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Abstract 

Background:  Diet, loss of aryl hydrocarbon receptor (AhR) expression and their modification of the gut micro‑
biota community composition and its metabolites affect the development of colorectal cancer (CRC). However, the 
concordance between fecal microbiota composition and the fecal metabolome is poorly understood. Mice with 
specific AhR deletion (AhRKO) in intestinal epithelial cell and their wild-type littermates were fed a low-fat diet or a 
high-fat diet. Shifts in the fecal microbiome and metabolome associated with diet and loss of AhR expression were 
assessed. Microbiome and metabolome data were integrated to identify specific microbial taxa that contributed to 
the observed metabolite shifts.

Results:  Our analysis shows that diet has a more pronounced effect on mouse fecal microbiota composition than 
the impact of the loss of AhR. In contrast, metabolomic analysis showed that the loss of AhR in intestinal epithelial 
cells had a more pronounced effect on metabolite profile compared to diet. Integration analysis of microbiome and 
metabolome identified unclassified Clostridiales, unclassified Desulfovibrionaceae, and Akkermansia as key contribu‑
tors to the synthesis and/or utilization of tryptophan metabolites.

Conclusions:  Akkermansia are likely to contribute to the synthesis and/or degradation of tryptophan metabolites. 
Our study highlights the use of multi-omic analysis to investigate the relationship between the microbiome and 
metabolome and identifies possible taxa that can be targeted to manipulate the microbiome for CRC treatment.
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Background
Colorectal cancer (CRC) is the third leading cause of 
cancer-related deaths in the United States [1]. Many 
factors, such as diet, physical activity, smoking, and 
alcohol use, contribute to CRC risk; among these, diet 
is the most important as it accounts for 80% of CRC 
incidence [2]. Previous studies have shown that a diet 
high in saturated fat increases the risk for the devel-
opment of CRC [3–5], and a higher intake of a West-
ern diet has also been linked to an increased risk of 

CRC re-occurrence [6]. Epidemiological and scientific 
studies show that the increased risk of CRC associ-
ated with low dietary fiber intake is related to altera-
tions in the composition of the colonic microbiota 
and its metabolic activity [7]. The microbiota associ-
ated with a low-fiber and high-fat diet in humans is 
enriched for taxa that produce pro-inflammatory and/
or carcinogenic metabolites, such as hydrogen sulfide 
[7, 8]. On the other hand, a high-fiber and low-fat diet 
enriches the microbial community for taxa that can 
ferment indigestible dietary fiber to generate short-
chain fatty acids (SCFAs) [7]. Zeng et  al. showed that 
HFD altered the microbial community structure, and 
in combination with a carcinogen, azoxymethane 
(AOM), decreased the abundance of short-chain fatty 
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acids-producing bacteria such as Barnesiella, relative 
to mice on a control diet and AOM [9]. Keefe et al. also 
demonstrated that changing the fat and fiber content 
in the diet significantly modified the colonic microbi-
ome, production of secondary bile acids, proliferation 
markers in colonocytes, and markers of inflammation 
[8, 10]. These studies clearly demonstrate the involve-
ment of the microbiota and the fat content of the diet 
in the etiology of CRC.

Another factor that has been implicated in CRC is 
the aryl hydrocarbon receptor (AhR). AhR is a ligand-
activated transcription receptor [11] that upon ligand 
activation, translocates to the nucleus from the cytosol 
and forms a heterodimer with the AhR hydrocarbon 
nuclear translocator to induce target gene transcription 
[11]. AhR is involved in colon tumorigenesis through 
its effect on tumor suppression [12, 13], maintenance of 
intestinal immune homeostasis [13], inhibition of cell 
growth and induction of apoptosis [14], and inhibition 
of colonic inflammation [15]. Importantly, increases in 
the relative abundance of phylum Verrucomicrobia and 
the diversity of the intestinal microbiota has been pre-
viously reported in a whole-body AhR knockout mice 
[16].

The contribution of the colonic microbiome to the 
colonic metabolome is not fully understood. It is gener-
ally assumed that the metabolome is a functional read-
out of the microbiome and reflects the composition of 
the community [17]. For example, McHardy et al. stud-
ied 47 individuals and demonstrated good concord-
ance between the caecal microbiome and metabolome 
[18]. However, the metabolome and microbiome are 
not always directly correlated. Beaumont et al. showed 
that although a high-protein diet did not change the 
fecal microbiome community composition, it signifi-
cantly altered the metabolic function of the community 
towards increased protein fermentation [19]. Under-
standing the correlation between the microbiome and 
the metabolome can help develop cause-and-effect 
relationships between specific organisms and metabo-
lites in CRC.

In this study, we investigated the effect of diet and 
loss of AhR in intestinal epithelial cells on the correla-
tion between the fecal microbiome and metabolome. 
Using wild type (WT) and intestinal epithelial cell-
specific AhR knockout mice [11] maintained on high-
fat or low-fat diet, we characterized changes in the fecal 
microbial community and the fecal metabolome using 
16S rRNA sequencing and untargeted metabolomics, 
respectively. We further integrated the microbiome and 
metabolome data to identify microbial contributions to 
metabolite variations associated with AhR loss and a 
high-fat diet.

Methods
Mouse experiments
All procedures were performed under a protocol 
approved by the Institutional Animal Care and Use Com-
mittee at Texas A&M University (IACUC number 2018-
0205). Female C57BL/6J intestinal epithelium-specific 
AhR knockout mice (AhRKO) and wildtype (AhRf/f) were 
used in the study. These mice were a subset of the cohort 
from our previous study [11] where both male and female 
mice were used. In this study, only female mice were used 
to ensure adequate number of samples were available 
for analysis. Briefly, mice were reared on chow diet and 
bedding was changed and mixed weekly for four weeks 
to establish a baseline microbiome for each group. After 
five weeks, mice were randomly divided into two groups 
(n = 8 each) and fed a high-fat (60% kcal from fat; HFD; 
Research Diets D12492) or a low-fat (10% kcal from fat; 
LFD; Research Diets D12450B) diet. Following 3  weeks 
on the HFD and LFD, sporadic colorectal cancer was 
chemically-induced with AOM once per week for six 
consecutive weeks. To account for differences in body 
composition, animals weighing less than 40  g received 
AOM injections of 10  mg/kg body weight, while those 
weighing 40 g or more received AOM at 7.5 mg/kg body 
weight. Fecal samples were collected at week 5 before 
diet switch from chow diet to HFD/LFD, at week 8 before 
AOM injection, and week 26, which was 12 weeks after 
the last injection of AOM. All samples were flash-frozen 
and stored at − 80  °C. To avoid cross-contamination 
among samples, mice were individually housed during 
sample collection [20]. The experimental design is shown 
in Fig. 1.

