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Challenging microalgal vitamins for human 
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Abstract 

Background:  Vitamins’ deficiency in humans is an important threat worldwide and requires solutions. In the concept 
of natural biofactory for bioactive compounds production, microalgae represent one of the most promising targets 
filling many biotechnological applications, and allowing the development of an eco-sustainable production of natural 
bioactive metabolites. Vitamins are probably one of the cutting edges of microalgal diversity compounds.

Main text:  Microalgae can usefully provide many of the required vitamins in humans, more than terrestrial plants, for 
instance. Indeed, vitamins D and K, little present in many plants or fruits, are instead available from microalgae. The 
same occurs for some vitamins B (B12, B9, B6), while the other vitamins (A, C, D, E) are also provided by microalgae. This 
large panel of vitamins diversity in microalgal cells represents an exploitable platform in order to use them as natural 
vitamins’ producers for human consumption. This study aims to provide an integrative overview on vitamins content 
in the microalgal realm, and discuss on the great potential of microalgae as sources of different forms of vitamins to 
be included as functional ingredients in food or nutraceuticals for the human health. We report on the biological roles 
of vitamins in microalgae, the current knowledge on their modulation by environmental or biological forcing and on 
the biological activity of the different vitamins in human metabolism and health protection.

Conclusion:  Finally, we critically discuss the challenges for promoting microalgae as a relevant source of vitamins, 
further enhancing the interests of microalgal “biofactory” for biotechnological applications, such as in nutraceuticals 
or cosmeceuticals.
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Background
The class of vitamins includes a diversity of organic com-
pounds that represent essential micro-nutrients for life. 
These molecules cover a plethora of biological functions, 
such as coenzymes, hormones, antioxidants, mediators 
of cell signalling and regulators of cell and tissue growth 
or differentiation. Vitamins can be divided in two large 
groups, the water-soluble and fat-soluble compounds. 
Vitamins A, D, E and K are the four fat-soluble molecules, 
while the vitamin C and the vitamins B [B1 (thiamin), B2 
(riboflavin), B3 (niacin = nicotinic acid), B5 (pantothenic 

acid), B6 (pyridoxine), B7 (biotin), B9 (folic acid) and B12 
(cobalamin)] are water-soluble. Most of the vitamins are 
synthetized by photosynthetic organisms, while others 
(some vitamins B and vitamin K) are bioaccumulated 
through diet and mainly produced by bacteria [1]. Accu-
mulation and/or synthesis of vitamins in photosynthetic 
organisms is highly variable [2], and strongly related to 
physiological responses to environmental cues [3]; the 
magnitude of these responses being dependent on the fit-
ness between organism and the environment [4].

Although crucial for life, vitamins are either not or little 
synthetized in animals and humans, thus requiring their 
continuous assimilation through diet, e.g. from plants, 
fruits or seeds. In order to avoid vitamins deficit in 
humans, it is strongly recommended to follow diets with 
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high content in the different vitamins. However, not all 
plants contain all vitamins, and some of them (vitamins 
D, K or some B) are scarcely present.

Among plant kingdom, marine algae produce or/and 
accumulate a large diversity of vitamins (Fig.  1), and 
microalgae—photosynthetic unicellular and fast divid-
ing rate organisms—potentially could be extremely help-
ful as vitamins’ producers, as the already known “super 
food” vitamins-rich Spirulina platensis [5]. Microalgae 
can contain vitamins such as vitamins B12 [3, 6], vitamin 
K [7] or D [8] that are not present in higher plants. Vita-
min D is known to be highly concentrated in sea edible 
organisms (e.g., fishes, [9]) which accumulate it through 
algal based diets, being not able to synthetize it [10]. 
The content in the other vitamins, generally provided by 
higher plants, can be also significant if we consider that 

are unicellular organisms. For instance, the green micro-
alga Dunaliella is known to highly accumulate the vita-
mins B2, B12, B9, B3 as well as the vitamins C and E [11] 
while high content of vitamin C has been reported in the 
diatom Skeletonema marinoi [12, 13].

The general aim of this study is to critically discuss if 
and why microalgae can become a functional source of 
vitamins to fill human requirements through food com-
plements or nutraceuticals. In biotechnology, microalgae 
can be defined a real and natural biofactory of bioactive 
compounds as well as vitamins for dietary intake [14–16]. 
It is noteworthy that some vitamins (e.g., vitamins E, A 
or C) have been the object of numerous studies, although 
other vitamins were poorly investigated in microal-
gae. Here, we update an integrated state-of-art on the 
vitamins A, D, E, K, C, B1, B2, B3, B5, B6, B7, B9 and B12 

Fig. 1  Vitamin content (mg g−1 of dry weight biomass) variability in microalgae. Axis Y in logarithmic scale
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contents in microalgae, as well as on their biological roles 
and modulation by environmental or biological forcing in 
microalgae. We also report on the biological activity of 
the different vitamins in human metabolism and health 
protection.

Functions and roles of vitamins in microalgae
In living organisms, vitamins are involved in numer-
ous processes and functions, being required for example 
as precursors or coenzymes in key metabolic pathways, 
controlling and regulating tissue growth and cell func-
tioning, or acting as antioxidants. Some vitamins have 
few specific biological functions (e.g., vitamin B7), while 
others display multiple roles (e.g., vitamin C).

In microalgae, vitamin A is mainly synthetized 
from the provitamin A carotenoids (e.g., β-carotene, 
β-cryptoxanthin, and α-carotene) [17]. The well-known 
β–carotene is the precursor of many carotenoids, such as 
those belonging to the photoprotective xanthophyll cycle 
(Arianna [13] and acts as antioxidant in photosynthetic 
organisms [17]. Indeed, the efficacy of β-carotene against 
the reactive oxygen species singlet oxygen is greater than 
vitamin E and vitamin C [18].

The involvement of the vitamins D2 and D3 in cellular 
functions in microalgae remains unclear. In higher plants 
that are able to synthesize vitamin D2, the latter exerts 
a role as a growth factor [19]. Provitamin D has been 
hypothesized to act as a UV-B receptor in plants [19]. 
It has been speculated that the vitamin D: provitamin 
D ratio might be a proxy of UV-B assimilation in plants 
[20]. In microalgae, vitamin D production might be the 
result of damage or degradation of biological membranes 
under the action of UV radiation [21, 22].

Vitamin E presents roles as antioxidant or also against 
photooxidative stress [23]. When tocopherol synthesis 
is chemically blocked in algae exposed to high light, in 
association with PS II inactivation, the tocopherol pool 
undergoes to rapid depletion due to its action against 
photooxidative stress [24]. It has been hypothesized a 
complementary role of tocopherol with the photopro-
tective xanthophyll cycling-pigments [25]. Other studies 
showed that in microalgae tocopherol production is often 
associated with polyphenols production in response to 
abiotic stress, such as light, nutrient or metals [26–28].

Vitamin K1 has a function of redox cofactor in plants, 
green algae and some cyanobacteria [29–31]. Specifi-
cally, vitamin K1 is the secondary electron acceptor of 
photosystem (PS I), also known as A1 [32]. However, 
it is now accepted that at least half of vitamin K1 is not 
bound to PS I [33, 34], suggesting a role of phylloquinone 
in redox reactions distinct from that of the one-electron 
transfer in PS I. Likewise, menaquinone (vitamin K2) is a 

secondary electron acceptor of PS I in red algae, diatoms, 
cyanobacteria and archaeal species [35–38].

Vitamin C acts as a cofactor of many enzymes, and is 
involved in photosynthesis, hormone biosynthesis and 
regeneration of antioxidants [39, 40]. Ascorbic acid plays 
a relevant role in algal photoprotection, being used as a 
co-factor for the de-epoxidase enzyme operating in the 
photoprotective xanthophyll cycle (violaxanthin-anther-
axanthin-zeaxanthin or diadinoxanthin-diatoxanthin) for 
the synthesis of the photoprotective xanthophyll [13, 41]. 
Indeed, in the diatom Skeletonema marinoi, high inten-
sity blue light induced a parallel increase of ascorbic acid 
and xanthophyll cycle activity [13]. Inside the chloro-
plast, ascorbic acid plays a key role in photosynthesis by 
removing hydrogen peroxide formed by oxygen photore-
duction in PSI (Mehler reaction) via ascorbate peroxidase 
[42]. In coordination with glutathione and enzymatic 
antioxidants in chloroplasts, mitochondria, peroxisomes 
and cytosol, ascorbic acid controls the amount of hydro-
gen peroxide formed within the cell [43]. The expression 
of the VTC2 gene (GDP-L-galactose phosphorylases 
catalyzing the first step in the L-ascorbate biosynthe-
sis) in Chlamydomonas reinhardtii is rapidly induced by 
hydrogen peroxide and singlet oxygen: the subsequent 
response, resulting in a manifold increase in ascorbate 
content, conversely to plants does not require circadian 
regulation nor photosynthesis [44].

