
Daniels et al. Microb Cell Fact          (2018) 17:198  
https://doi.org/10.1186/s12934-018-1040-6

RESEARCH

Transcriptomic and fluxomic changes 
in Streptomyces lividans producing heterologous 
protein
Wouter Daniels1†, Jeroen Bouvin1†, Tobias Busche2, Christian Rückert2, Kenneth Simoens1, 
Spyridoula Karamanou3, Lieve Van Mellaert3, Ólafur H. Friðjónsson4, Bart Nicolai5, Anastassios Economou3, 
Jörn Kalinowski2, Jozef Anné3 and Kristel Bernaerts1* 

Abstract 

Background:  The Gram-positive Streptomyces lividans TK24 is an attractive host for heterologous protein production 
because of its high capability to secrete proteins—which favors correct folding and facilitates downstream process-
ing—as well as its acceptance of methylated DNA and its low endogeneous protease activity. However, current 
inconsistencies in protein yields urge for a deeper understanding of the burden of heterologous protein production 
on the cell. In the current study, transcriptomics and 13C-based fluxomics were exploited to uncover gene expression 
and metabolic flux changes associated with heterologous protein production. The Rhodothermus marinus thermo-
stable cellulase A (CelA)—previously shown to be successfully overexpressed in S. lividans—was taken as an example 
protein.

Results:  RNA-seq and 13C-based metabolic flux analysis were performed on a CelA-producing and an empty-plasmid 
strain under the same conditions. Differential gene expression, followed by cluster analysis based on co-expression 
and co-localization, identified transcriptomic responses related to secretion-induced stress and DNA damage. Fur-
thermore, the OsdR regulon (previously associated with hypoxia, oxidative stress, intercellular signaling, and morpho-
logical development) was consistently upregulated in the CelA-producing strain and exhibited co-expression with 
isoenzymes from the pentose phosphate pathway linked to secondary metabolism. Increased expression of these 
isoenzymes matches to increased fluxes in the pentose phosphate pathway. Additionally, flux maps of the central 
carbon metabolism show increased flux through the tricarboxylic acid cycle in the CelA-producing strain. Redirection 
of fluxes in the CelA-producing strain leads to higher production of NADPH, which can only partly be attributed to 
increased secretion.

Conclusions:  Transcriptomic and fluxomic changes uncover potential new leads for targeted strain improvement 
strategies which may ease the secretion stress and metabolic burden associated with heterologous protein synthesis 
and secretion, and may help create a more consistently performing S. lividans strain. Yet, links to secondary metabo-
lism and redox balancing should be further investigated to fully understand the S. lividans metabolome under heterol-
ogous protein production.

Keywords:  Streptomyces lividans, Heterologous protein production and secretion, 13C-based metabolic flux, RNA-seq 
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Background
Streptomyces lividans is an attractive host for the heterol-
ogous production of both mammalian and microbial pro-
teins, when traditional host systems return unsatisfactory 
results due to incorrect protein folding or lack of protein 
expression [1, 2]. A main advantage of Gram-positive 
bacteria such as S. lividans is the direct secretion of cor-
rectly folded heterologous proteins into the fermentation 
broth. S.  lividans TK24—a plasmid-free derivative of S. 
lividans 66 [3]—is preferred over other highly secreting 
Streptomyces species because of its relatively low level of 
extracellular protease activity, limited restriction-modifi-
cation system, and available biochemical knowledge due 
to its high similarity to the Streptomyces model organism 
S. coelicolor [1].

Heterologous protein yields obtained in S. lividans are 
often low or inconsistent, driving the research for uncov-
ering production bottlenecks and applying improvement 
strategies [1, 4]. Screening for alternative promoters and 
signal peptides [5], codon optimization [6], and optimi-
zation of operational conditions [7] have been applied as 
strategies—with varying success—for improving protein 
production in S. lividans. Additional increases in protein 
production might be obtained by finding genetic targets 
based on a thorough understanding of the metabolic 
burden caused by recombinant protein production. The 
presence of such metabolic effects that can be exploited 
was shown by metabolomics studies on a S.  lividans 
strain producing murine Tumour Necrosis Factor-α, and 
that showed profound changes in its metabolic finger-
print [8], as well as in the activation of overflow metabo-
lism [8, 9].