Fecal DNA extraction for microbiome analysis
Genomic DNA was extracted from flash frozen fecal 
samples following the DNeasy PowerSoil kit (Qiagen) 
using an automated QIAcub (Qiagen) for fast and stand-
ardized sample preparation. DNA quality was assessed 
using a 260/280 absorbance wavelength ratio measured 
on the NanoDrop spectrophotometer (Thermo Fisher 
Scientific). All samples had a 260/280 ratio of ~ 1.8.

Metagenomic analysis
The V4 region of the bacterial 16S rRNA gene was 
sequenced on a 2 × 250  bp cycle using the MiSeq plat-
form (Illumina) at the Microbial Analysis, Resources, 
and Services (MARS) core facility, University of Con-
necticut. Illumina reads were then processed by mothur 
(v 1.40.4) [21] following the Miseq SOP analysis pipeline 
(https​://www.mothu​r.org/wiki/MiSeq​_SOP) [22] with 
minor modifications. Briefly, paired-end reads were first 
assembled into contigs. After any contigs with ambigu-
ous bases (N) and longer than 275  bp were removed, 

https://www.mothur.org/wiki/MiSeq_SOP
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identical contigs were then eliminated. Next, sequences 
were aligned to the SILVA reference database v132 [23]. 
Sequences that did not overlap the V4 region of the 16S 
rRNA gene were removed. Any overhangs at both ends of 
the V4 region were trimmed to make sure that sequences 
only overlapped at the V4 region, and any duplicated 
sequences resulting from this filtering step were also 
removed.

Sequences that only differed by one or two bases were 
removed from subsequent analysis to eliminate bias due 
to sequencing errors. UCHIME was used to remove chi-
mera sequences [24]. The resulting clean sequences were 
classified against the Greengenes reference database [25] 
at a threshold level of 80%. Non-bacterial sequences were 
eliminated and the remaining bacterial sequences were 
clustered to operational taxonomic units (OTUs) at 97% 
sequence similarity. Sequences that appeared only once 
(singletons) or twice (doubletons) among all samples 
were removed. The consensus taxonomy for each OTU 
was obtained at a 97% similarity threshold. To reduce the 
effect of the variation in sampling depth, the OTU table 
was normalized to relative abundances before beta-diver-
sity analysis. The taxonomic similarity among samples 
was determined using the Bray–Curtis dissimilarity sta-
tistic and visualized using non-metric multidimensional 
scaling (NMDS) plots. OTUs with significant differ-
ences in abundances between two groups were identi-
fied using linear discriminant analysis effect size (LEfSe) 
Galaxy version based on a p-value < 0.1 and LDA score 
> 2.0 [26]. Two-way ANOVA (Analysis of Variance) was 
implemented using Calypso [27] to test for an interaction 
between genotype and diet based on an FDR-adjusted 
p-value < 0.1. All metagenomic analysis was carried out at 
the OTU level.

Analysis of similarities (ANOSIM) was used to test 
the null hypothesis that there were no differences due 
to diet (between HFD and LFD groups) or genotype 

(between WT and AhRKO groups). ANOSIM generated 
an R-value that is a measure of the level of similarity and 
a p-value that gives the significance of the similarity [28]. 
The ANOSIM criteria used for analysis is from Faubla-
dier et al. [28]. In this analysis, an R-value between 0.75 
and 1.0 indicates that the experimental groups are well-
separated. An R-value between 0.50 and 0.75 indicates 
a lesser degree of separation, while an R-value between 
0.25 and 0.50 suggests separated groups with some over-
lap. Lastly, an R-value of less than 0.25 indicates that the 
two experimental groups are similar [28].

Fecal metabolite extraction
Metabolites were extracted from flash frozen fecal sam-
ples using a solvent-based method [29, 30] with some 
modifications. Briefly, 500  μL ice-cold methanol and 
250  μL ice-cold chloroform were added to a pre-cooled 
garnet bead-beating tube containing a pre-weighed 
fecal sample. After homogenization for 15 s, the sample 
tube was centrifuged at 2000×g for 10 min at 4  °C. The 
methanol-chloroform extraction was performed twice 
to increase extraction efficiency. The combined superna-
tant was then transferred to a new tube with 600 μL of 
ice-cold sterile MilliQ water. After adding water, the tube 
was vortexed for 30 s and centrifuged under refrigeration 
(4  °C) at 2000×g for 5  min to separate the organic and 
aqueous phases. The upper phase was collected and then 
filtered using a 0.2  μM centrifugal filter. Ice-cold sterile 
MilliQ water (500 μL) was added to the filtrate, and the 
tube was vortexed for 30  s. Samples were freeze-dried 
using a lyophilizer (Labconco). The dried material was 
resuspended in 100 μL methanol/water (50% v/v) and 
stored at − 80 °C prior to LC–MS analysis.

LC–MS metabolomics
Untargeted liquid chromatography high-resolution 
accurate mass spectrometry (LC-HRAM) analysis was 

Fig. 1  Experimental design. Thirty-two female AhRKO and WT mice were initially fed chow diet for 5 weeks. At the beginning of week 6, half of 
AhRKO or WT mice were fed HFD, and the other half were fed LFD. AOM was injected once a week for six weeks at the beginning of week 9. Fecal 
samples were collected at weeks 8 and 26
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performed on a Q-Exactive Plus orbitrap mass spec-
trometer (Thermo Scientific, Waltham, MA) coupled 
to a binary pump UPLC (UltiMate 3000, Thermo Sci-
entific). The spray voltage was set to 3.5  kV (Pos) and 
both the source and capillary temperatures were main-
tained at 350  °C. Full MS followed by data-dependent 
MS–MS (ddMS2) spectra were obtained at 35,000 reso-
lution (200 m/z) with a scan range of 50–750 m/z and a 
stepped normalized collision energy corresponding to 5, 
11, and 17 eV. The injection volume was 10 µL and sam-
ples were maintained at 4  °C before injection. Chroma-
tographic separation was achieved on a Synergi Fusion 
4 µm, 150 mm × 2 mm reverse phase column (Phenom-
enex, Torrance, CA) maintained at 30  °C using a sol-
vent gradient method. Solvent A was water (0.1% formic 
acid). Solvent B was methanol (0.1% formic acid). The 
gradient method used was 0–5  min (10% B to 40% B), 
5–7 min (40% B to 95% B), 7–9 min (95% B), 9–9.1 min 
(95% B to 10% B), 9.1–13 min (10% B). The flow rate was 
0.4  mL  min−1. Sample acquisition was performed using 
Xcalibur (Thermo Scientific).

