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Abstract 

Background:  T helper (Th)17 and regulatory T (Treg) cells with toll-like receptor (TLR)-2 have been acknowledged 
to play a critical role in chronic rhinosinusitis with nasal polyposis (CRSwNP). However, its pathogenesis has been 
perplexed by conflicting reports on the role of Th17/Treg cells in patients of distinct ethnicities. We attempted to 
understand the role of Th responses induced during host defense against Aspergillus flavus.

Results:  The percentages of Th17 (CD4+CD161+IL23R+) and Treg (CD4+CD25+FoxP3+) cell populations and various 
cytokine profiles in peripheral blood mononuclear cells (PBMCs) challenged by A. flavus antigens were characterized 
from 50 CRSwNP cases, before and after treatment, and in 50 healthy controls. TLR-2 expression was analyzed in tis-
sues of cases and controls for disease co-relation. The major pathogen identified in our study was A. flavus by myco-
logical investigations. A marked immune imbalance was noted with elevated Th17 and decreased Tregs in PBMCs of 
CRSwNP patients after A. flavus stimulation. Comparatively, interleukin (IL)-17 and IL-10 levels were increased, with low 
transforming growth factor (TGF)-β levels in A. flavus stimulated PBMC supernatants of patients. The mRNA expression 
of TLR-2 in polyps of CRSwNP patients indicated significant (p = 0.001) upregulation in comparison to the controls.

Conclusions:  Our data highlights the excessive expression of TLR-2 in nasal polyps contributing to the imbalance in 
Th17/Tregs population in patients. After therapy, recovery of Tregs cells indicates restoration and tissue homeostasis, 
though high circulating CD4+CD161+ Th17 cells may continue to be a threat to patients predisposed to future recur-
rences. The constant exposure and tendency of A. flavus to colonize nasal cavities can lead to a Th17 driven airway 
inflammation. Dysregulated Th17 with TLR-2 promote resistance to treatment and progression to the chronicity of the 
disease.
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Background
Chronic rhinosinusitis with nasal polyps (CRSwNP), a 
subgroup of chronic rhinosinusitis (CRS), is clinically 
described by the presence of nasal polyps detectable 
to the clinician through nasal endoscopy. Nasal con-
gestion, loss of smell, hyposmia and facial pressure are 
the common clinical presentations [1, 2]. Nasal polyps 
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are characterized by inflammation in the lining of the 
paranasal sinuses and nasal cavity [3]. The accurate 
pathogenesis remains unclear, yet different etiologies 
have been involved, like anatomical variations, micro-
bial disease colonization, fungal infection and atopic 
reaction [4, 5]. Aspergillus species are the most widely 
recognized colonizers of the sinuses. In India, Asper-
gillus flavus is isolated in more than 80% of the cases 
of chronic rhinosinusitis [6]. As a pathogen, it cannot 
effectively damage the mucous membrane as it needs 
keratolytic proteins. The spores can adhere to particles 
that are breathed in and stored on the nasal and para-
nasal sinus mucosa. However, the pathology associated 
with Aspergillus species relies upon the immunologic 
condition of the patients [7].

It is suggested that there may be a distinctive 
immune response to fungal antigen in CRS patients 
that prompts the production of cytokines and drives 
eosinophilic aggravation. The fungal spore germination 
in the mucin sends antigenic stimulus, enabling chemo-
attraction of various immune cells eventually leading 
to polyp formation [8–10]. The exact relevance of fungi 
in CRS still remains unclear, though it is proposed that 
the pathophysiology of illness is most likely a conse-
quence of mucosal hypersensitivity [11].

Previous reports have shown that T helper (Th) 17 
and regulatory T (Treg) cell subsets play unique roles 
in controlling the inflammatory response. The effector 
T cell subsets driving immunity and inflammation and 
the role of inhibitory Treg cells suppressing the effec-
tor T cells to limit excessive inflammatory responses 
are the key components of the immune response [12]. 
Hence, the balance between immunosuppressive fork-
head box P3 (FoxP3) Treg cells and proinflammatory 
interleukin (IL)-17A secreting cells represents a critical 
factor in the regulation of immune homeostasis. Strik-
ingly IL-17 has been reported to be involved in atopic 
irritation in nasal polyps by pulling in the eosinophils 
and ensuing a tissue response [12, 13]. There is grow-
ing proof that toll-like receptors (TLRs) are engaged in 
modulating Treg cell functions directly and indirectly. 
Recent studies indicated that TLRs expressed on Tregs 
are the key component that regulates the immuno-
suppressive activity. In particular, TLR-2 stimulation 
appears to decrease the suppressive activity of Tregs by 
mechanisms that are not completely understood [14–
16]. The experimental pathways of Tregs and Th17 cells 
are considered as divergent and generally inhibitory 
with IL-17 secretion reportedly being associated with 
decreased Treg function [14, 17]. Therefore, we hypoth-
esized that TLR-2 may be responsible for reducing the 
suppressive function of Tregs by regulating the balance 

between Treg and Th17 function during the course of 
the disease.