Although in plants ascorbic acid controls a number of 
processes including cell division and cell expansion [17, 
18], this role is not confirmed in microalgae, at the excep-
tion of a study in red algae [45].

Vitamin B1 is ubiquitously involved in the acetyl-CoA 
synthesis, tricarboxylic acid cycle, pentose phosphate 
pathway, Calvin–Benson cycle and isoprenoid biosynthe-
sis pathway [46]. This vitamin is known to exert a defense 
function against abiotic and biotic stressors in plants [46] 
and in several microalgae [47]. A putative role of vita-
min B1 as antioxidant has been hypothesized [48], even 
though the mechanism of this potential function remains 
unknown.

Vitamin B2 is an essential precursor for flavocoen-
zymes, involved in numerous physiological processes 
such as the circadian clock [25, 49–51], or acting as 
chromophores in blue light photoreceptors of plants and 
fungi [52–54]. Flavocoenzymes can catalyze redox pro-
cesses involving one- and two-electron transitions as well 
as a variety of reactions such as photorepair of thymidine 
dimers in photodamaged DNA [55, 56].

Vitamin B3 is required for assimilatory nitrate reduc-
tase (NR) activity in photoautrotrophs [57, 58], beside 
its physiological role under the form of NADH [58]. Nia-
cin vitamers—nicotinic acid, nicotinamide, NAD, and 
NADP—contribute to the antioxidant cell machinery. 
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The antioxidant enzyme monodehydroascorbate reduc-
tase can use either NADH or NADPH [59], reduced by 
the plant mitochondrial electron transport chain [60].

Vitamin B5 is synthesized de novo by plants and micro-
organisms. It is involved in many secondary metabolite 
biosynthetic pathways [61] and acts as precursor of the 
40-phosphopantetheine moiety of coenzyme A (CoA) 
and acyl carrier protein. Due to the crucial role of the 
CoA in central carbohydrate and lipid metabolism, vita-
min B5, synthesized in the cytosol, is subsequently trans-
ported into mitochondria and plastids [61].

Vitamin B6 is a cofactor for numerous metabolic 
enzymes [62] and acts as a potent antioxidant [4, 62] 
quenching efficiently reactive oxygen species [36, 63] with 
an efficacy comparable to ascorbic acid and α-tocopherol 
[64, 65]. Recently, a role of vitamin B6 in UV-B leaf accli-
mation has been demonstrated in plants, showing that 
vitamin B6 deficient Arabidopsis thaliana rsr4-1 mutant 
cannot cope with supplementary UV-B radiation [66].

Vitamin B7 is a cofactor for some carboxylases, decar-
boxylases and transcarboxylases involved in metabolic 
processes such as fatty acid and carbohydrate metabo-
lism [67].

Vitamin B9 is an essential cofactor for one-carbon 
metabolism and primarily for the synthesis of the purine 
ring [68]. In algae, that are able to accumulate high con-
centrations of folates [69], folate biosynthetic route has 
recently been elucidated, showing that algae possess sin-
gle isoforms of the genes in the pathway, while plant spe-
cies tend to have multiple isoforms regulating the same 
steps in folate metabolism [70].

Vitamin B12 is involved in two core enzymatic reac-
tions in algae, the DNA synthesis—being the cofactor of 
a form of the enzyme methionine synthase, and the inor-
ganic carbon assimilation being required as a cofactor by 
the enzyme methylmalonyl CoA mutase [71].

Content and modulation of vitamins in microalgae
Vitamin A content
Vitamin A in microalgae varied from 0.01 mg per gram 
of dry weight (mg/g DW) as reported in the genera Chlo-
rella and Isochrysis to 4.28  mg/g DW reported in the 
genus Tetraselmis (Table 1).

Low vitamin A content was recorded in Nannochlorop-
sis (ranging between 0.05 and 0.08 mg/g DW), while the 
latter displays high content of vitamins C and E, and in 
the euglenoid Euglena (0.30  mg/g DW) and in Pavlova 
(0.27  mg/g DW). Vitamin A content generally ranged 
between 0.50–0.80  mg/g DW (Table  1), such as in the 
cyanophyte Arthrospira, or in the green microalgae 
Chlorella and Dunaliella (Table 1). High vitamin A con-
centration in diatoms were reported in the genus Chae-
toceros (from 0.52 to 0.97  mg/g DW), as well as in the 

red microalga Porphyridium (0.75  mg/g DW, Table  1). 
Vitamin A content strongly varied among and inside algal 
classes hypothesizing that no link between vitamin A 
concentration and microalgal divisions do exist (Table 1). 
Using a conversion factor between dry and fresh weight 
for microalgae of around 10% [80], it can be estimated a 
content of 0.42 and 0.1 mg of retinol equivalents per g of 
fresh weight (mg RE/g FW) in Tetraselmis and Chaetoc-
eros. These values are much higher than those reported 
in edible carrot (circa 0.011 mg RE/ g FW) or in orange 
(0.0003 mg RE/g FW) [81].

Vitamin C content
Vitamin C content in microalgae varied between 0.06 
and 18.79  mg/g DW (Table  2), displaying a great inter 
and intra specific variability. Indeed, in green micro-
alga Chlorella, ascorbic acid content ranged from 0.10 
to 15  mg/g DW (Table  2). Yet, a variation from 0.16 to 
2.20  mg/g DW ascorbic acid was reported in the genus 
Dunaliella (Table 2). Diatoms displayed a great variabil-
ity in vitamin C content, ranging from 0.06 to 6.7 mg/g 
DW in Skeletonema, or from 0.12 to 18.79 mg/g DW in 
Chaetoceros (Table 2). Large variability was also reported 
in haptophytes (Table 2), while ascorbic acid content was 
high in Nannochloropsis, with values ranging from 2.50 
to 6.04  mg/g DW (Table  2). Values around 2  mg/g DW 
of ascorbic acid were recorded in the green microalga 
Scenedesmus, the cyanophyte Anabaena, the crypto-
phyte Chroomonas and the euglenoid Euglena (Table 2). 
Using the 10% conversion factor between DW and FW 
[80], microalgal vitamin C can reach concentrations of 
1.88  mg/g FW (Chaetoceros), 1.5  mg/g FW (Chlorella) 

Table 1  Vitamin A content in microalgae

Values are expressed as mg/g DW of retinol equivalents

Phylum/class Genus Vitamin A Refs

Cyanobacteria Anabaena 0.28 [72]

Arthrospira 0.65 [73]

Synechococcus 0.18 [73]

Chlorophyta Chlamydomonas 0.11–0.13 [72]

Chlorella 0.01–0.65 [72, 74, 75]

Dunaliella 0.01–0.63 [74, 76]

Stichococcus 0.06 [77]

Tetraselmis 0.05–4.28 [73, 74, 77, 78]

Rhodophyta Porphyridium 0.75 [73]

Bacillariophyceae Chaetoceros 0.52–0.97 [73, 78]

Skeletonema 0.14 [78]

Haptophyta Isochrysis 0.01–0.27 [74, 78]

Pavlova 0.10 -0.26 [77, 78]

Eustigmatophyceae Nannochloropsis 0.05–0.08 [73, 77]

Euglenozoa Euglena 0.30 [79]



Page 5 of 23Del Mondo et al. Microb Cell Fact          (2020) 19:201 	

or 0.6 mg/g FW (Nannochloropsis) in the range or higher 
than some vitamin C-rich fruits, as strawberries, kiwis or 
lemons (0.54, 0.52 and 0.42 mg/g FW, respectively [82]).