Metabolomic data analysis
Analysis of the LC–MS raw profiles was performed 
with the Progenesis QI 2.1 software (Waters). Raw data 
from all experiments were imported into Progenesis and 
aligned against a reference that is automatically chosen 
from the different samples in the data set based on its 
‘least difference’ from all the other samples in the data 
set. The data were normalized using the total ion cur-
rent (TIC). The adducts selected for deconvolution were 
M+H and M+CH3OH+H. The Human Metabolome 
Database (HMDB) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) databases were used for the identifi-
cation of metabolic features via the ChemSpider search 
plugin that was installed in Progenesis QI 2.1 software 
(Waters). For confirmation of tryptamine in the positive 
ion mode, the precursor m/z of 161.10, and product m/z 
of 144.04, 115.058, and 117.058 were used. For confirma-
tion of tyramine in the positive ion mode, the precursor 
m/z of 138.1 and product m/z of 103.058, 76.929, and 
103.058 were used.

The normalized abundances of all metabolite features 
from Progenesis QI 2.1 software (Waters) were normal-
ized to fecal sample weights before importing into Meta-
boAnalyst [31] for principal component analysis (PCA). 
Wilcoxon rank sum test for the first three principal com-
ments (PCs) scores of PCA was conducted to test diet 
and genotype effect on metabolite features at both weeks 
8 and 26. Volcano plots were used to detect differentially-
abundant metabolic features according to the following 
criteria: fold change (FC) threshold > 1.2 (or < 0.8) and a 
FDR-adjusted p-value (adjp) < 0.1 and were generated in 

R. The fold-change to compare genotypes was calculated 
as the ratio of abundance of a specific metabolite feature 
in AhRKO mice fed a specific diet (HFD or LFD) to that 
in WT mice fed the same diet. Similarly, fold-change to 
compare diet effects was calculated as the abundance of 
a metabolite feature in AhRKO or WT mice fed HFD to 
that in the same genotype fed LFD. Two-way ANOVA 
was carried out in MetaboAnalyst to test for an interac-
tion between genotype and diet based on FDR-adjusted 
p-value < 0.1. Heatmaps of differential abundance metab-
olite features were generated using the Euclidean dis-
tance method and the Ward clustering algorithm in R.

Biologically Consistent Annotation (BioCAn) [32] was 
used to improve the confidence in the identification of a 
given metabolic feature from database searches. BioCAn 
combines results from database searches and in silico 
fragmentation analyses and places the annotation into a 
relevant biological context for the sample based on the 
presence and confidence of other metabolites connected 
to the identified metabolite. Metabolite names in metab-
olome data were converted to KEGG compound identifi-
cation names using Chemical Translation Service (CTS) 
[33] before running BioCAn [32].

Microbiome and metabolome data integration
MIMOSA2 [34] was used to study correlations between 
fecal microbiome and metabolome data to identify spe-
cific taxa contributing to metabolite variation between 
different groups. MIMOSA2 analysis was performed 
using the web interface (http://elbo-spice​.cs.tau.ac.il/
shiny​/MIMOS​A2shi​ny/). Microbiome data was provided 
in the form of a taxa-based table of 16S rRNA microbi-
ome data using Greengenes 13_5 OTUs format. Bio-
logically annotated metabolome data from BioCAn was 
imported into MIMOSA2 and a metabolic model based 
on KEGG was used for correlation. Least-squares (OLS) 
estimation was used to compare the predicted metabolic 
potential and actual metabolite levels in the datasets.

Results
Effects of diet and loss of intestinal epithelial cell AhR 
on the fecal microbiome composition and structure
We recently showed that the loss of AhR in the intestinal 
epithelial cells and HFD significantly altered the number 
of aberrant crypt foci after 29  weeks (Additional file  1: 
Figure S1) [11]. Since aberrant crypt foci are an impor-
tant first step in colon tumorigenesis, we investigated the 
effect of loss of AhR in epithelial cells and diet on altera-
tions in the microbiome and metabolome using a parallel 
study (i.e., with the same mouse model, diet, and experi-
mental design). The fecal microbial community compo-
sition at weeks 5, 8, and 26 (Fig.  1) was determined by 
16S rRNA sequencing and the beta-diversity assessed. 

http://elbo-spice.cs.tau.ac.il/shiny/MIMOSA2shiny/
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Bray–Curtis dissimilarity-based NMDS plots showed 
that genotypes were indistinguishable at week 5 before 
switching from chow diet to the experimental diets (data 
not shown). Bray–Curtis dissimilarity-based NMDS plots 
did not show distinct separation between mice fed HFD 
and LFD in the week 8 sample (ANOSIM R = 0.240 and 
p = 0.001), irrespective of the genotype (Fig. 2a). On the 
other hand, distinct clustering based on the diet (ANO-
SIM R = 0.384 and p = 0.001) was observed with the week 
26 samples (Fig.  2b). No significant separation between 
AhRKO and WT mice was observed at both week 8 
(ANOSIM R = 0.124 and p = 0.008) and week 26 (ANO-
SIM R = −  0.025 and p = 0.74), irrespective of the diet 
(Fig. 2).

The number of differentially abundant OTUs between 
mice fed HFD and LFD (i.e., diet comparison) was larger 
than that between AhRKO and WT mice (i.e., genotype 
comparison) at both weeks 8 and 26 (Figs. 3 and 4). For 
the diet comparison between HFD and LFD groups, 
LEfSe analysis of the week 8 data indicated that the rela-
tive abundances of a similar number of OTUs were either 
increased or decreased in the AhRKO mice (25 OTUs) 
and WT mice (19 OTUs) (Fig.  3a, b). The genotype 
comparison between AhRKO and WT mice exhibited a 
smaller number of OTUs altered in both HFD mice (11 
OTUs) and LFD mice (8 OTUs) at week 8 (Fig.  3c, d). 
At week 26, the diet comparison showed alterations in 
24 OTUs for AhRKO mice and 26 OTUs for WT mice 
(Fig. 4a, b). Similar to what was observed at week 8, the 
genotype comparison resulted in the alteration of fewer 
OTUs, with only 5 OTUs and 6 OTUs significant in HFD 
and LFD mice, respectively (Fig. 4c, d).