To test this hypothesis, our study aimed to describe the 
Th responses induced as a host defense against A. flavus 
associated CRSwNP. The TLR-2 expression, Th17/Treg 
cell markers and profile of various cytokines in peripheral 
blood mononuclear cells (PBMCs) challenged by A. fla-
vus antigens were characterized in CRSwNP cases before 
(NP) and after treatment (NPF) and compared with 
healthy controls (HC).

Results
Patient profiles
Patients with CRSwNP had presented predominantly 
with symptoms of nasal obstruction, nasal discharge, 
irritation and sneezing. Clinical examination included 
rhinoscopic examination followed by other routine labo-
ratory investigations. Symptom score was assessed for 
disease severity according to the visual analogue scale 
(VAS), and the preoperative computed tomography (CT) 
scores calculated and graded. Overall, patient profile and 
clinical characteristics are summarized in Table 1. All the 
patients underwent functional endoscopic sinus surgery 
(FESS) with a clearance of paranasal sinuses, to the best 
extent possible. Patients were subsequently followed up 
for 6 months after surgery and were put on systemic ster-
oids for 2 weeks and intranasal steroids for a prolonged 
duration. Nasal washes with saline were also recom-
mended in all cases.

All the patients who were positive for Aspergillus sp. 
by KOH, culture and histopathological findings, were 
considered for this study. A total of 44/50 (88%) and 
6/50 (12%) were found to be positive for A. flavus and A. 
fumigatus, respectively

CD3+CD4+ T cells expressed higher Th17 (CD161+ 
and IL‑23R+) cells in PBMCs NP patients after A. flavus 
stimulation
We first analyzed the percentages of CD3+CD4+ T cells 
by flow cytometry, and observed higher percentages 

Table 1  Profile and  characteristics of  CRSwNP cases 
and healthy controls

Data are expressed as medians and interquartile ranges

Parameters CRSwNP HC

Subjects (n) 50 50

Gender (M/F) 29/21 26/24

Age (years) 27 (16–50) 28 (18–49)

Duration of disease (in months) 11 (4–32) 0

CT score 14 (7–18) 0

VAS score 13 (10–16) 0
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of CD4+ T cells in patients than controls (Fig.  1b). 
CD4+ cells expressing CD161+ and IL-23R+ (Th17 cells) 
were found in higher percentages in NP as compared to 
HC in unstimulated as well as after A. flavus and PHAM 
stimulation (p < 0.05, Fig. 2). CD161+ and IL-23R+ Th17 
cells were again analyzed in CD4+ T cells population 
after a follow-up of 6 months, where a reduced expres-
sion of CD4+CD161+ cell markers in unstimulated cells 
in NPF patients as compared to NP and nearly similar to 
those of the HC was observed. In A. flavus stimulated cell 
population, CD161+ markers on CD4+ T cells were found 
to be increased in NPF patients as compared to HC, but 
no difference was found between NPF and NP patients 
groups. (Fig. 2a, b). CD4+IL-23R+ Th17 population was 
found to be significantly increased in NP as compared to 
NPF and HC groups in unstimulated and A. flavus stimu-
lated cells. The percentage of CD4+IL-23R+ Th17 cells in 
NPF group showed decreased response as compared to 
NP though the cell population was comparable to HC in 
A. flavus stimulated cell population (Fig. 2c, d).

Decreased Tregs (CD25+FoxP3+) expression on CD3+CD4+ 
T cells in NP after the challenge of PBMCs with A. flavus 
antigen
When unstimulated, the CD4+CD25+ Treg population 
showed a significant decrease in NP as compared to HC 
and follow-up NPF groups. In A. flavus stimulated cells, 
CD4+CD25+ Treg cells showed a significant increase in 
NPF as compared to HC group (Fig.  3a, b). Dual posi-
tive CD4+CD25+FoxP3+ Treg cells showed significantly 
decreased response in NP as compared to HC and NPF 
groups in unstimulated, PHAM and A. flavus stimulated 
cell populations. Moreover, CD25+FoxP3+ showed simi-
lar results in NPF and HC groups in unstimulated and 
after stimulation with PHAM and A. flavus (Fig. 3c, d).