Vitamin E content
Vitamin E concentration in microalgae ranged 
between 0.01 and 6.32 mg/g DW (Table 3). High vita-
min E content was found within the genera Tetraselmis 
(6.32 mg/g DW), Chlamydomonas (4 mg/g DW), Chlo-
rella (2  mg/g DW) and Dunaliella (1.90  mg/g DW). 
Among cyanobacteria, high values were reported for 
the genera Anabaena (4  mg/g DW), and Arthrospira 
(2.50 mg/g DW) or Synechococcus (1.40 mg/g DW).

High α-tocopherol concentration variability was 
described in Nannochloropsis (0.02–4.72  mg/g DW) 
and Porphyridium (0.02–1.30  mg/g DW). Low values 
were reported in the xanthophyceans Heterococcus, 
Xanthonema and Vischeria (0.04–0.39 mg/g DW), and 
in the red microalga Rhodella (0.03–0.07 mg/g DW) as 
well as in the haptophytes Diacronema, Isochrysis and 
Pavlova or in diatoms, with the exception of Chaetoc-
eros (1.63 mg/g DW). Using the 10% conversion factor 
between DW and FW [80], Tetraselmis, Nannochlorop-
sis and Anabaena reached 0.63, 0.40 and 0.48 mg/g FW 
of α-tocopherol, respectively. These values are notably 
higher than the vitamin E content of common dietary 
food, e.g. 0.03  mg/g FW for green olives, 0.02  mg/g 
FW for raw spinaches and 0.01 mg/g FW for blackber-
ries and cranberries [92].

Table 2  Vitamin C content in microalgae

Values are expressed as mg/g DW of ascorbic acid

Phylum/class Genus Vitamin C Refs

Cyanobacteria Anabaena 2.00 [72]

Chlorophyta Chlamydomonas 2.00 [72]

Chlorella 0.10–15 [72, 74, 75]

Dunaliella 0.16–2.2 [74, 76, 83]

Nannochloris 5.24 [83]

Scenedesmus 2.00 [72]

Stichococcus 2.50 [77]

Tetraselmis 0.19–3 [74, 77, 78]

Bacillariophyceae Chaetoceros 0.12–18.79 [78, 83]

Skeletonema 0.06–6.7 [13, 78, 83]

Thalassiosira 1.79 [83]

Haptophyta Isochrysis galbana 0.12–4.45 [74, 78, 83]

Pavlova lutheri 0.84–1.3 [77, 78, 83]

Eustigmatophyceae Nannochloropsis 2.50–6.04 [77, 83]

Ochromonadaceae Chroomonas 2.13 [83]

Euglenozoa Euglena gracilis 1.82 [79]

Table 3  Vitamin E content in microalgae

Phylum/class Genus Vitamin E Refs

Cyanobacteria Anabaena 4 [72]

Aphanizomenon 0.10–0.14 [84]

Arthrospira 0.11–2.50 [73, 84]

Oscillatoria 0.09–0.10 [84]

Synechococcus 1.40 [73]

Synechocystis 0.17 [84]

Chlorophyta Asterochloris 0.09 [84]

Botrydiopsis 0.06–0.17 [84]

Botryococcus 0.16–0.26 [84]

Bracteacoccus 0.17 [84]

Chlamydomonas 0.34–4 [72, 84]

Chlorella 0.01–2 [72, 74, 84–86]

Chlorellidium 0.69 [84]

Chloridella 0.04 [84]

Chlorococcum 0.79 [84]

Chloroidium 0.32 [84]

Chloromonas 0.41–0.7 [84]

Chorycystis 0.26 [84]

Chromochloris 0.18 [84]

Coccomyxa 0.66 [84]

Coelastrella 0.42–0.51 [84]

Coelastrum 0.07 [84]

Coenochloris 0.74 [84]

Coenocystis 0.36 [84]

Coleochlamys 0.37 [84]

Desmodesmus 0.19–0.39 [84, 85]

Dunaliella 0.12–1.9 [74, 76, 85, 87]

Edaphochlorella 0.24 [84]

Enallax 0.02 [84]

Fottea 0.48 [84]

Geminella 0.01–0.08 [84]

Haematococcus 0.27–0.88 [84]

Heterochlorella 0.01 [84]

Interfilum 0.05 [84]

Klebsormidium 0.06–0.09 [84]

Lobosphaeropsis 0.10 [84]

Monodopsis 0.46 [84]

Monodus 0.32–0.5 [84]

Muriella 0.62 [84]
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Vitamins B content
Among the microalgal vitamins B data, vitamins B1 and 
B12 were the most studied (Table 4).

Diatoms and Haptophytes displayed higher average 
concentrations of vitamins B1 and B12 compared to Chlo-
rophyta and Cyanobacteria (Table 4), with the highest B12 
concentration (1.17 ng/g DW) reported in the haptophyte 
Pavlova (Table 4). High B12 contents were also revealed in 
the cyanobacteria Aphanizomenon and Arthrospira as well 
as in the green alga Chlorella (Table 4). Notably, microal-
gae can reach high concentration of vitamins B2, B3 and B6, 

as in the cyanobacterium Aphanizomenon or in the hapto-
phyte Pavlova (Table 4). Vitamin B6 content was reported 
to be high in several macroalgae [93], as well as in micro-
algae (Table 4). A wide range of vitamin B6 concentrations 
has been reported for the green microalga Tetraselmis 
and for the haptophyte Isochrysis, with values from 2.8 to 
155 μg/g DW and from 1.8 to 183 μg/g DW, respectively.

Very few studies reported microalgal vitamin B5 con-
centration, with a maximum of 190 μg/g DW measured 
in Chlorella (Table 4). In the same species, high vitamin 
B9 concentration was also revealed (from 3.1 to 34 μg/g 
DW). High vitamin B9 content was described in Picochlo-
rum sp. (64.7 μg/g DW) and Michrochloropsis (43.6 μg/g 
DW). The range of variability of vitamin B9 content was 
greater in green algae (from 0.4 to 64.7 μg/g DW) than in 
cyanobacteria (0.27 to 15 μg/g DW). Vitamin B7 content 
ranged between 0.18 and 1.9 ng/g DW (Table 4) with the 
highest values reported in Stichococcus and Tetraselmis 
(1.3  ng/g DW), Nannochloropsis (1.1  ng/g DW) and in 
the haptophycean Pavlova (1.9 ng/g DW).

Vitamins D and K content
Microalgae can contain a high concentration of the two 
forms of vitamin D (D2 and D3, [97], Table 5) and repre-
sent the main source of these vitamins for fish, which is 
one of the major providers of vitamin D for humans [10].

Very high concentration of vitamin D was reported 
in Pavlova lutheri (39  µg/g DW), Tetraselmis suecica 
(14 µg/g DW) and Skeletonema costatum (11 µg/g DW).

Conversely, vitamin D concentration was very low 
(0.004  µg/g DW) in other species, such as Rhodomonas 
salina, Arthrospira maxima or Chlorella minutissima 
(Table 5). Also, ergosterol, precursor of vitamin D2, was 
found in various species of microalgae, e.g., Dunaliella 
tertiolecta [98], Chlamydomonas reinhardtii [35, 99], 
Chlorella vulgaris [37], Cyanidium caldarium [38] and 
account up to 0.1% of the dry weight in the coccolito-
phore Emiliania huxleyi [21].