Irrespective of the genotype and time point, the relative 
abundance of Allobaculum (OTU 1107703) and Turici-
bacter (OTU 99508) were increased in LFD mice, while 
the relative abundance of Lactococcus (OTU 110020) 
was decreased in the same group (Figs. 3 and 4). Corio-
bacteriaceae (OTU 4441081) and Anaeroplasma (OTU 
1121634) were more abundant only in the diet com-
parison for AhRKO mice at both weeks 8 and 26, while 
Clostridiales (OTU 1000113), Lachnospiraceae (OTU 
839684), Coprococcus (OTU 266392), Ruminococcus 
(OTU 110221), Lachnospiraceae (OTU 195865), and 
Oscillospira (OTU 1010876) were less abundant in the 
same diet comparison in AhRKO mice (Figs. 3a and 4a). 
Interestingly, these eight OTUs were not significantly 
changed in the diet comparison in WT mice. In WT 
mice, the relative abundance of Clostridiaceae (OTU 
1024529) was higher in the LFD group compared to the 
HFD group at both time points, while the relative abun-
dance of Ruminococcaceae (OTU 98948) was less in the 
same comparison (Figs.  3b and 4b). Those two OTUs 
were not significantly altered in the diet comparison in 

AhRKO mice. Together, these observations suggest diet 
causes changes in the abundance of specific bacteria in 
AhRKO and WT mice.

While genotype-specific (between WT and AhRKO) 
changes in the microbial community were observed, 
these were fewer than changes induced by low and high 
fat diets. Interestingly, there was no overlap between the 
differentially-abundant OTUs for the genotype com-
parison in both HFD and LFD mice at weeks 8 and 26 
(Figs.  3c, d, 4c, d). Paraprevotella (OTU 1105591) was 
more abundant in WT mice compared to AhRKO mice 
on HFD at both weeks 8 and 26 (Figs. 3c and 4c), whereas 
it was not significantly changed in the genotype com-
parison in the LFD fed mice. The relative abundance of 
Bifidobacterium (OTU 102049) and Bacteroides (OTU 
102407) was higher in WT mice on LFD compared to 
AhRKO mice at both weeks 8 and 26 (Figs. 3d and 4d). 
And, these two OTUs were also not significantly altered 
in the genotype comparison in the HFD fed mice.

Two-way ANOVA analysis at both weeks 8 and 26 
revealed that diet was the main factor that caused the 
variation in the relative abundance of the microbiota 
(Additional file 2: Figure S2), which is in agreement with 
the NMDS and LEfSe results. A total of 8 OTUs were 
significantly affected by the interaction between diet 
and genotype (Additional file  2: Figure S2). Paraprevo-
tella (OTU 1105591) was influenced by the interaction 
between diet and genotype at both weeks 8 and 26. On 
the other hand, Parabacteroides (OTU 689975), unclas-
sified Lachnospiraceae (OTU 195865), unclassified Bac-
teroidaceae (OTU 102227), and Anaeroplasma (OTU 
1121634) showed an interaction effect only at week 8, 
while Bifidobacterium (OTU 102049) and unclassified 
F16 (OTU 401717) demonstrated an interaction effect at 
week 26.

Effects of diet and intestinal epithelial AhR expression 
on the fecal metabolome
The fecal metabolomes at weeks 5, 8, and 26 were pro-
filed using untargeted LC–MS metabolomics. Principal 
component analysis showed genotypes were indistin-
guishable at week 5 before moving to the experimental 
diets (data not shown). Principal component analysis 
showed a clear separation between AhRKO and WT 
mice at both weeks 8 and 26, irrespective of the diet 
(Fig. 5). PCA results were further validated by the Wil-
coxon rank sum test that showed significant difference 
in the genotype rather than diet at both weeks 8 and 
26 (Additional file  3: Table  S1). The number of differ-
entially abundant metabolite features between AhRKO 
and WT mice (i.e., genotype comparison) was higher 
than that between mice fed HFD and LFD (i.e., diet 
comparison) at both weeks 8 and 26 (Figs. 6 and 7).
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Differential abundance analysis identified 770 and 637 
discriminating metabolite features between AhRKO 
and WT mice fed HFD or LFD, respectively, at week 8 
(Fig.  6a, b; Additional file  4: Figure S3A and B). How-
ever, only 441 and 264 differentially regulated metabo-
lite features were obtained for the diet comparison in 
AhRKO and WT mice, respectively (Fig.  6c, d; Addi-
tional file  4: Figure S3C and D). A similar trend was 
also observed at week 26, with 812 and 478 significantly 
altered metabolite  features for the genotype compari-
son with HFD or LFD, respectively (Fig.  7a, b; Addi-
tional file  5: Figure S4A and B). However, the number 
of significantly altered features for the diet comparison 
in AhRKO and WT mice was only 228 and 74, respec-
tively (Fig. 7c, d; Additional file 5: Figure S4C and D).

BioCAn was used to putatively identify 237 metabolites 
from the metabolite data at weeks 8 and 26. Additional 
file  6: Tables S2 gives a summary of the number of dif-
ferentially abundant metabolites at both weeks 8 and 
26. The full list of differentially abundant metabolites at 
weeks 8 and 16 are given in Figs. 8 and 9 and Additional 
file  7: Table  S3, Additional file  8: Table  S4, Additional 
file  9: Table  S5, Additional file  10: Table  S6, Additional 
file 11: Table S7, Additional file 12: Table S8, Additional 
file 13: Table S9, Additional file 14: Table S10.

Of the putatively identified metabolites, only two—
tryptamine and 19-oxoandrost-4-ene-3,17-dione—were 
significantly increased in abundance at both weeks 8 and 
26 in the genotype comparison with HFD (Figs.  8a and 

9a; Additional file 7: Table S3, Additional file 8: Table S4, 
Additional file  9: Table  S5, Additional file  10: Table  S6, 
Additional file  11: Table  S7). Of these, tryptamine was 
further confirmed using a pure standard. Interestingly, 
both these metabolites were not significantly changed 
in the corresponding LFD-fed mice. Similarly, tyramine 
(positively-identified) was more abundant in the geno-
type comparison with LFD at both weeks 8 and 26 
(Figs.  8b and 9b; Additional file  8: Tables S4 and Addi-
tional file 12: Tables S8).