In the current study, changes in gene expression and 
metabolic fluxes in S. lividans TK24 overproducing the 
thermostable Cellulase A (CelA) from Rhodothermus 
marinus were investigated. The 260 aminoacyl residues 
of CelA are preceded by a 28-residue amino-terminal sig-
nal peptide of Streptomyces venezuelae subtilisin inhibi-
tor (vsi), which is cleaved off upon secretion via the Sec 
pathway. Sec dependent secretion is the major secretion 
route in Streptomyces and is most often used for heterol-
ogous protein secretion [1, 4]. Overproduction of secre-
tory proteins dependent on the Tat pathway—the second 
main pathway in Streptomyces, that secretes cytoplasmi-
cally pre-folded proteins—was found to cause a stringent 
response, plausibly negatively affecting productivity. No 
such response was found when the overproduced protein 
was Sec dependent [10]. However, such a response may 
also be dependent on the protein context and the levels 
of synthesis.
13C-based metabolic flux analysis is the method of 

choice for reliable estimation of metabolic fluxes in the 
central carbon metabolism [11]. The central carbon 

metabolism provides precursors, energy and reductive 
power for anabolic reactions such as protein biosynthe-
sis, and transmembrane transport reactions such as pro-
tein secretion. Heterologous protein biosynthesis and 
secretion will therefore have to compete for resources 
with the endogenous cell processes. The 13C-fluxom-
ics experiments were performed in a defined minimal 
medium containing glucose as the sole carbon source. A 
well-defined carbon source is an absolute requirement 
to clearly trace the distribution of 13C in the intracellular 
components, and thus allow metabolic flux estimation. 
Data were collected during exponential growth, when 
cells were assumed to be in pseudo steady state—i.e., 
lacking accumulation or depletion of intracellular metab-
olites and 13C [12]. Replicate experiments are performed 
and jointly fitted to increase confidence in the flux 
estimates.

In parallel with 13C-fluxomics, RNA-sequencing was 
performed to compare the transcriptomes the CelA-
synthesizing strain and the empty plasmid-carrying ref-
erence strain. Samples for RNA-seq data were harvested 
under the same conditions as those for 13C fluxomics, i.e., 
in a minimal medium with glucose under exponential cell 
growth. A transcriptomic analysis, consisting of differen-
tial gene expression analysis and expression-based gene 
clustering, was performed on obtained RNA-seq data. 
To obtain informative gene clustering results, additional 
RNA-seq data are generated for the early-, mid-, and late-
exponential, and stationary phase.

Our data reveal CelA-producing S. lividans has higher 
flux through the pentose phosphate pathway (PPP) and 
tricarboxylic acid cycle (TCA), shows gene expression 
linked to secretion stress and DNA damage, and shows 
induced transcription of the OsdR regulon—which is 
associated with hypoxia, oxidative stress, intercellular 
signaling and morphological development.

Methods
Strains, media and preculturing procedure
Three strains were used: Streptomyces lividans TK24, 
wild type (John Innes Centre, Norwich, UK), S.  lividans 
TK24 containing the multi-copy plasmid pIJ486, and 
S. lividans TK24 containing pIJ486 with the celA gene of 
Rhodothermus marinus cloned behind the strong consti-
tutive promoter and the signal peptide of Streptomyces 
venezuelae subtilisin inhibitor (vsi) [2, 13, 14]. All DNA 
manipulations were done according to [15]. The plas-
mid was maintained by addition of 10 mg thiostrepton/L 
(Merck, Darmstadt, Germany) to all growth media. 
Mycelium stocks were kept at − 80 ◦C in 20% v/v glycerol

Precultures were prepared in phage medium (per 
L: 10  g glucose, 5  g tryptone, 5  g LabM (Oxoid, 
Thermo-Fisher, Merelbeke, Belgium), 5  g yeast extract 
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0.74 gCaCl2 · 2H2O, 0.5 gMgSO4 · 7H2O, pH 7.2 ) [16]. 
Experiments for fluxomics and transcriptomics were 
performed in a minimal medium containing glucose 
as sole C-source (MMGLC; per L: 55.5  mmol glucose, 
1.8 g NaH2PO4, 2.6 gK2HPO4, 0.6 gMgSO4, 3 g (NH4)2SO4,