Cytokine estimation
The cytokine analysis showed no significant difference in 
IL-17 level in the NP group as compared to HC and NPF 
groups, in the absence of any stimulation. After stimu-
lation with A. flavus antigen, the levels of IL-17 were 

Fig. 1  Gating strategy and T cell subset expression. Lymphocytes were analyzed with flow cytometry after stimulation with PHAM and A. flavus 
antigen and in unstimulated cells for 18 h. a, b Gating strategy for CD3+ T cells from lymphocytes and representative FACs plot showing CD4+ T 
cells in the total CD3+ T cells, in CRSwNP case before (NP) and after treatment (NPF) and healthy controls (HC)
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significantly increased in NP as compared to HC and NPF 
groups (Table 2; Fig. 4a). A high IL-10 level after A. flavus 
stimulation was significant in NPF as compared to both 
NP and HC groups, though IL-10 levels in NP groups 
was higher as compared to HC (Table 2; Fig. 4b). The IL-2 
levels in unstimulated population in NP were lower as 
compared to HC. A PHAM treatment showed high IL-2 
in NP as compared to HC and NPF groups, whereas no 
significant difference was found within any groups after 
A. flavus stimulation (Table 2; Fig. 4c). TGF-β levels were 
significantly decreased in NP as compared to the rest of 
the groups (HC and NPF) in unstimulated, PHAM and 
A. flavus stimulated populations. Although, TGF-β was 
higher in NPF compared to HC group (Table 2; Fig. 4d).

Increased TLR‑2 mRNA expression by RT‑PCR and its 
correlation with T cell markers and cytokines
The mRNA expression of TLR-2 was remarkably upreg-
ulated (p = 0.001) with a mean ± SD of 8.18 ± 2.63 in 
CRSwNP patients as compared to uncinate tissues 

(controls) 4.47 ± 1.22 (Fig.  5). We examined the cor-
relations between the CD161+IL-23R+ (Th17) and 
CD25+FoxP3+ (Treg) cell populations with TLR-2 
expression in CRSwNP patients (A. flavus stimulated lev-
els). Also deduced were the correlations between IL-17 
and IL-2 with TLR-2 (Fig. 6a, b). Our analysis confirmed 
a significant positive correlation between TLR-2 expres-
sion and CD161+IL-23R+ cell population (r = 0.6308, 
p = 0.003). We found a significant negative correla-
tion between CD25+FoxP3+ and TLR-2 expression (r = 
− 0.2009, p < 0.001). Further, expression of TLR-2 showed 
a significantly positive correlation with IL-17 (r = 0.3604, 
p = 0.007), and a significantly negative correlation with 
IL-2 (r = −  0.432, p < 0.001) (Fig.  6a, b). No significant 
correlation was observed with IL-10 and TGF-β.

Discussion
CRSwNPs is a persistent inflammatory condition affect-
ing the nose and paranasal sinuses. Various etiologies, 
like anatomical variations, fungal infection as well as 

Fig. 2  CD3+CD4+ T cells expressed higher CD161+ and IL-23R+ Th17 cells percentages in PBMCs of CRSwNP. Lymphocytes were analyzed with 
flow cytometry after stimulation with PHAM and A. flavus antigen and in unstimulated cells for 18 h. a, b Representative FACS plots showing 
the percentage positivity of CD161+ in CD4+ T cells and c, d representative FACS plots showing the percentage positivity of IL-23R+ in CD4+ T 
cells, in CRSwNP cases before (NP) and after treatment (NPF), and healthy controls (HC) after stimulation with PHAM and A. flavus antigen and in 
unstimulated cells The statistical significance was determined by the Student t-test. Where * p   ≤ 0.05; ** p  ≤ 0.01; *** p ≤  0.001
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Fig. 3  CD3+CD4+ T cells expressed a decreased percentage of CD25+FoxP3+ Treg cells in PBMCs of CRSwNP. a, b Representative FACS data and 
summary analysis showing the percentage positivity of CD25+ in CD4+ T cells and c, d representative FACS data and summary analysis showing 
the percentage positivity of CD25+FoxP3+ in CD4+ T cells, in CRSwNP case before (NP) and after treatment (NPF) and healthy controls (HC) after 
stimulation with PHAM and A. flavus antigen and in unstimulated cells. The statistical significance was determined by the Student t-test. Where * p   
≤ 0.05; **p  ≤ 0.01; ***p  ≤ 0.001