Irrespective of the genotype and time point, mice 
on LFD exhibited an increased abundance of 5-phos-
phoribosylamine (Figs.  8c, d, 9c, d; Additional file  9: 
Table S5, Additional file 10: Table S6, Additional file 13: 
Table  S9, Additional file  14: Table  S10). (6Z,9Z,12Z)-
octadecatrienoic acid and 18-hydroxyoleate were 
more abundant in the diet comparison within AhRKO 
mice at both weeks 8 and 26 (Figs.  8c and 9c; Addi-
tional file  9: Table  S5, Additional file  13: Tables S9). 
Three other putatively identified metabolites—1-ni-
tro-5,6-dihydroxy-dihydronaphthalene, l-aspartate, 
and l -glutamate-5-semialdehyde—were less abun-
dant in the same diet comparison (Figs.  8c and 9c; 
Additional file  9: Table  S5, Additional file  13: Tables 
S9). The abundance of 11beta,17alpha,21-trihydroxy-
pregnenolone, 15(S)-HPETE, and beta-ionone were 
higher in the diet comparison in WT mice at both time 
points, while the abundance of the putatively-identified 
metabolite L-2-aminoadipate was reduced in the same 

Fig. 2  Non-metrical multidimensional scaling (NMDS) analysis of fecal microbiome data. a Bray–Curtis dissimilarity-based NMDS analysis shows no 
clustering of the gut microbiome based on diet (blue and red symbols vs. green and orange symbols) or genotype (blue and green symbols vs. red 
and orange symbols) at week 8. b Bray–Curtis dissimilarity-based NMDS analysis shows the clustering of gut microbiome according to diet (blue 
and red symbols vs. green and orange symbols) rather than genotype (blue and green symbols vs. red and orange symbols) at week 26. Bray–Curtis 
dissimilarity-based NMDS analysis was performed on OTUs from the fecal samples of 32 mice at each time point. Each dot represents one of 32 gut 
microbiomes. The OTUs in the analysis were estimated based on 97% 16S rRNA sequence similarity. Blue, red, green, and orange symbols indicate 
samples collected from AhRKO mice fed HFD, WT mice fed HFD AhRKO mice fed LFD, and WT mice fed LFD, respectively
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diet comparison (Figs.  8d and 9d; Additional file  10: 
Table S6, Additional file 14: Tables S10).

Two-way ANOVA analysis at both weeks 8 and 26 
revealed that genotype was the main factor that caused 
the variation in the abundance of metabolites (Fig. 10). 
Interestingly, the majority of the changes due to inter-
action between genotype and diet were observed at 
week 8. The abundance of 308 metabolite features was 
altered at week 8, while only 13 metabolite features 
were affected by the interaction between diet and geno-
type at week 26 (Fig. 10).

Integration of fecal microbiome and metabolomes
The fecal microbiome and the fecal metabolome were 
correlated using MIMOSA [34] to infer the contribution 

of specific bacteria to the abundance of specific metabo-
lites. MIMOSA uses PICRUSt [35] to predict the metage-
nome from taxonomic composition and combines it 
with information on biochemical reactions from KEGG 
to infer the metabolic potential of the community. This 
predicted metabolite output was compared with experi-
mental metabolome data to identify specific taxa that 
contribute to the production and/or consumption of a 
metabolite.

Correlations each between metabolites and specific 
OTUs were obtained for the genotype comparisons at 
weeks 8 and 26. MIMOSA analysis suggested that the 
increased levels of anthranilate in the AhRKO mice on 
HFD at week 8 may result from the synthesis poten-
tial of an unclassified Clostridiales (OTU 1000113) and 

Fig. 3  Linear discriminative analysis effect size (LEfSe) analysis of fecal microbiota OTU counts at week 8. a Differentially abundant bacteria between 
AhRKO mice fed HFD and AhRKO mice fed LFD (p-value < 0.1). b Differentially abundant bacteria between WT mice fed HFD and WT mice fed LFD 
(p-value < 0.1). c Differentially abundant bacteria between AhRKO mice fed HFD and WT mice fed HFD (p-value < 0.1). d Differentially abundant 
bacteria between AhRKO mice fed LFD and WT mice fed LFD (p-value < 0.1). LEfSe analysis was performed on OTUs estimated based on 97% 16S 
rRNA sequence similarity
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unclassified Desulfovibrionaceae (OTU 10485) through 
arylformamidase enzyme activity (Additional file 15: Fig-
ure S5; Table 1). The decrease in tryptamine levels in the 
WT mice on HFD at week 8 was predicted to be due to 
the utilization of tryptamine by Akkermansia muciniph-
ila (OTU 358757) through monoamine oxidase activity 
(Additional file  15: Figure S5; Table  1). At week 26, the 
decrease of biotin in WT mice on HFD was related to 
the utilization of biotin by the unclassified Rikenellaceae 
(OTU 1067143) and Ruminococcus (OTU 100567) via 
biotin-[acetyl-CoA-carboxylase] ligase activity (Addi-
tional file 15: Figure S5; Table 1).

Correlations between metabolites and OTUs were 
also obtained at week 8 and 26 for the diet comparison. 
At week 8, higher level of 4,6-dihydroxyquinoline was 
observed in AhRKO mice on LFD and was associated 
with the synthesis of Akkermansia muciniphila (OTU 

358757) via monoamine oxidase activity (Additional 
file  15: Figure S5; Table  1). The decrease of adenine in 
AhRKO mice on HFD at week 8 was correlated to the 
utilization of adenine by unclassified Desulfovibrionaceae 
(OTU 10485) and Allobaculum (OTU 1107703) through 
their adenine deaminase activity (Additional file 15: Fig-
ure S5; Table 1). At week 26, the decrease in taurine with 
AhRKO mice fed HFD was associated with unclassified 
Clostridiales (OTU 1000113) through altered choloyl-
glycine hydrolase activity and the utilization of taurine 
by unclassified Desulfovibrionaceae (OTU 10485) via 
glutathione hydrolase activity (Additional file  15: Figure 
S5; Table 1). The decrease of 17alpha,21-dihydroxypreg-
nenolone in AhRKO on HFD was associated with the 
degradation of 17alpha,21-dihydroxypregnenolone by 
Bacteroides (OTU 102407) via steroid delta-isomerase 
activity (Additional file 15: Figure S5; Table 1).

Fig. 4  Linear discriminative analysis effect size (LEfSe) analysis of fecal microbiota OTU counts at week 26. a Differentially abundant bacteria 
between AhRKO mice fed HFD and AhRKO mice fed LFD (p-value < 0.1). b Differentially abundant bacteria between WT mice fed HFD and WT 
mice fed LFD (p-value < 0.1). c Differentially abundant bacteria between AhRKO mice fed HFD and WT mice fed HFD (p-value < 0.1). d Differentially 
abundant bacteria between AhRKO mice fed LFD and WT mice fed LFD (p-value < 0.1). LEfSe analysis was performed on OTUs estimated based on 
97% 16S rRNA sequence similarity
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Discussion
Perturbations in intestinal microbiota composition have 
been associated with a variety of gastrointestinal tract 
disorders and diseases [36]. Advances in metagenomic 
sequencing methodologies have enabled the characteri-
zation of the gut microbiome composition and structure 
under different disease states and to identify differen-
tially abundant microorganisms [37]. However, the func-
tional redundancy in the microbiome makes it difficult 
to ascribe causal roles for differentially abundant taxa 
in disease [38]. Therefore, it is necessary to go beyond 
the characterization of the intestinal microbiome com-
position to the profiling of the functional output of the 
microbiome (i.e., the metabolome) to develop a more 
comprehensive understanding of the role of different 
microbial taxa in disease [39]. In this study, we not only 
characterized changes in the fecal microbiome commu-
nity of AhRKO and WT mice on LFD or HFD but also 
correlated these differences with the fecal metabolome.

