the class II bacteriocin Abp118 secreted by 
L. salivarius UCC118 can prominently protect mice from 
infection by Listeria monocytogenes [106]. In addition, 
EntV produced by E. faecalis bacteria represses hyphae 
and biofilm formation in Candida albicans and reduce 
the virulence of this fungus [107].

Conclusions
Probiotics and gut commensals can modulate the host’s 
gut epithelial barrier function via their surface molecules 
and metabolites. Through organoid models, sterile ani-
mal models, and in  vitro tissue, we may better charac-
terize the impact of the intestinal microflora on the host 
epithelium. Surface components and metabolites of pro-
biotics can be further used in clinical studies and dietary 
interventions for the treatment of diseases associated 
with specific intestinal barriers [108–112].
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