Table 2  Cytokine profile of CRSwNP cases and healthy controls after stimulation with antigen:

Data are expressed as mean ± SD and p ≤ 0.05 considered as significant

HC healthy controls, NP cases before treatment, NPF cases after treatment, pg/ml picogram/milliliter

Cytokines Antigen/stimulant HC p-value NP p-value NPF p-value HC

IL-17 (pg/ml) Unstimulated 7.49 ± 5.4 0.224 3.94 ± 2.16 0.07 6.57 ± 2.59 0.74 7.49 ± 5.4

PHAM 272 ± 97.4 0.01 93.8 ± 92.31 0.39 129 ± 54.23 0.02 272 ± 97.4

A. flavus 6.63 ± 3.06 0.013 16.37 ± 8.12 0.032 7.89 ± 4.83 0.61 6.63 ± 3.06

IL-10 (pg/ml) Unstimulated 111.07 ± 86.7 0.029 458.8 ± 357.8 0.047 154 ± 32.1 0.26 111.07 ± 86.7

PHAM 900.43 ± 283.64 0.079 508.25 ± 488.38 0.807 554.25 ± 146.58 0.02 900.43 ± 283.64

A. flavus 23.00 ± 19.17 0.019 667.36 ± 536.4 0.025 930.83 ± 167.21 0.00 23.00 ± 19.17

IL-2 (pg/ml) Unstimulated 48.02 ± 1.27 0.01 44.3 ± 0.67 0.081 45.5 ± 0.23 0.012 48.02 ± 1.27

PHAM 47.03 ± 0.70 0.035 65.8 ± 18.39 0.06 50.1 ± 3.39 0.07 47.03 ± 0.70

A. flavus 47.5 ± 1.7 0.23 46.34 ± 1.17 0.93 46.2 ± 1.29 0.23 47.5 ± 1.7

TGF-β (pg/ml) Unstimulated 5796 ± 1236.64 0.027 3990 ± 964.1 0.012 8365 ± 2840.31 0.039 5796 ± 1236.6

PHAM 5850 ± 1398.62 0.039 4016.25 ± 628.6 0.034 9885 ± 4975.68 0.107 5850 ± 1398.6

A. flavus 6306 ± 2021 0.039 3603.75 ± 584.7 0.015 8890 ± 3590.87 0.172 6306 ± 2021
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colonization, and atopic reaction with dysregulated 
immune response have been described as some of the 
underlying factors [4, 5]. The current study shows that 
fungal colonization in CRSwNP patients is associated 
with defined local immune reactivity, demonstrated a 
high population of Th17 cells and related cytokines in 
peripheral blood circulation. Increased percentage of 
CD161+IL-23R+ and high IL-17 with a decreased per-
centage of CD25+FoxP3+ and low TGF-β were also 
observed. The high production of IL-17 on in-vitro A. 
flavus stimulation of PBMCs in CRSwNP patients defines 
a probable modulation of Th17 effector responses during 
infection. Though IL-17 levels were low in unstimulated 
population, surprisingly on stimulation with A. flavus 
the levels increased significantly in patients. It’s highly 
probable that persisting as nasal colonizers in patients, 
A. flavus driven IL-17 production may trigger a chronic 

granulomatous reaction and polyp formation. Strik-
ingly the low Tregs CD25+FoxP3+ population accom-
panied by reduced levels of TGF-β in CRSwNP patients 
are additional factors playing a detrimental role leading 
to chronic inflammation. Thus, assuming such an under-
lying mechanistic dysregulation in Treg cell population, 
an uncontrolled A. flavus driven an increase in Th17 
cell population in CRSwNP patients becomes inevita-
ble, contributing to exacerbation of inflammation and 
disease progression [12, 18]. Moreover, the impaired 
Tregs cell functionality as a consequence of low TGF-β 
levels becomes detrimental in these patients and fur-
ther reduces the chances of remission. On follow-up at 6 
months of treatment, we observed a significant increase 
in TGF-β levels compared to the pre-treatment levels 
in patients. Meanwhile, IL-2 levels remained unaffected 
and not much variation was observed even after in-vitro 