Our study revealed that diet (HFD or LFD) had a 
stronger effect on the structure and composition of the 
fecal microbiome than the presence or absence of AhR. 
This observation is consistent with that of Korecka et al. 
[40] who showed using whole body AhRKO mice that the 
absence of AhR activity did not significantly influence 
the fecal or colonic microbiome composition, but only 
altered the small intestinal bacterial community. The 
stronger influence of diet on the fecal microbiome could 

be because of the altered supply of nutrients that drives a 
direct change in the fecal microbial composition [41]. On 
the other hand, AhR expression likely plays an indirect 
role in shaping the microbiome composition. While it is 
possible that dietary compounds and microbiome metab-
olites such as indole and indole-like compounds activate 
AhR and AhR target genes [42] in colonic epithelial cell 
lines, which in turn can modify the microflora [40], these 
changes could be less pronounced and identifying such 
changes will require deeper sequencing than what was 
performed in the current study. It is important to note 
that annotating a metabolite feature using BioCAn was 
limited to the reaction information available in the KEGG 
database. Although only 237 metabolites were putatively 
identified, the confidence in these annotations is high 
because the annotation scheme in BioCAn is based on 
the presence and level of confidence in other metabolites 
that are connected to the metabolite in question [32].

Several changes observed in our study with WT mice 
on HFD relative to LFD are consistent with prior studies. 
The decrease in Allobaculum in HFD irrespective of the 
genotype is consistent with two studies [43, 44] showing 
that the relative abundance of Allobaculum was reduced 
in mice fed HFD. Allobaculum produces short-chain 
fatty acids that could modulate intestinal inflammation 
in mice through the induction of Treg cells and is also 
less abundant in mice that are genetically predisposed to 
spontaneous colitis [45, 46]. Everard et al. [47] and Terzo 

Fig. 5  Principal component analysis (PCA) of metabolite data. PCA score plots showing clustering of samples according to genotype at a week 8 
and b week 26. PCA was performed on metabolite features from fecal samples of 32 mice. Each dot represents one of 32 samples. Green, yellow, 
purple, and red color indicates samples collected from AhRKO mice fed HFD, WT mice fed HFD, AhRKO mice fed LFD and WT mice fed LFD, 
respectively
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et al. [48] reported that the abundance of Turicibacter is 
decreased in HFD-fed mice, which is consistent with our 
observations. Similarly, Marungruang et al. showed that 
Lactococcus was highly enriched in HFD-fed mice [49]. 
A decrease in Turicibacter and an increase in Lactococ-
cus has been reported to correlate with elevated inflam-
mation in obese mice [50]. While these studies have 
demonstrated differences in WT mice, our data show 
that these changes are genotype-independent and were 
also observed in mice lacking intestinal epithelial AhR 
expression.

Similarly, the enrichment of Bifidobacterium (OTU 
102049) and Bacteroides (OTU 102407) in WT mice fed 
LFD relative to AhRKO mice is also consistent with prior 
studies. Jeon et  al. demonstrated that Bifidobacterium 
breve attenuates intestinal inflammation through the 
stimulation of intestinal IL-10-producing Tr1 cells that 
express AhR [51]. The lower abundance in AhRKO mice 
supports the hypothesis that AhR activation is important 
for modulating inflammation, and the absence of AhR 

shifts the microbial community towards a pro-inflamma-
tory state. Interestingly, this effect was not observed in 
HFD mice, which parallels the more pronounced effect of 
HFD on the microbial community than that exerted by 
the loss of AhR.

Since metabolites are the final products of a series of 
biochemical reactions, alterations in the metabolome 
may more accurately reflect the response of a biological 
system to perturbation [52]. It is also important to note 
that the metabolome snapshot is the net change arising 
from both alterations in the production by some mem-
bers of the community and their utilization by other 
community members [53]. Contrary to what we observed 
with the microbiome, the genotype (i.e., presence or 
absence of AhR expression in intestinal epithelial cells) 
had a more pronounced impact on the fecal metabolome 
than the diet. This could be due to the metabolic redun-
dancy in the gut microbiota where the same reaction can 
be carried out in different taxa; however, the abundance 
of all the taxa may not be significantly altered by diet [38]. 

Fig. 6  Heatmap visualization of metabolite data at week 8 using the Euclidean distance method and the Ward clustering algorithm. a Differentially 
abundant features between AhRKO mice fed HFD and WT mice fed HFD (FDR-adjusted p-value < 0.1 and fold-change > 1.2 or < 0.8). b Differentially 
abundant features between AhRKO mice fed LFD and WT mice fed LFD (FDR-adjusted p-value < 0.1 and fold-change > 1.2 or < 0.8). c Differentially 
abundant features between AhRKO mice fed HFD and AhRKO mice fed LFD (FDR-adjusted p-value < 0.1 and fold-change > 1.2 or < 0.8). d 
Differentially abundant features between WT mice fed HFD and WT mice fed LFD (FDR-adjusted p-value < 0.1 and fold-change > 1.2 or < 0.8)
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Therefore, even though the loss of AhR in the intestinal 
epithelial cells did not change the relative abundance of 
taxa in the community as strongly as the diet, it is pos-
sible that the subtle changes were sufficient to alter the 
metabolome.