Vitamin K was also higher in marine photosynthetic 
organisms than in terrestrial plants [7]. Vitamin K1 and 
vitamin K2 are unevenly distributed among algal divi-
sions. Vitamin K1 concentration in microalgae ranged 
from 0.1  µg/g DW in the green microalga Dunaliella 
salina to 200.25  µg/g DW in the cyanobacterium Ana-
baena cylindrica (Table 6). High value (28 µg/g DW) was 
also found in the green microalga Tetraselmis suecica. 
Conversely, low values were reported in the haptophy-
ceans Pavlova lutheri, Isochrysis galbana and in the 
cyanobacterium Arthrospira (6.5, 8 and 12.7  µg/g DW, 
respectively; Table 6). Although vitamin K1 was reported 
in Skeletonema costatum (5.5 µg/g DW), its presence was 
not revealed in other diatoms such as Phaeodactylum 

Table 3  (continued)
Phylum/class Genus Vitamin E Refs

Neocystis 0.38 [84]

Neospongiococcum 0.06 [84]

Pabia 0.36 [84]

Pectinodesmus 0.03 [84]

Pseudobumillerio-
psis

0.18 [84]

Pseudochlorella 0.05–0.15 [84]

Pseudomuriella 0.24 [84]

Scenedesmus 0.08–1 [72, 84]

Scotiellopsis 0.44 [84]

Stichococcus 0.13–0.44 [84]

Tetradesmus 0.05–0.13 [84]

Tetraedron 0.12–0.22 [73, 74, 77, 84, 
87, 88]

Tetraselmis 0.04–6.32 [78]

Trebouxia 0.07–0.14 [84]

Trentepohlia 0.28 [84]

Rhodophyta Porphyridium 0.02–1.30 [73, 84]

Rhodella 0.03–0.07 [84]

Bacillariophyceae Chaetoceros 0.89–1.63 [73, 78]

Phaeodactylum 0.01 [85]

Skeletonema 0.11 [78]

Haptophyta Diacronema 0.40 [89]

Isochrysis 0.06–0.12 [74, 78]

Pavlova 0.14–0.35 [78]

Eustigmatophy-
ceae

Microchloropsis 0.23–0.67 [84]

Nannochloropsis 0.02–4.72 [73, 77, 84, 85, 
88, 90]

Xanthophyceae Heterococcus 0.09–0.22 [84]

Xanthonema 0.16–0.39 [84]

Vischeria 0.04–0.05 [84]

Euglenozoa Euglena 0.28–1.2 [79, 91]

Values are expressed as mg/g DW of α-tocopherol
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and Chaetoceros [78, 94]. To date, vitamin K2 has been 
reported in the red microalgae Porphyridium purpureum 
and Cyanidium caldarium [100], in the diatom Chae-
toceros gracilis [101], as well as in the cyanobacteria 
Gloeobacter violaceus [102] and Synechococcus sp. [103]. 
Vitamin K2 content was generally reported as unit per 
photosystem; in the red microalga Cyanidium and in the 
cyanobacterium Gloeobacter two molecules of menaqui-
none per one molecule of chlorophyll  have been found 
[100].

Vitamins’ content modulation in microalgae
Since vitamins are often used by photosynthetic organ-
isms to regulate vital functions, their modulation in 
response to environmental changes is noteworthy; and 
this knowledge might be an important key for increas-
ing vitamins production in microalgae. Many external 
parameters can affect vitamin synthesis and/or use in 
microalgae, namely light, temperature, salinity, nutri-
ent or metal concentrations (Fig. 2), as well as cell den-
sity and growth stage. However, some vitamins are 
little investigated compared to others, e.g., vitamins C, 
A (pro-vitamin A = β-carotene) and E (α-tocopherol). 
Yet, less information is available on the vitamins’ content 
modulation in microalgae, compared to macroalgae. For 
instance, the brown macroalga Eisenia arborea modu-
lates its vitamin pool content along with the seasonal-
ity, with the highest amount of vitamins A, B1, B2 and 
C revealed in spring in parallel with the lowest content 
of vitamin E [104]. Also, in the red macroalga Palmaria 
palmata, the provitamin A (β-carotene) increased during 
summer and lowered during winter [105]. Although sea-
sonal variability of vitamins’ content in microalgae was 
not reported, their modulation by environmental changes 
were investigated in different studies. Light is known as 
strongly triggering bioactive compounds variations in 
microalgae [106]. For instance, vitamin E enhanced with 
increasing light intensity [79, 87, 107]. Similarly, in the 
cyanobacterium Synechocystis sp.PCC 6803, high light 
intensity increased the concentration of α-tocopherol 
[108]. Light intensity and spectral properties have been 
shown to significantly modulate ascorbic acid production 
and/or use in the coastal diatom Skeletonema marinoi 
[12, 13]. Vitamins content in microalgae is also affected 
by UV radiations. For instance, in the green alga Chlo-
rella vulgaris vitamin E increased in presence of UV-B 
[109] while ascorbic acid did not [110]. Also, Nanno-
chloropsis oceanica enhanced vitamin D3 in presence of 
UV-B, in a dose–response dependent manner, whereas 
no UV-B modulation of D3 concentration was recorded 
in other microalgae such as Rhodomonas salina, Chlo-
rella minutissima or Arthrospira maxima [22].

The effect of temperature on vitamins production was 
poorly investigated. A seven-fold increase of α-tocopherol 
production was reported in Euglena gracilis under low 
temperature acclimation and oxygen stress [111].

Salinity variations induced vitamin B1 accumulation in 
microalgae such as Nodularia spumigena (cyanobacte-
ria), Phaeodactylum tricornutum, Skeletonema costatum 
(diatoms), Dunaliella tertiolecta (chlorophyta), Prorocen-
trum minimum (dinoflagellate) and Rhodomonas salina 
(cryptophyte) [47].

Chemical variations of the cultivation environment 
also do affect vitamins production. Nutrient depletion 
enhanced the production of vitamins C and E in Chlo-
rella vulgaris, Tetraselmis suecica and in the diatom 
Phaeodactylum tricornutum [26]. Similarly, α-tocopherol 
accumulated along with nitrogen concentration decrease 
in Nannochloropsis oculata [90], or with the addition of 
nitrate and phosphate in Tetraselmis suecica [87].

Pollutants such as heavy metals might also have 
effects on vitamins production or utilization in micro-
algae. For instance, the green alga Scenedesmus quadri-
cauda lowered ascorbic acid to increasing heavy metals 
concentration [28]. Conversely, increased availability 
of cobalt chloride increased vitamin B12 concentration 
in Chlorella vulgaris [112]. Biological modulation of 
vitamins content in microalgae was also related to the 
growth phase (actively growing vs. stationary phase). 
The content of vitamin B2 increased by 2- to 3-folds in 
the stationary phase compared to the exponential phase 
in many microalgae (e.g., Chaetoceros gracilis, Thalas-
siosira pseudonana, Isochrysis sp., Pavlova lutheri, Nan-
nochloris atomus or Nannochloropsis oculate [83]. Also, 
vitamin B1 enhanced during stationary phase in Nanno-
chloris atomus, Nannochloropsis oculata, Isochrysis sp. 
and Pavlova lutheri [77], as well as in the diatoms Chae-
toceros muelleri, Thalassiosira pseudonana [77]. and 
Nitzschia microcephala [113]. In Chlorella ellipsoidea, 
the vitamins B1, B2, B6 and B9 were more produced dur-
ing the stationary phase of growth, while vitamins C, 
B3 and B7 were mainly synthetized during the active 
growth phase [114]. However, vitamin C modulation by 
growth phase is highly variable within microalgae [13, 
77], and probably related to the biochemical function of 
ascorbic acid in cells [13].

Vitamins B12, B7 and B1 auxotrophy in microalgae
As pointed out recently [115], microalgae can be auxo-
trophs for the vitamins B12, B7 and B1. Among 306 micro-
algal species surveyed [116], more than half required 
vitamin B12 (cobalamin), while 22% required B1 (thia-
mine) and 5% required B7 (biotin), revealing that auxo-
trophy is shared by many species from unrelated classes 
(e.g., dinophyceae, raphidophyceae, bacillariophyceae, 



Page 8 of 23Del Mondo et al. Microb Cell Fact          (2020) 19:201 

Ta
bl

e 
4 

Vi
ta

m
in

s 
B 

co
nt

en
t i

n 
m

ic
ro

al
ga

e 
(μ

g/
g 

D
W

 e
xc

ep
t f

or
 v

it
am

in
s 

B 7 a
nd

 B
12

 in
 n

g/
g 

D
W

)

Ph
yl

um
/c

la
ss

G
en

us
Vi

ta
m

in
 B

1
Vi

ta
m

in
 B

2
Vi

ta
m

in
 B

3
Vi

ta
m

in
 B

5
Vi

ta
m

in
 B

6
Vi

ta
m

in
 B

7
Vi

ta
m

in
 B

9
Vi

ta
m

in
 B

12
Re

fs

Cy
an

ob
ac

te
ria

An
ab

ae
na

5.
8

55
78

88
7

0.
18

15
1.