1mg ZnSO4 · 7H2O, 1mg FeSO4 · 7H2O, 1mgMnCl2 · 4H2O , 
and 1 mg CaCl2 ). For 13C-based fluxomics experiments, 
a mixture of 56% uniformly labeled glucose (U-GLC) 
and 44% position 1-labeled glucose (1-GLC) was used 
(Cambridge Isotope Laboratories, Tewksbury, Massa-
chusetts, United States). This optimal mixture was deter-
mined based on the network model and d-optimal design 
method in [17]. For expression-based gene clustering, 
additional samples for transcriptomics were harvested 
from growth in MMGLC supplemented with 5 g/L BD 
Bacto™Casamino Acids, Technical (MMGLC+CAS). 
Other chemicals were purchased from Sigma-Aldrich.

Precultures were subcultured twice in baffled shake 
flasks with 100  mL phage medium incubated at 30 ◦C 
and stirred on a magnetic stirrer (600 rpm). Precultures 
were grown for 72 h and 24 h, respectively. From the first 
preculture, 25 mL was collected, centrifuged (20 min at 
3200×g), supernatant was removed, and the pellet was 
resuspended in phage medium. For inoculation of the 
bioreactor, 75  mL of the second preculture was centri-
fuged (20 min at 3200×g), supernatant was removed, the 
pellet was washed twice with fresh reactor medium and 
resuspended in 9 mL reactor medium, of which 3 mL was 
used to inoculate the bioreactor medium.

Bioreactor experiments
Experiments were performed in a DASGIP parallel biore-
actor system (Eppendorf, Jülich, Germany) with a work-
ing volume of 1  L. Temperature, pH, agitation speed, 
and air flow were set at 30 ◦C , 6.8, 500 rpm, and 1 vvm, 
respectively. Dissolved oxygen was not actively con-
trolled, but never dropped below 30%. Antifoam (Y-30 
emulsion, Sigma-Aldrich, Overijse, Belgium) was added 
to avoid foam formation (500 µL/L initially, and further 
supplemented when required). For fluxomics, duplicate 
reactors were inoculated from the same preculture. One 
reactor contained medium with labeled glucose and the 
other reactor contained medium with unlabeled glu-
cose. The parallel experiment with unlabeled glucose was 
necessary to obtain representative values for the off-gas 
analysis, as labeled carbon gave rise to erroneous CO2 
concentration values in the infrared off-gas analysis. Par-
allel runs inoculated from the same preculture are here 
referred to as technical replicates, while repeat experi-
ments started from different precultures are further 
referred to as biological replicates. Samples for transcrip-
tome analysis were collected under the same conditions 
as those of the fluxomics experiments, in either the 

DASGIP parallel bioreactor system, or in a Bioflo 3000 
bioreactor (New Brunswick, New Jersey, USA) contain-
ing 3 L medium.

Biomass and extracellular metabolite analysis
At regular time points, samples were collected to deter-
mine cell dry weight and extracellular metabolites. Sam-
ples (5 or 10 mL) were centrifuged for 20 min at 3200×g, 
supernatant was filtered over 0.2µm PES (Filtropur, 
Sarstedt, Etten-Leur, Netherlands) stored for further 
analysis at 4 ◦C , and the cell pellet was resuspended in 
5 mL of ultra-pure water. Cell dry weight concentration 
was determined by filtration of the cell pellet suspension 
over a pre-dried, pre-weighted filter (Porafil 0.2µm cel-
lulose mixed esters membrane filter, Macherey-Nagel, 
Hoerdt, France) and cell dry weight was quantified after 
drying overnight at 105 ◦C . Concentrations of glucose, α
-ketoglutaric acid, acetic acid, lactic acid, and pyruvic 
acid in the supernatant were measured on an Agilent 
1200 HPLC (Diegem, Belgium) system equipped with an 
Aminex HPX-87H column (Bio-rad, Temse, Belgium). 
The column was kept at 40 ◦C and eluted with 5  mM 
H2SO4 at a rate of 0.60  mL/min. Organic acids were 
detected with UV (Agilent DAD, at 210 nm) [18]. Glu-
cose was detected by refractive index changes (Agilent 
RID, at 35 ◦C ) [18].