Correlation of the metabolome alterations with spe-
cific taxa changes in the microbial community using 
MIMOSA identified specific taxa as important contribu-
tors to the observed metabolome changes. We identified 
that unclassified Clostridiales (OTU 1000113) was a key 
contributor to the synthesis of anthranilate, while Akker-
mansia muciniphila (OTU 358757) was predicted to con-
tribute to the degradation of tryptamine and the synthesis 

of 4,6-dihydroxyquinoline. Anthranilate, tryptamine, and 
4,6-dihydroxyquinoline are all tryptophan metabolites 
[54–56], and tryptophan metabolites are well established 
as ligands for the AhR [42] and modulate inflammation in 
multiple cell types [30, 57]. Tryptophan metabolism also 
plays an important role in impeding CRC development 
through inhibiting inflammation, repairing the gut bar-
rier structure, and interacting with beneficial microor-
ganisms in the gut [57]. Previous studies have shown that 
manipulating the microbiome through the consumption 
of probiotics inhibits the development of tumors and pre-
cancerous lesions [58, 59]. Further studies in preclinical 

Fig. 7  Heatmap visualization of metabolite data at week 26 using the Euclidean distance method and the Ward clustering algorithm. a 
Differentially abundant features between AhRKO mice fed HFD and WT mice fed HFD (FDR-adjusted p-value < 0.1 and fold-change > 1.2 or < 0.8). 
b Differentially abundant features between AhRKO mice fed LFD and WT mice fed LFD (FDR-adjusted p-value < 0.1 and fold-change > 1.2 or < 0.8). 
c Differentially abundant features between AhRKO mice fed HFD diet and AhRKO mice fed LFD (FDR-adjusted p-value < 0.1 and fold-change > 1.2 
or < 0.8). d Differentially abundant features between WT mice fed HFD and WT mice fed LFD (FDR-adjusted p-value < 0.1 and fold-change > 1.2 
or < 0.8)

(See figure on next page.)
Fig. 8  Differentially abundant metabolites at week 8 between a AhRKO and WT mice fed HFD; b AhRKO and WT mice fed LFD; c AhRKO mice fed 
HFD and LFD; and d WT mice fed HFD and LFD. Descriptive statistics provided in Additional file 6: Table S2, Additional file 7: Table S3, Additional 
file 8: Table S4, Additional file 9: Table S5
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Fig. 9  Differentially abundant metabolites at week 26 between a AhRKO and WT mice fed HFD; b AhRKO and WT mice fed LFD; c AhRKO mice fed 
HFD and LFD; and d WT mice fed HFD and LFD. Descriptive statistics provided in Additional file 10: Table S6, Additional file 11: Table S7, Additional 
file 12: Table S8, Additional file 13: Table S9
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models are needed to investigate whether the bacteria 
identified in this study can be inhibit CRC development.

The integration of microbiome and metabolome data 
also showed the potential consequences of functional 
redundancy in the gut microbiome. For example, both 
unclassified Clostridiales (OTU 1000113) and unclas-
sified Desulfovibrionaceae (OTU10485) contributed to 
the synthesis of anthranilate through arylformamidase 
enzymatic activity. This is consistent with the idea that 
the potential function of the microbial community 
is important for understanding the causal relation-
ship between microbiota and disease [38]. Our inte-
grated analysis also found that the same bacterium was 
involved in the metabolism of several different metab-
olites, as unclassified Desulfovibrionaceae (OTU10485) 
contributed to the metabolism of anthranilate, ade-
nine, and taurine through different enzymatic activi-
ties. Thus, regulation of enzymatic activity could also 
explain how a metabolome change can be observed 
without a change in the community composition.

Our study findings should be interpreted considering 
that 16S rRNA sequencing, and not shotgun metagen-
omic sequencing, was employed for characterizing the 
microbiome composition. Although 16S rRNA gene 
has several advantages for broad community profiling, 
it has several drawbacks when compared to shotgun 
metagenomic sequencing. These include potential bias 
in PCR amplification of the 16S rRNA gene and chimera 
formation, especially from the design of the universal 
primers for 16S rRNA genes and PCR conditions [60, 
61]; variations in the copy number of 16S rRNA genes 

which can range from 1 up to 15 [62, 63], which leads to 
the underestimation or overestimation of the bacterial 
community composition; limitations with using a single 
16S rRNA hypervariable region to differentiate among 
all bacteria [64]; and lack of functional information (i.e., 
on the active species and pathways). Thus, the level of 
sequencing resolution may not be sufficient to com-
pletely understand the contribution of specific bacteria 
to the metabolome, as significant changes could occur 
at lower taxonomic levels. Therefore, community infor-
mation at the genus or even species level is needed for 
fully understanding the metabolic contributions of dif-
ferent taxa to the overall metabolome.

Conclusions
In this study, we observed that in mice exposed to HFD 
or without intestinal epithelial cell AhR expression, 
the effect of diet was more significant than the absence 
of AhR on the fecal microbiome composition. On the 
other hand, the absence of AhR had a more pronounced 
effect on the fecal metabolome than diet. Tryptophan 
metabolites were among those that were significantly 
altered in the metabolome, and integrated microbiome 
and metabolome analysis predicted three taxa—unclas-
sified Clostridiales, unclassified Desulfovibrionaceae, and 
Akkermansia—as key contributors to the synthesis and/
or degradation of tryptophan metabolites. Our study 
highlights the use of multi-omic analysis to investigate 
the relationship between microbiome and metabolome 
and suggests possible taxa that can be targeted to manip-
ulate the microbiome for CRC prevention.

Fig. 10  Summary of interactions between diet and genotype on the metabolome. Results from two-way ANOVA at a week 8 and b week 26 are 
shown. An interaction between genotype and diet was based on an FDR-adjusted p-value < 0.1
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Table 1  MIMOSA identified taxonomic contributors for differential abundance metabolites

Comparison Metabolite name Species Synthesis genes Degradation genes

HFD AhRKO Week 8 vs. HFD 
WT Week 8

Anthranilate OTU1000113
p__Firmicutes; c__Clostridia; 

o__Clostridiales

K07130
Arylformamidase

HFD AhRKO Week 8 vs. HFD 
WT Week 8

Anthranilate OTU10485
p__Proteobacteria; 

c__Deltaproteobacteria; 
o__Desulfovibrionales; 
f__Desulfovibrionaceae

K07130
Arylformamidase

HFD AhRKO Week 8 vs. HFD 
WT Week 8

Tryptamine OTU358757
p__Verrucomicrobia; 

c__Verrucomicrobiae; 
o__Verrucomicrobiales; 
f__Verrucomicrobiaceae; 
g__Akkermansia; 
s__muciniphila

K00274
Monoamine oxidase

HFD AhRKO Week 8 vs. LFD 
AhRKO Week 8

4,6-Dihydroxyquinoline OTU358757
p__Verrucomicrobia; 

c__Verrucomicrobiae; 
o__Verrucomicrobiales; 
f__Verrucomicrobiaceae; 
g__Akkermansia; 
s__muciniphila

K00274
Monoamine oxidase

HFD AhRKO Week 8 vs. LFD 
AhRKO Week 8

Adenine OTU10485
p__Proteobacteria; 

c__Deltaproteobacteria; 
o__Desulfovibrionales; 
f__Desulfovibrionaceae

K01486
Adenine deaminase

HFD AhRKO Week 8 vs. LFD 
AhRKO Week 8

Adenine OTU1107703
p__Firmicutes; 

c__Erysipelotrichi; 
o__Erysipelotrichales; 
f__Erysipelotrichaceae; 
g__Allobaculum