5
[7

2,
 9

4]

Ap
ha

ni
zo

m
en

on
40

6
13

0
8

13
1

6
[9

5]

Ar
th

ro
sp

ira
10

–2
3.

8
33

–4
5

0.
13

–1
49

13
9.

6
0.

27
–4

.8
0.

50
–6

.6
[6

, 9
4,

 9
5]

C
hl

or
op

hy
ta

Ch
la

m
yd

om
on

as
0.

26
9

[7
2]

Ch
lo

re
lla

18
–2

3
20

–6
8

0.
15

–2
50

21
.4

–1
90

1.
9–

25
0.

45
–1

.1
3.

1–
34

0.
08

–2
.5

[6
, 6

9,
 7

2,
 7

5,
 9

5]

D
un

al
ie

lla
9–

29
9–

31
.2

10
5–

13
.2

2.
2–

4
0.

9
0.

4–
53

.7
0.

04
–0

.7
[6

9,
 7

4,
 9

5]

H
ae

m
at

oc
oc

cu
s

4.
7

17
66

14
3.

6
2.

9
1.

2
[9

5]

Pi
co

ch
lo

ru
m

64
.7

[6
9]

St
ic

ho
co

cc
us

29
25

17
1.

3
24

1.
95

[7
7]

Te
tr

ad
es

m
us

25
.9

[6
9]

Te
tr

as
el

m
is

32
.3

–6
27

19
.1

–4
2

14
10

37
.7

2.
8–

15
5

0.
8–

1.
3

3–
20

1.
95

–9
[7

4,
 7

7,
 7

8]

Sc
en

ed
es

m
us

46
6

[7
2]

Rh
od

op
hy

ta
Po

rp
hy

rid
iu

m
5.

39
[6

9]

Ba
ci

lla
rio

ph
yc

ea
e

Ch
ae

to
ce

ro
s

65
5

12
25

4
8

[7
8]

Sk
el

et
on

em
a

71
0

37
51

1
13

4
11

7
[7

8]

H
ap

to
ph

yt
a

Iso
ch

ry
sis

14
–4

62
14

–3
0

26
90

9.
1

1.
8–

18
3

1
3

0.
6–

89
[7

4,
 7

8]

Pa
vl

ov
a

36
–2

90
6–

50
95

5
4–

8.
4

1.
9

23
1.

7–
11

62
[7

7,
 7

8]

Eu
st

ig
m

at
op

hy
ce

ae
M

ic
ro

ch
lo

ro
ps

is
43

.6
[6

9]

N
an

no
ch

lo
ro

ps
is

70
22

–2
5

0.
12

3.
6

1.
1

17
–2

2
0.

3–
1.

7
[6

, 7
7]

O
ch

ro
m

on
ad

ac
ea

e
Po

te
rio

ch
ro

m
on

as
27

.5
7

4.
86

[9
6]

Eu
gl

en
oz

oa
Eu

gl
en

a
55

.7
1

14
.7

1
0.

22
[9

6]



Page 9 of 23Del Mondo et al. Microb Cell Fact          (2020) 19:201 	

cryptophyceae and prymnesiophyceae). For instance, 
Gymnodinium brevis requires all three vitamins whereas 
Gymnodinium spendens requires only vitamin B12 [1]. 
Auxotrophy for B12 is ubiquitous in the haptophyte lin-
eage [117], as in the coccolithophore Emiliania huxleyi 
[118], while a high variability is noteworthy in other 
classes. Some species can overcome B12 limitation in the 
environment thanks to a B12-independent methionine 
synthesis enzyme (e.g., Chlorella sp. NC64A, Phaeodac-
tylum tricornutum CCAP1055/1, Ectocarpus siliculosus 
Ec32; (Katherine E [119]). Some microalgae (e.g., cyano-
bacteria, (Katherine Emma [120, 121]) are able to syn-
thetize pseudocobalamin, which can be transformed into 
vitamin B12, the latter being more bioavailable (Katherine 
Emma [120, 121].

Vitamin B1 auxotrophy is diffused in marine microal-
gae [122], e.g. 80% of prymnesiophytes [1, 123] although 

with a lower percentage in diatoms [123]. Interestingly, 
thiamine biosynthesis in some microalgae (e.g., Chla-
mydomonas reinhardtii) can be induced and even regu-
lated thanks to a riboswitch process regarding the gene 
encoding for the enzymes involved in thiamine biosyn-
thesis [124] activated by the presence of thiamine in the 
environment. Microalgae can therefore become perfor-
mant producers of thiamine [47].

Although some algae are auxotrophs for biotin, the 
ability to produce this molecule is transversally present 
in diverse microalgal classes, as shown by a genome-wide 
analysis performed on 14 photosynthetic microalgae (10 
Chlorophyta, 1 Rhodophyta; 1 Haptophyta and 2 Heter-
okontophyta) that revealed the presence of a bifunctional 
enzyme involved in vitamin B7 (biotin) production [125].

Vitamins and human health
Although vitamins are not structural components, and 
required by cells in low amount, they are essential for 
life, growth and development. Vitamins participate to 
cell homeostasis and to anabolic pathways as enzymatic 
cofactors. Humans are not able to endogenously synthe-
size adequate concentrations of vitamins for the normal 
physiological functions requiring their exogenous intake 
through foods and dietary supplements. Indexes such 
as Adequate Intakes (AI) and Recommended Dietary 
Allowances (RDA) were provided (Table  7; modified 
from [126]).

RDA represents the average daily dietary intake level 
sufficient to meet the nutrient requirements of nearly all 
healthy individuals. It is calculated from an Estimated 
Average Requirement (EAR). If sufficient scientific evi-
dence is not available to establish an EAR, an AI is usu-
ally developed.

Fat-soluble vitamins are absorbed through the intesti-
nal tract with the help of lipids (fats), and can be retained 
for long periods of time in the body while if consumed 
in excess can pose a greater risk for toxicity than water-
soluble vitamins.

Water-soluble vitamins dissolve easily in water, so con-
sistent daily intake is often required, being easily excreted 
and not stored in the body. In addition, water soluble 
vitamins are difficult to preserve during food storage and 
preparation because readily destroyed or washed out.

Vitamin A is essential for embryonic development, 
tissues differentiation, growth, epithelial integrity, red 
blood cell production, reproduction, immune function, 
and the visual system [127]. Retinol functions as an elec-
tron carrier in mitochondria [128] and is the precursor 
of bioactive retinaldehyde and retinoic acid. Vitamin 
A derivatives have dual functions in physiology: 11-cis-
Retinal serves as the universal chromophore of the visual 
pigments in the eye, whereas retinoic acid regulates the 

Table 5  Vitamin D content in microalgae

Values are expressed as µg/g DW

Phylum/class Species Vitamin D References

Cyanobacteria Arthrospira maxima 0.004 [22]

Chlorophyta Chlorella minutissima 0.004 [22]

Tetraselmis sp. CS-362 0.35 [77]

Tetraselmis suecica 14 [78]

Stichococcus sp. CS-92 0.35 [77]

Rhodophyta Rhodomonas salina 0.004 [22]

Bacillariophyceae Skeletonema costatum 11 [78]

Haptophyta Isochrysis galbana 5 [78]

Pavlova lutheri 39 [78]

Pavlova pinguis 0.35 [77]

Eustigmatophyceae Nannochloropsis sp. 
CS-246

0.35 [77]

Nannochloropsis oce-
anica

0.48 [22]

Table 6  Vitamin K1 content in microalgae

Values are expressed as µg/g DW

Phylum/class Species Vitamin K1 References

Cyanobacteria Anabaena cylindrica 200.25 [7]

Arthrospira 12.7 [7]

Chlorophyta Chlorella vulgaris 0.73 [7]

Desmodesmus asym-
metricus

0.46 [7]

Dunaliella salina 0.1 [7]

Tetraselmis suecica 28 [78]

Bacillariophyceae Skeletonema costatum 5.5 [78]

Haptophyta Isochrysis galbana 8 [78]

Pavlova lutheri 6.5 [78]

Eustigmatophyceae Nannochloropsis oculata 0.17 [78]
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expression of target genes via activation of two classes of 
nuclear receptors, the retinoic acid receptors and the reti-
noid X receptors [129]. Deficiency in vitamin A is one of 
the major factors implicated in the pathogenesis of anae-
mia. During pregnancy, an additional intake of vitamin 
A is recommended by the World Health Organization 
(WHO) in developing countries, for the prevention of 
night blindness, without exceeding in consumption for its 
teratogenic side effect and for the increased risk of vom-
iting and fontanel bulging observed in trials testing thera-
peutic doses among infants. Many studies conducted 
among populations deficient in vitamin A, revealed that 
vitamin A reduces diarrhoea-related mortality (28%) and 
new episodes of diarrhoea (15%). Concerning chemopre-
vention strategy for cardiovascular and cancer diseases, 
some epidemiological and clinical trial studies [130] 
revealed an increase in lung cancer incidence for patients 
(mainly smokers) that have supplemented their diet with 

vitamin A in combination with β-carotene in last five 
years before diagnosis.