The total protein concentration in the supernatant was 
quantified using a Bradford protein assay [19]. A calibra-
tion curve was established based on known bovine serum 
albumin (Sigma-Aldrich) concentrations.

Quantification of CelA in the extracellular medium 
was performed by SDS-PAGE using 13.5% acrylamide 
gel concentration in Tris-HCl buffers. Prior to electro-
phoresis the samples were concentrated up to tenfold 
using a Centrifugal Vacuum Concentrator (Labconco, 
Kansas City, USA) overnight at 20 ◦C . Purified CelA was 
used as calibration standard for analysis. SDS-PAGE was 
followed by wet Western blot transfer in 20% methanol 
to a Amersham Protran nitrocellulose membrane (GE 
Healthcare, Diegem, Belgium) using a modular Omni-
page (BiocomDirect, Bridge of Weir, United Kingdom) 
system for both electrophoresis and blotting. All tech-
niques were performed according to the protocols pro-
vided in the Western Blotting Principles and Methods 
by GE Healthcare, 2011. After transfer, the membranes 
were blocked and washed, and subjected to CelA-specific 
antibodies (rabbit, in-house production; [2]). A chemilu-
minescent reaction was achieved by use of an anti-rabbit 
IgG goat antibody cross-linked to horse-radish peroxi-
dase (Jackson ImmunoResearch, Ely, United Kingdom) 
and the SuperSignal West Pico PLUS kit (Thermo Scien-
tific, Blijswijk, Netherlands). Produced light was meas-
ured by ImageQuant LAS 4000 (GE Healthcare, Diegem, 
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Belgium) and analysed with ImageJ 1.50  g software 
(National Institutes of Health, USA). For quantification 
of CelA in the second 13C experiment, a Bio-Rad Bio-
Dot was used according to manufacturers instructions. 
A Protran nitrocellulose membrane was wedged into the 
manifold and tightened under vacuum. After filtration 
of the samples, the membranes where treated as stated 
above for detection and quantification.

RNA isolation, cDNA synthesis and RNA‑seq analysis
Samples for transcriptomics analyses were collected at 
different stages of growth throughout the experiments. 
Samples of 1 mL were centrifuged at 21,000×g for 30 s, 
supernatant was removed, the pellet was frozen in liquid 
nitrogen, and stored at − 80 ◦C.

RNA was extracted with the innuPREP RNA Mini 
kit (Analytik Jena, Germany) according to the manu-
facturer’s instructions. Residual DNA was removed by 
digestion with 10 U RNase-free DNase I (Thermo scien-
tific) for 1 h in the presence of RiboLock RNase inhibi-
tor (Thermo scientific). After DNA digestion, the RNA 
was again purified with the same kit. RNA quality was 
checked by Trinean Xpose (Gentbrugge, Belgium) and 
the Agilent RNA 6000 Nano Kit on an Agilent 2100 Bio-
analyzer (Agilent Technologies, Böblingen, Germany). 
Ribosomal RNA molecules were removed from total 
RNA with the Ribo-Zero rRNA Removal Kit (Illumina, 
San Diego, USA) and removal of rRNA was checked with 
the Agilent RNA 6000 Pico Kit on an Agilent 2100 Bioan-
alyzer. Libraries of cDNA were prepared with the TruSeq 
Stranded mRNA Library Prep Kit (Illumina, San Diego, 
USA), and the resulting cDNA was sequenced paired end 
on an Illumina MiSeq system using 75 bp read length.

Trimmed reads with a minimum of length of 36  bp 
were mapped to the S. lividans TK24 genome sequence 
[20] with Bowtie 2 using standard settings [21]. For visu-
alization of read alignments, ReadXplorer 2.1.0 was used 
[22]. Transcripts per million (TPM) values were calcu-
lated based on the raw read counts per coding sequence 
plus one pseudo read [23]. For replicate experiments, 
mean TPM values were computed.

In total, 12 transcriptomics data sets were col-
lected in MMGLC (same medium as for 13C-fluxom-
ics), and 9 transcriptomics data sets were obtained in 
MMGLC+CAS. Transcriptomics data covered also the 
wild-type strain.