Fig. 4  Graphical representation of cytokine (IL-17, IL-10, IL-2 and TGF-β) estimation in CRSwNP case before (NP) and after treatment (NPF) and 
healthy controls (HC) after stimulation with PHAM and A. flavus antigen and in unstimulated cells. Where * p ≤  0.05; ** p ≤ 0.01; *** p ≤ 0.001
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A. flavus stimulation in both patients and healthy con-
trols. During recovery, a high TGF-β and co-existing IL-2 
cytokine levels may have a beneficial impact in activating 
the Treg cell population thereby permitting inhibition 
of Th17 cell differentiation thus lowering inflammation 
[19–21]. Hence, a complex interplay of Treg/Th17 are 
the driving essentials in regulating the disease process 
in CRSwNP patients and further A. flavus convincingly 
modulates the severity and the course of the disease. In 
contrast, the production of IL-10 was significantly ele-
vated on in-vitro stimulation with A. flavus, in patients 
before treatment and even at 6 months follow up after 
treatment. Persisting elevated levels of IL-10 in patients 
with CRSwNP may worsen local allergic activity and 
adversely affect the effector phagocytes antifungal activ-
ity [22–24]. IL-10, an important cytokine produced by 
Treg cells, was increased in patients with NP in our study 
which is contrary to the result of Tregs in unstimualted 
conditions. A recent report describes the independent 
existence of a T cell subset (Th9), having IL-10 effector 
secretion [12, 25]. The high IL-10 in the absence of an 
antigenic stimulus (post FESS and removal of the nasal 
polyp) may have a beneficial role by suppression of Th17 
signals, thus enabling tissue repair, as explained in previ-
ous studies [22–24]. While in the absence of an antigenic 
stimulus (post FESS) it manifests a protective role in the 
suppression of Th17 signals thus enabling tissue repair. 
The patterns of TLR expression in CRSwNP patients with 
fungal colonization compared to healthy controls gener-
ates great interest. Recent studies indicate that the upper 
airway mucosa is an important immunological sentinel 
location and epithelial cells expressing TLRs have been 

recognized to play a key role in distinguishing pathogen 
and regulating the innate and adaptive immune response 
[26–30]. Also, the fact that mast cells from nasal polyps 
express a unique profile of TLRs, suggest their special-
ized role in the local host response to fungal pathogens 
[31, 32]. Pathogen recognition receptors from the fam-
ily of TLRs are crucial in generating effective immunity 
and establish a direct link between Tregs and effector 
T cell response [33–35]. Moreover, TLR-2 stimulation 
polarizes IL-10 production causing persistence of infec-
tion [28]. We observed the level of TLR-2 expression was 
remarkably upregulated in CRSwNP patients as com-
pared to uncinate tissue controls. The overexpression of 
TLR-2 mRNA is essentially markers of excessive inflam-
mation, which may cause exaggerated signal cascade, 
triggering uncontrolled cytokine formation, contributing 
to the formation of nasal polyps [31, 35]. TLR-2 expres-
sion showed a significant positive correlation with high 
Th17 cells (CD161+IL-23R+) and IL-17 while a negative 
correlation with Tregs cells (CD25+FoxP3+) and IL-2 and 
IL-10 levels. According to the previous report, TLR-2 
signaling enhances the Th17 immune responses and pro-
motes the development of several fungal diseases [36]. 
Earlier studies also demonstrated that TLR-2 ligation 
leads to the decreased suppressive role of Treg cells [16]. 
In the presence of various inflammatory cytokines, such 
as IL-6 and IL-1β, Tregs on activation generate IL-17, and 
an uncontrolled high IL-17 may eventually cause reduc-
tion of Treg suppressive role. This remark is associated 
with the reciprocal and mutually inhibitory modulation 
of Th17 and Treg cells development [37, 38].

Furthermore, activated CD4+ T cells displaying greater 
TLR-2 expression act as a co-stimulator for antigen-spe-
cific T cell development, eventually contributing to T cell 
memory maintenance [39].