Vitamin D regulates calcium and phosphate metabo-
lism, so it is responsible for the formation and main-
tenance of bones. It is related to the postmenopausal 
women health, with particular attention to the fracture 
prevention in the case of osteoporosis disease [131]. 
Another important role of vitamin D in good health sta-
tus maintenance regards the correct intake of it during 
pregnancy for the prevention of low birth-weight and 
preterm delivery [132]. Vitamin D and its analogues may 
be effective in preventing many types of human cancer 
diseases including breast cancer, prostate cancer, colo-
rectal cancer, and some hematological malignances [133]. 
Most recent finding about vitamin D bioactivity regards 
its role in the prevention of COVID19 infection and mor-
tality [134]. A relationship between vitamin D presence 
and the reduction of complications in COVID19 patients 

Fig. 2  Intracellular location of vitamins in microalgae, and the environmental factors mainly modulating their content
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attributed to downregulated inflammation and cytokine 
production has been highlighted [135].

Vitamin E role is mainly based on its antioxidant prop-
erties, especially in prevention [136]. of lipid peroxida-
tion and oxidative stress related diseases especially in 
epithelial tissues [137]. These pathological conditions 
include cardiovascular diseases, cancers, cataracts, mac-
ular degeneration, and neurodegenerative diseases such 
as Alzheimer disease [138].

Vitamin K is a key regulator for the synthesis of blood 
clotting factors in the liver: It is associated with disorders 
mainly related to coagulation. In particular, vitamin K 
deficiency is also linked to other pathological conditions, 
such as malabsorption disorders, antibiotics and drug 
interactions, especially with coumarin-based anticoagu-
lants [139].

Vitamin C is an essential dietary component for human 
nutrition, being a strong antioxidant and exerting an 
immunostimulant and chemopreventive function. Defi-
ciency of vitamin C causes “scurvy” with severe symp-
toms such as impaired wound healing, hemorrhage and 
edema, commonly manifest as swollen bleeding gums 
[140]. Unfortunately, vitamin C is one of the most unsta-
ble nutrients in presence of oxygen, metal ions, increased 
pH, heat or light [141]. In fact, cooking processes and 
long-term storage determine a significant loss of vitamin 
C [142]. Another important bioactivity of vitamin C con-
cerns its role against chronic and acute diseases mainly 
related to oxidative stress such as cancer, cardiovascular 
disease [143], hypertension, stroke [143], and neurode-
generative disorder [144, 145].

Vitamin B1—thiamine pyrophosphate is the metaboli-
cally functional form—is a nitrogen containing catalyst 
which plays a major role in glycolysis [115]. Vitamin B1 
has a key role in the synthesis of neurotransmitters and 
in the correct function of the neural system [146]. Defi-
ciency in vitamin B1 causes syndromes such as beriberi, 
polyneuritis, and Wernicke-Korsakoff. The primary 
symptoms of this vitamin lack include severe decreases in 
appetite, in growth, bradycardia, and muscular weakness.

Vitamin B2 (riboflavin) functions as a catalyst for 
redox reactions in numerous metabolic pathways and in 
energy production [140]. The active forms of vitamin B2 
are cofactors for enzymatic reactions in the TCA cycle 
and in fatty acid oxidization [147]. Vitamin B2 has also 
role in chemoprevention of cancer and infective diseases 
due to its involvement in redox and photoreactions with 
nucleic acids for the inactivation and destruction of host 
cells [148, 149]. Another crucial role of vitamin B2 is the 
involvement in the metabolism of vitamins B6, B9 and B12 
and its deficiency determines an insufficient recruitment 
of these other vitamins [150, 151]. Also, deficiency states 
in vitamin B2 generate various symptoms such as loss of 

appetite and depressed growth, cheilosis, angular stoma-
titis, and dermatitis, at neural level ataxia and paralysis, 
and vascular disorders.

Vitamin B3 (niacin) can be synthesized by mammals 
via an endogenous enzymatic pathway from tryptophan 
and is stored in the liver [152]. Vitamin B3 is also synthe-
sized from tryptophan by intestinal bacteria [153, 154]. 
In the form of the coenzymes NAD and NADP, niacin 
functions in many biological redox reactions. Niacin 
deficiency affects many organs, such as skin inflamma-
tion with exposure to sunlight becoming pathology well 
known as pellagra. Pellagra includes other symptoms 
such as diarrhea, depression or dementia [155]. In some 
cases, it was observed that niacin deficiency is also asso-
ciated with schizophrenia [156]. Niacin is metabolically 
synthetized from the amino acid tryptophan with a ratio 
of 1 mg of dietary niacin for 60 mg of tryptophan [157].

Vitamin B5 (pantothenic acid) has a potential car-
dioprotective role exerting anti-inflammatory effects 
through antioxidant properties [5]. Pantothenic acid 
deficiency although rare, causes dangerous effects on the 
liver (e.g., steatosis) and the nervous system (e.g., paraly-
sis), together with a-specific symptoms such as decreased 
appetite and fatigue [140]. Pantethine, a disulphide form 
of panthothenic acid, is synthesized in the body and con-
sidered as the most active form of vitamin B5 due to its 
sulfhydryl-group [158].

Vitamin B6 is widely distributed in dietary sources and 
in addition synthetized by gut microflora [159]. Clinical 
deficiency of vitamin B6 generally occurs together with 
all vitamin B complex [160]. In particular there are cases 
of vitamin B6 deficiency, such as anemia post pancreati-
coduodenectomy [161]. Vitamin B6 contributes to fatty 
acid biosynthesis, breakdown of certain storage com-
pounds as well as in the biosynthesis of neurotransmit-
ters [20, 162–167].

Vitamin B7 (biotin) is widely distributed in food items 
and synthesized in meaningful amounts by gut micro-
flora in humans. Recently it was showed the role of biotin 
in immune-mediated intestinal inflammation [168].

Vitamin B9 is converted by intestinal bacteria into its 
active form tetrahydrofolate [169, 170] starting from 
folates, which are widely available in dietary sources of 
plant and animal origins [140]. Folates have important 
roles in various catabolic and biosynthetic routes through 
numerous reactions that involve, among the others DNA 
and purine synthesis [171]. Folates are also involved in 
amino acid and nucleotide metabolism and methyla-
tion reactions, thus having a fundamental role in nor-
mal embryogenesis by supporting cell division. For this 
reason, it is recommended to assume a correct dietary 
intake of folate during early pregnancy, in order to sig-
nificantly reduce the risk of neural tube defects at birth 
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[172]. Folate deficiency may cause impaired biosynthesis 
of DNA together with clinical symptoms of megaloblas-
tic anemia, alopecia, achromotrichia, and neuropathy 
[173]. It is noteworthy that the bioavailability of naturally 
occurring folates is low if compared to synthetic folic 
acid, normally used in food fortification and supplements 
[174].

Vitamin B12 (cyanocobalamin) can be converted to 
either of the two important active forms: methylcobala-
min and 5-deoxyadenosylcobalamin [175]. In humans, 
where it is required in trace amounts, B12 is a cofactor 
for two enzymes: methionine synthase and L-methylmal-
onyl-CoA mutase [71, 176]. These enzymes have crucial 
roles in amino acid and fatty acid metabolism, and DNA 
synthesis. Methionine synthase also requires folate for its 
action. Vitamin B12 is widely distributed in human food 
of animal or vegetable origin, such as edible algae and fer-
mented soybean-based foods [177]. Deficiency in vitamin 
B12 might induce peripheral neuropathy and neurological 
dysfunction (e.g., cognition) [140] and, when associated 
with folate depletion, it becomes one of the main causes 
of megaloblastic anemia [178].