K01486
adenine deaminase

HFD AhRKO Week 26 vs. HFD 
WT Week 26

Biotin OTU1067143
p__Bacteroidetes; c__Bac‑

teroidia; o__Bacteroidales; 
f__Rikenellaceae

K03524
Biotin—[acetyl-CoA-carbox‑

ylase] ligase

HFD AhRKO Week 26 vs. HFD 
WT Week 26

Biotin OTU100567
p__Firmicutes; c__Clostridia; 

o__Clostridiales; 
f__Ruminococcaceae; 
g__Ruminococcus

K03524
Biotin—[acetyl-CoA-carbox‑

ylase] ligase

HFD AhRKO Week 26 vs. LFD 
AhRKO Week 26

Taurine OTU1000113
p__Firmicutes; c__Clostridia; 

o__Clostridiales

K01442
Choloylglycine hydrolase

HFD AhRKO Week 26 vs. LFD 
AhRKO Week 26

Taurine OTU10485
p__Proteobacteria; 

c__Deltaproteobacteria; 
o__Desulfovibrionales; 
f__Desulfovibrionaceae

K00681
Glutathione hydrolase

HFD AhRKO Week 26 vs. LFD 
AhRKO Week 26

17alpha,21-Dihydroxypreg‑
nenolone

OTU102407
p__Bacteroidetes; c__Bac‑

teroidia; o__Bacteroi‑
dales; f__Bacteroidaceae; 
g__Bacteroides

K01822
steroid Delta-isomerase
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Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1293​4-020-01463​-5.

Additional file 1: Figure S1. Effect of diet and genotype in aberrant crypt 
foci (ACF) formation. A: schematic representation of the timeline for the 
ACF formation cohort. B: topographical view of typical aberrant crypt foci 
stained with methylene blue (X100) in distal colon tissue with mucosal 
side up. 1) aberrant crypt foci with 1 aberrant crypt (arrow) and 2) aberrant 
crypt foci with 3 or more aberrant crypts [high-multiplicity ACF, HM-ACF)] 
(arrow); scale bar = 1000 µm. C: number of ACFs identified per animal in 
the distal colon normalized by colon length; p = 0.0088 [Mann–Whitney 
(MW)]. D: ACF number normalized by length (cm) compared by diet; 
p = 0.0005 (MW). E: ACF number normalized by length (cm) compared by 
genotype and diet; p = 0.0004 (Kruskal–Wallis). No interaction between 
diet and genotype (p = 0.4502), diet effect (p = 0.0004), genotype effect 
(p = 0.0102). F: in addition, the average incidence of HM-ACF normalized 
by length in AhrΔIEC mice was four fold higher than their wild-type (WT) 
counterparts; p = 0.0198 (MW). AhR, aryl hydrocarbon receptor; AOM, 
azoxymethane. Values are means ± SE. * indicates p ≤ 0.05, ** indicates 
p ≤ 0.01, *** indicates p ≤ 0.001, and absence of * indicates p > 0.05. Note: 
Reprinted from “Effects of high-fat diet and intestinal aryl hydrocarbon 
receptor deletion on colon carcinogenesis,” by E.L. Garcia-Villatoro et al., 
2020, Am J Physiol Gastrointest Liver Physiol. 318(3): G451-G63.

Additional file 2: Figure S2. Summary of interactions between diet and 
genotype on the microbiome. Results from two-way ANOVA at (A) week 
8 and (B) week 26 are shown. An interaction between genotype and diet 
was based on an FDR-adjusted p-value < 0.1.

Additional file 3: Tables S1. Summary of the Wilcoxon rank sum test for 
the first three principal comments scores of PCA at both weeks 8 and 26.

Additional file 4: Figure S3. Volcano plot of metabolite data at week 8. 
(A) Volcano plot showing differentially abundant features (green and blue 
dots) between AhRKO and WT mice fed HFD. (B) Volcano plot showing 
differentially abundant features (green and blue dots) between AhRKO 
and WT mice fed LFD. (C) Volcano plot showing differentially abundant 
features (green and blue dots) between AhRKO mice fed HFD and LFD. 
(D) Volcano plot showing differentially abundant features (green and 
blue dots) between WT mice fed HFD and LFD. Green color indicates 
FDR-adjusted p-value < 0.1 and fold-change > 1.2. Blue color indicates 
FDR-adjusted p-value < 0.1 and fold-change < 0.8. The x-axis represents 
the log2(fold-change). The y-axis represents the − log10(FDR-adjusted 
p-value).

Additional file 5: Figure S4. Volcano plot of metabolite data at week 26. 
(A) Volcano plot showing differentially abundant features (green and blue 
dots) between AhRKO and WT mice fed HFD. (B) Volcano plot showing 
differentially abundant features (green and blue dots) between AhRKO 
and WT mice fed LFD. (C) Volcano plot showing differentially abundant 
features (green and blue dots) between AhRKO mice fed HFD and LFD. 
(D) Volcano plot showing differentially abundant features (green and 
blue dots) between WT mice fed HFD and LFD. Green color indicates 
FDR-adjusted p-value < 0.1 and fold-change > 1.2. Blue color indicates 
FDR-adjusted p-value < 0.1 and fold-change < 0.8. The x-axis represents 
the log2(fold-change). The y-axis represents the − log10(FDR-adjusted 
p-value).

Additional file 6: Table S2. Summary of the number of differentially 
abundant metabolites at both weeks 8 and 26.

Additional file 7: Table S3. Differentially abundant metabolites between 
AhRKO and WT mice fed HFD at week 8.

Additional file 8: Table S4. Differentially abundant metabolites between 
AhRKO and WT mice fed LFD at week 8.

Additional file 9: Table S5. Differentially abundant metabolites between 
AhRKO mice fed HFD and LFD at week 8.

Additional file 10: Table S6. Differentially abundant metabolites 
between WT mice fed HFD and LFD at week 8.

Additional file 11: Table S7. Differentially abundant metabolites 
between AhRKO and WT mice fed HFD at week 26.

Additional file 12: Table S8. Differentially abundant metabolites 
between AhRKO and WT mice fed LFD at week 26.

Additional file 13: Table S9. Differentially abundant metabolites 
between AhRKO mice fed HFD and LFD at week 26.

Additional file 14: Table S10. Differentially abundant metabolites 
between WT mice fed HFD and LFD at week 26.

Additional file 15: Figure S5. Correlation network showing MIMOSA 
identified taxonomic contributors for differential abundance metabolites. 
Green squares represent potentially identified metabolites. Blue circles 
represent bacteria. Orange diamonds represent enzymes.
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