The expression of CD161+ on T cell subsets are a hall-
mark of the Th17 population [40]. In the present study, 
we found CD161+ cell population remained high as com-
pared to healthy controls even after surgery at 6 months 
follow up. In this respect, it raises serious concern that 
persistence of residual memory Th17 phenotypes in cir-
culation indicates their ability to trigger future relapses 
despite complete treatment and surgical management. 
Conversely, the IL-23R levels remained low after treat-
ment compared to the pre-treatment levels. Additionally, 
the remarkable recovery of CD4+CD25+ cells conveyed 
their plasticity hence subverted Tregs in nasal pol-
yps could once more regain their suppressive role after 
treatment.

The present findings suggest TLR-2 stimulation as 
an alternative route for the retention of Th17, causing 
chronic nasal polyposis, A. flavus is capable of induc-
ing Th17 cells detrimental to a human host, and reversal 

Fig. 5  Elevated expression of TLR-2 in patients of CRSwNP as 
compared to controls. Gene expression was normalized by β-actin. 
***p = 0.001
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to the anti-inflammatory state by Treg appears to be a 
promising strategy for therapy.

Conclusion
The study highlights excessive expression TLR-2 in nasal 
polyps contributing to the imbalance in Th17/Tregs pop-
ulation in patients of chronic rhinosinusitis. The constant 
exposure and tendency of A. flavus to colonize nasal cav-
ities can lead to a Th17 driven inflammation. Addition-
ally, an IL-10 predominance though induce macrophage 
activation but remain less efficient in phagocytic activity. 
Hence, Th17 with TLR-2 promotes resistance to treat-
ment and progresses to chronicity. TLRs are considered 
to play a role in the pathogenesis of CRSwNP. A possi-
ble role of TLR specific treatment can be explored for the 
future therapeutic regimen.

Methods
The study was a prospective, analytical, case-control 
study, done in a tertiary hospital in Delhi, India from 
April 2016 to December 2018. The study was carried out 
in accordance with the WHO recommendations, and the 
approval of the Institutional Ethics Committee—Human 
Research of the University College of Medical Sciences, 
University of Delhi, Delhi. The written informed consent 
was obtained from all subjects before the collection of 
the samples.

Patients and samples
Subjects enrolled in the study included fifty CRSwNP 
patients from the associated hospital undergoing FESS. 
The diagnosis of nasal polyposis was made according to 
the definition by the European Position Paper on Chronic 
Rhinosinusitis and Nasal Polyps criteria (EPOS 2012) and 
was based on clinical examination, patient history, nasal 
endoscopy and sinus CT scanning. Fifty healthy volun-
teers without any history of nasal/sinus surgery were 
taken as a control group. The VAS was used to assess 
symptom scores and the CT scan of nose and paranasal 
sinuses were scored by the Lund and Mackay classifica-
tion [41]. Preoperatively, blood samples were collected 
from the patients and healthy volunteers in EDTA vials 
(6  ml) for PBMCs separation. Post-operatively, polyp 
biopsy samples were obtained in normal saline and for-
malin and transferred immediately to the laboratory for 
examination. Uncinate tissues from patients undergoing 
septoplasty were taken as controls for biopsies. Tissue 
biopsies were subjected to direct KOH (10%) examina-
tion and culture on Sabouraud Dextrose Agar with anti-
biotics (0.4 g/l chloramphenicol, 0.04 g/l gentamicin) and 
incubated at 25  °C. The rate of growth, surface texture 
and pigmentation were noted. Standard Tease Mount 
using Lacto Phenol Cotton Blue was prepared from the 

growth in culture for identification of A. flavus. The tis-
sue samples in 10% formalin were subjected to histo-
pathological examination using hematoxylin and Eosin/
Gomori Methenamine Silver staining for demonstrating 
fungal hyphae, eosinophils, neutrophils, Charcot Layden 
Crystals, inflammatory cells and evidence of tissue inva-
sion. Tissue biopsy from CRSwNP cases and controls 
were stored in liquid nitrogen for further RNA extrac-
tion. The procedures and assays were performed at the 
time of enrollment of patients and repeat blood samples 
were collected from each patient for isolation of PBMCs 
6 months later after specific therapy prescribed by con-
cerned Otorhinolaryngologists.