Microalgal vitamins and human health
Algal foods offer one of the few vegetarian alternatives 
for cobalamin in the diet. While some studies hypothe-
sized that algal-derived vitamin B12 was not bioavailable 
to humans [179], other authors showed that increased 
consumption of Chlorella or nori by vegan people pre-
vented B12 deficiency [177]. Also, feeding nori to vitamin 
B12-deficient rats yielded a 1.9-fold increase in hepatic 
levels of total B12 compared to those without nori sup-
plementation [180]. Therefore, algal foods offer one of 
the few vegetarian alternatives for cobalamin in the diet 
[181].

Among microalgae, Spirulina is called “superfood” 
[182] thanks to its richness in vitamins (A, E, K, B1, B2, 
B3, B6 and B12) together with its macromolecular com-
position, in term of proteins and other bioactive com-
pounds [5, 182]. One g of commercial Spirulina powder 
supplies up to half of the RDA for β-carotene and vitamin 
B12 [183], with a recommended consumption of less than 
4 g per day for an average healthy adult to avoid any toxic 
effect [184]. Yet, Chlorella pyrenoidosa powder reduced 
the risk of anemia, proteinuria and edema in pregnant 
women [185] thanks to its high content in thiamine, ribo-
flavin, folic acid, and biotin [186].

One of the main sources of vitamin D is represented 
indirectly by (micro)algae, that which ingested by sea-
food, allow them to provide vitamin D to humans. The 
direct use of micro(algae) in this context would increase 
the efficiency and meet with the vegetarian or vegan 
requirements.

The microalgal production related industry is currently 
increasing as the global nutraceutical market size is pro-
jected to reach USD 722.49 billion by 2027 [187]. Vita-
mins and minerals together accounted for over 40.71% 
share in 2019 while functional food accounted for the 
largest share in 2019 and generated revenue of USD 
187.51 billion [187].

Algal species of Nannochloropsis and Chlorella vulgaris 
are primary ingredients used in the sport nutrition indus-
try and are priced at about USD 18,000–36,000 t−1 [187]. 
For instance, Chlorella is one of the top-selling food sup-
plements in Japan and it is produced by > 70 companies 
worldwide [188, 189]. Also, β-carotene from Dunaliella 
currently values USD 1500 per kilogram, and its use as a 
nontoxic vitamin A precursor has made it a mainstay in 
multivitamin and specialty formulations [190].

In EU, under the European Food Safety Authority 
(EFSA) (Regulation ECNo 2015/2283 [191] several micro-
algae are authorized as food products (Fig.  3), including 
Anabaena flos-aquae, Arthrospira platensis, Chlorella 
luteoviridis, Chlorella pyrenoidosa, Chlorella vulgaris, 
Odontella aurita, Tetraselmis chui and astaxanthin from 
Haematococcus pluvialis. In USA, the Food and Drug 
Administration [191, 192] currently recognizes few micro-
algae as safe for human consumption (Fig.  3), namely 
Arthrospira platensis, Chlamydomonas reinhardtii, Aux-
enochlorella protothecoides, Chlorella vulgaris, Dunaliella 
bardawil and Euglena gracilis [189]. While Arthrospira 
platensis is currently used as food worldwide (Canada, 
China, EU, India, and Japan), the other species vary with 
the geographical areas (Chlorella protothecoides in the 
U.S. and Japan, C. pyrenoidesa in EU and China, C. vul-
garis in Canada, EU and Japan, etc. [189]). Also, it has to 
be noted that all these microalgae belong to cyanobacte-
ria or green algae groups, except O. aurita which is the 
unique diatom in this regulated panorama.

Studies combining the analysis of vitamin concentra-
tions together with testing algal product as food com-
plements or functional food are needed to enhance the 
role of microalgae as food complements [180]. Also, the 
evaluation of the digestibility of microalgal biomass is 
required. In  vitro models simulating human digestion 
are used to assess structural changes, digestibility and 
release of food components [193, 194], e.g. evaluating 
several seaweeds and microalgae food products, which 
highlighted class-related differences [192, 195–197]. 
Eukaryotic microalgae can present a robust multi-layered 
cell wall in which cellulose, hemicellulose, pectin com-
pounds, glycoproteins and algaenan can limit the access 
of the digestive enzymes to the cell components. Con-
versely, cyanobacteria appear to be more easily digest-
ible due to their peptidoglycan layer and the proteic and 
lipopolysaccharidic outer membrane [192, 198].
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The relationship between vitamins content and human 
health or wellness is not direct. The bioaccessibility and 
bioavailability of vitamins are different amongst vitamins 
and foods. Also, they are not all absorbed/retained in the 
same way. Furthermore, synergy between different bio-
active compounds might enhance their beneficial effects 
[199]. For instance, the effectiveness of carotenoids as 
antioxidants is dependent upon their interaction with 
other co-antioxidants, especially vitamins E and C [200, 
201]. Vitamin C acts as a potent synergist in the presence 
of α-tocopherol enhancing its antioxidant activity [201, 
202]. This effect can be further enhanced by phenolic 
compounds such as quercetin, forming a non-covalent 
association at the cytosol-membrane interface within 
the lipid bilayer in membranes, originating a complex in 
which antioxidant regeneration is significantly enhanced 
[203].

Microalgal challenges for vitamin production
Environmental manipulations can be a low-cost and effec-
tive way to modulate biosynthetic pathways and the natu-
ral production of vitamins enriched microalgal biomass, 
starting from the optimization of the resonance between 
growth, ecophysiological requirements and the environ-
mental/cultivation climate (Fig.  4). Attempts regarding 
enhancing microalgal vitamins production were already 
carried out. Optimization of α-tocopherol production 
has been done with Euglena gracilis Z, also maximiz-
ing β-carotene yield with mixotrophic cultivation [204]. 
UV-B light administration (until 4.4  kJ  m−2) improved 
the production of α-tocopherol and β-carotene in Chlo-
rella vulgaris [109]. Also, high α-tocopherol productivity 
was achieved in Euglena by modifying culture conditions 
[111] or through a two-step cultivation strategy [79, 107]. 
Two-step cultivation strategy was also carried out for 
enhancing β-carotene production in Dunaliella [98, 205]. 
They reported increased β-carotene productivity to 
450 mg m−2 day−1 in stage one and to 300 mg m−2 day−1 in 
stage two, instead of the 200  mg β-carotene m−2  day−1 
yield obtained via the conventional cultivation.

A significant increase of ascorbic acid production 
(0.79  mg ascorbic acid g−1) has also been obtained in 
Tetraselmis sp. cultivated in 100  m3 photobioreactors 
[181]. Light climate—spectrum and intensity—varia-
tions tuned up the production of ascorbic acid in the 
diatom Skeletonema marinoi [12, 13]. Heterotrophy is 
also a way for increasing productive the yield of ascor-
bic acid, as shown in the red microalga Galdieria par-
tita [206]. Heterotrophic synthesis of L-ascorbic acid 
has been also performed in the green microalga Chlo-
rella pyrenoidosa [207]. Production of vitamin K1 of 
40 μg L−1 day−1 was achieved by cultivating the cyano-
bacteria Anabaena cylindrical varying the medium 

composition and day length [94]. Vitamin D3 accumula-
tion might be obtained thanks to interactions between 
microalga and UV-B light as revealed in the eustigma-
tophycean Nannochloropsis sp. [22]. The addition of 
cobalt chloride salt in Bold’s Basal Medium maximized 
vitamin B12 content in Chlorella vulgaris with a 7–12% 
higher content than control condition [112]. Also, for 
vitamins B1 and B2, the tuning of light could increase 
the production of vitamins B1 and B2 [77, 83].

Although physical or chemical manipulation of cul-
tivation techniques is one way to improve the yield 
of vitamin production per microalgal biomass unit, 
biological manipulation might be undertaken. Some 
attempts of genetic manipulations of microalgae for 
enhancing bioactive compounds production (e.g., vita-
mins) are also on-going. However, this route does not 
ensure the maintenance of optimal growth of such 
organisms and poses the question of “genetically modi-
fied organisms” whose entrance into the food market 
could be extremely difficult. Nuclear transformants 
of the green model alga Chlamydomonas reinhardtii 
expressing protein intrinsic factors have been gener-
ated, suggesting that microalgae can represent a viable 
host for the production of a vegetarian protein intrin-
sic factor, source for B12 enrichment [208]. Also, the 
potential of riboswitches in microalgae [209] might 
be of interest for genetic manipulations aiming to 
enhanced thiamine production.

Another route of biological manipulation for vita-
mins’ productive yield increase is the co-cultivation 
between at least two different species (alga-bacteria or 
alga-alga; [15]). Bacteria-microalga co-cultivation might 
improve the yield of harvested microalgal biomass 
[101], and a way to protect microalgae against patho-
gens through the synthesis of antibiotics from bacteria 
as well as to enhance the synthesis of microalgal specific 
compounds. Vitamins can be a target for such strategy, 
especially concerning vitamins B supply since micro-
algae are mainly auxotrophs for some of them [1, 15, 
115, 210]. Different studies showed the interests of the 
mutualistic relationships between microalgae and bac-
teria, the latter providing vitamin B12 [211]. Interests of 
co-cultivation for thiamine production in some micro-
algae, e.g. Chlamydomonas reinhardtii, are linked to the 
capacity of these microalgae to activate the biosynthetic 
pathway of vitamin B1 by sensing the presence of vita-
min B1 from outside, e.g. produced by bacteria [212]. 
For biotin (vitamin B7), results on mutualistic relation-
ships between algae and other organisms (bacteria or 
fungus) are few [115, 213].

Microalga-microalga co-cultivation might be a real 
alternative, aiming to improve the yield synergetic bio-
active compounds production. This strategy requires 
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knowledge on species/genera/classes of microalgae 
and the selection of species enhancing mutualism or 
commensalism, avoiding parasitism or competition 
for the same resources, e.g. light spectrum (e.g., blue: 
green ratio), nitrogen source (nitrates, ammonium, 
organic nitrogen sources) or silica. This route focusses 
on the final harvested microalgal product more than 
on the functional mutualistic relationships between 
microalgae. The complementarity of microalgae in 
terms of nutritional values paves the way to investi-
gate their integration in a unique cultivation step. For 
instance, diatoms, rich in carotenoids, polyphenols, 
some vitamins (e.g., A and C) and lipids can be mixed 
with cyanophytes, rich in proteins, vitamins (e.g., B) 
and phycobiliproteins, to provide a “super synergetic 
microalgal product”. Yet, a co-cultivation of small and 
big species might be a choice, small species having a 

lower level of requirements from outside than bigger 
species. Also, the co-cultivation of vitamins B pro-
ducer alga and a non-vitamin B producer (with greater 
ability to synthesize other bioactive compounds) is a 
way to finally produce and high bioactive quality bio-
mass. Research activities in this sense are on-going and 
the results highly promising (Brunet et  al., personal 
communication).

All the aforementioned strategies could increase the 
yield of both the biomass and the molecules of interest. 
Prior microalgal utilization as functional ingredients or 
nutraceuticals, further investigation must be undertaken. 
Certain types of manipulation could imbalance micro-
algal nutritional values or even compromise their safety. 
Therefore, downstream studies assessing the safety and 
quality of the final product are mandatory.

Fig. 3  Map of the number of authorised microalgae species worldwide for direct human consumption. In grey, absence of data. (Data sources: 
https​://www.argen​tina.gob.ar/anmat​/codig​oalim​entar​io (Argentina); https​://www.foods​tanda​rds.gov.au/Pages​/defau​lt.aspx (Australia and New 
Zealand); https​://porta​l.anvis​a.gov.br (Brasil); https​://healt​h-produ​cts.canad​a.ca/lnhpd​-bdpsn​h/index​-eng.jsp (Canada); https​://www.fia.cl/wp-conte​
nt/uploa​ds/2018/03/N-3-Revis​ta-Mayo-2016.pdf (Chile); https​://en.nhc.gov.cn/2018-10/22/c_74485​.htm (China); https​://www.invim​a.gov.co 
(Colombia); https​://old.fssai​.gov.in/Gazet​tedNo​tific​ation​s.aspx (India); https​://www.jetro​.go.jp/ext_image​s/en/repor​ts/regul​ation​s/pdf/foode​xt201​
0e.pdf (Japan); https​://www.gob.mx/cofep​ris (Mexico); https​://www.ins.gob.pe/insvi​rtual​/image​s/otrpu​bs/pdf/Tabla​%20de%20Ali​mento​s.pdf 
(Peru); https​://paten​ts.googl​e.com/paten​t/RU213​7402C​1/en (Russia); https​://ec.europ​a.eu/food/safet​y/novel​_food/catal​ogue/searc​h/publi​c/index​
.cfm (UE and observers); https​://www.fda.gov/food/gener​ally-recog​nized​-safe-gras/gras-notic​e-inven​tory (USA))

https://www.argentina.gob.ar/anmat/codigoalimentario
https://www.foodstandards.gov.au/Pages/default.aspx
https://portal.anvisa.gov.br
https://health-products.canada.ca/lnhpd-bdpsnh/index-eng.jsp
https://www.fia.cl/wp-content/uploads/2018/03/N-3-Revista-Mayo-2016.pdf
https://www.fia.cl/wp-content/uploads/2018/03/N-3-Revista-Mayo-2016.pdf
https://en.nhc.gov.cn/2018-10/22/c_74485.htm
https://www.invima.gov.co
https://old.fssai.gov.in/GazettedNotifications.aspx
https://www.jetro.go.jp/ext_images/en/reports/regulations/pdf/foodext2010e.pdf
https://www.jetro.go.jp/ext_images/en/reports/regulations/pdf/foodext2010e.pdf
https://www.gob.mx/cofepris
https://www.ins.gob.pe/insvirtual/images/otrpubs/pdf/Tabla%20de%20Alimentos.pdf
https://patents.google.com/patent/RU2137402C1/en
https://ec.europa.eu/food/safety/novel_food/catalogue/search/public/index.cfm
https://ec.europa.eu/food/safety/novel_food/catalogue/search/public/index.cfm
https://www.fda.gov/food/generally-recognized-safe-gras/gras-notice-inventory


Page 16 of 23Del Mondo et al. Microb Cell Fact          (2020) 19:201 

Fig. 4  Pipeline design: Research and development strategies for improving microalgal vitamins uses for human food
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Conclusions
For humans, microalgae can be a source of vitamins, 
together with other compounds, which increase the 
bioactive and nutraceutical value of microalgal bio-
mass. The biotechnological interest of microalgae 
relies on their small size, high growth rate, reduced 
space needed for cultivation, and richness in bioactive 
compounds [214–216]. Microalgae have the potential 
to fill many of the global demand regarding different 
fields (e.g., nutraceuticals, energy, animal feed) being 
considered as valuable biofactories [217]. Increasing 
literature assessed that microalgae cover antiviral, anti-
tumor, antioxidant, anti-inflammatory, antiallergenic, 
antidiabetic, and antibacterial properties [218–220]. 
So far, the limitations of developing industrial micro-
algal biotechnology are mainly represented by the high 
production costs [221, 222]. Lowering costs require an 
optimization of all the steps from the microalgal spe-
cies selection to the cultivation and biomass harvest-
ing until the extraction and fractionation of products. 
Multidisciplinary integration of tools (bioinformat-
ics, system biology, molecular biology; [223]) as well 
as artificial intelligence [224] might provide a synergy 
for a systems-level understanding of microalgal pro-
duction, improving the output of industrially valuable 
strains. Moreover biological, physiological and ecologi-
cal data need to be integrated to better develop the bio-
technological pipeline (Fig. 4) from species chemo- or 
bio-diversity to its industrial up-scaling [14]. Indeed, 
the great biodiversity enhances the microalgal potential 
for the biotechnological production of high valuable 
molecules, such as vitamins. Thanks to the richness 
and diversity of vitamins present in microalgae, they 
are potentially one of the main targets for developing 
microalgal biotechnology.
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