PBMCs isolation and cell culture
From the whole blood samples, PBMCs were isolated 
using Ficoll-Hypaque density gradient centrifugation 
method. The viability of the cells was measured by a 
trypan blue dead cell exclusion assay. Cells were re-sus-
pended in RPMI 1640 media (containing 100 U/ml peni-
cillin, 100  mg/ml streptomycin, 2  mM glutamine and 
10% heat-inactivated fetal calf serum) at a concentration 
of 1 × 106 cells/ml. PBMCs were plated in 48 wells cul-
ture plate and were treated with phytohemagglutinin-M 
(PHAM) mitogen at 10  µg/ml (Hi-Media Laboratories 
Pvt. Ltd., India) and A. flavus antigen 20 µg/ml (All Cure 
Pharma, Delhi, India) for 18  h at 37  °C in a 5% CO2 
atmosphere. The cells were harvested and centrifuged for 
5 min at 1200 rpm. The cells were collected and stained 
for surface, and intracellular markers for flow cytometry 
whereas cell-free supernatants were assayed by enzyme-
linked immunosorbent assays (ELISA) for cytokine esti-
mation. The supernatants were stored at −  80  °C till 
tested for the cytokines.

Flow cytometry staining
The cells were harvested and washed twice with phos-
phate-buffered saline buffer containing 0.1% bovine 
serum albumin and 0.05% sodium azide. The expres-
sion of surface and intracellular markers was analysed 
by immunostaining PBMCs with the antibodies against 
CD3, CD4, CD25, FoxP3, CD161, IL-23R; (BD PharMin-
gen, USA). For surface staining, cells were incubated with 
the relevant antibodies at 4 °C in the dark for 30 min. For 
detection of intracellular FoxP3, CD4CD25 cells were 
fixed with fixation and permeabilization buffer (BD Bio-
science PharMingen, USA) and stained according to per-
meabilization/fixation Kit protocol. The doublets were 
excluded; by opting height versus width FSC gating in 
all the flow cytometry experiments before sample acqui-
sition (Fig.  1a). Suitable fluorescence minus one (FMO) 
controls was used to define the negative population in all 
the experiments. The stained cells were then analyzed by 
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flow cytometry (FACS, ARIA III, BD Biosciences, USA). 
Fluorescence profiles were analyzed using FlowJo soft-
ware (BD Biosciences). The results expressed as a per-
centage of positive cells.

ELISA
The cytokines IL-17, IL-10, IL-2, and TGF-β were deter-
mined using commercially available ELISA kits (Dia-
clone, France) following the manufacturer’s instructions. 
The detection limits were, 2.3 pg/ml for IL-17, 4.9 pg/ml 
for IL-10, 7 pg/ml for IL-2 and 8.6 pg/ml for TGF-β. All 
values below the detectable limit were considered to be 
zero for easy assessment.

Real‑time PCR analysis for TLR‑2 mRNA expression
RNA was extracted from nasal polyp tissue from cases 
and uncinate tissues for control using TRIzol™ Reagent 
(Invitrogen, USA) as per the manufacturer’s instruc-
tions and was reverse-transcribed to cDNA with random 

hexamer primers and RNAase H-reverse transcriptase 
(Invitrogen, USA). Expression of mRNA was determined 
on the LightCycler® 480 Instrument (Roche, Germany) 
using SYBR Green Master Mix (Roche, Germany). The 
following primers were used for TLR-2: forward 5′-GGC​
CAG​CAA​ATT​ACC​TGT​GTG-3′, reverse 5′-CCA​GGT​
AGG​TCT​TGG​TGT​TCA-3′; β-actin: forward 5′- AAG​
ATG​ACC​CAG​ATC​ATG​TTT GAG​ACC​-3′, reverse 
5′-AGC​CAG​GTC​CAG​ACG​CAG​GAT-3′ [42]. All PCRs 
were performed in duplicate. Relative gene expres-
sion was calculated using the comparative CT method. 
β-Actin was used as a housekeeping gene for normali-
zation, and a no template sample was used as a negative 
control.

Statistical analysis
Data analysis was done using SPSS (SPSS Inc., Chi-
cago, USA; version 20.0). Comparisons between two 
groups were performed with the independent student 

Fig. 6  TLR-2 showed a positive correlation with Th17 and negative with Tregs cells. Correlation analysis of mRNA expression of TLR-2 with 
percentage positivity of T cells markers and cytokine levels in PBMCs supernatants. a Correlation between CD161+IL-23R+ and IL-17 expression for 
Th17 cells in PBMC of CRSwNP patients, b Correlation between CD25+ FoxP3+ and IL-2 expression for Treg cells in PBMC of CRSwNP patients
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t-test. Pearson’s coefficient correlation (r) test was 
performed to determine correlations between TLRs 
and T cell subpopulations. All the tests were two-
tailed with the significance level at probability below 
0.05.
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