Isotopic labeling analysis
For measurement of mass isotopomer distributions in 
intracellular proteinogenic amino acids, an extraction 
and derivatization protocol for proteinogenic amino 
acid analysis was established based on [24–26]. A 1 mL 
bioreactor cell culture sample was centrifuged for 5 min 

at 14,000×g. After removing the supernatant, the pellet 
was resuspended in 500 µL HCl, and incubated at 105 ◦C 
for 24  h. The hydrolysed material was centrifuged to 
remove cell debris, and 250 µL was transferred to a new 
Eppendorf tube. Samples were subsequently dried under 
N2 flow at 65 ◦C . For derivatization, 75 µL pyridine was 
added to the dried samples, followed by addition of 75µl 
MTBSTFA+1% TBDMCS (Sigma-Aldrich). The mixture 
was incubated for 30 min at 60 ◦C in a heating block and 
centrifuged for 5 min at 14,000×g. The supernatant was 
transferred to vials and injected on a Gas chromatogra-
phy–mass spectrometry (GC–MS) system consisting 
of a 7890A GC, equipped with a HP-5MS column, and 
a 5975C VLMSD MS with triple-Axis detector (Agilent). 
Mass isotopomer distributions (MIDs) were obtained by 
manual integration of the ion chromatograms [27]. Prior 
to further analysis, the resulting MIDs were corrected for 
naturally occurring isotopes [28], as well as for the frac-
tion of naturally labeled biomass originating from the 
inoculum [29]. The software tool IsoCor [30] was used 
for the correction of naturally occurring isotopes. Mass 
isotopomer distributions were determined for proteino-
genic amino acids and only fragments which were proven 
acceptable for 13C-MFA by [27] were included. Used 
fragments can be found in Additional file  1. The rela-
tive precision of the isotopomer measurements, used as 
weighing factor during flux optimization, was assumed to 
be 0.4 mol% [27, 31, 32].

Differential gene expression and hierarchical cluster 
analysis
Differential expression between S. lividans with pIJ486 and 
S. lividans with pIJ486-vsi-celA grown in MMGLC was per-
formed using the DESeq2 R package [33]. p-values were 
adjusted to control multiple testing using the Benjamini–
Hochberg approach [34]. A false discovery rate (FDR) of 
0.05 was used for identification of differential expression. 
A hierarchical cluster analysis was subsequently applied 
to discover general expression trends in the differentially 
expressed genes. To facilitate cluster analysis, additional 
transcriptomics datasets were included. Data were obtained 
for S. lividans TK24 wild type (WT), WT containing pIJ486 
(empty plasmid reference strain), and WT containing 
pIJ486-vsi-celA (CelA-producing strain) grown in MMGLC 
and MMGLC+ CAS . The z-scored TPM values of all data-
sets (21 in total) were ordered in an agglomerative hierarchi-
cal cluster tree, based on the minimum Euclidean distance.

Local clustering
Genes were clustered based on co-expression and physi-
cal location on the genome for a higher-level view on dif-
ferential expression. The Euclidean distance between the 
z-scored TPM values of all datasets (see above) was used 
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as a measure for co-expression between genes. The full 
distribution of distances between all 7496 genes in the 
genome was calculated, and genes were matched based 
on their p-value within this distribution. Genes i and j (as 
indexed in order of physical appearance on the genome) 
were matched if their p-value was equal to or smaller 
than a given cut-off p-value, that was given by:

in which |i − j| is the physical distance in number of 
known genes (1 for neighboring genes, 2 if there is one 
separating gene, etc.), and p0 is the base p-value for 
matching two neighboring genes. Clusters were formed 
by grouping all genes that match directly or indirectly 
(i.e., through a shared match). Since the requirement that 
all genes that match directly belonged to the same clus-
ter could lead to large heterogeneous clusters (especially 
for high values of p0 ), the resulting clusters were split 
according to a minimal cut routine that accounts for both 
Euclidean distance and physical location. Clusters were 
split until all gene links within the resulting clusters had 
a p-value lower than a given tolerance ptol . The extensive 
description of the developed clustering routine is pro-
vided in Additional file 2. For the expression analysis in 
this paper, a p0 of 0.05 and a ptol of 0.15 were used.

Estimation of specific growth rates and yields
Biomass data and extracellular metabolite data were used 
to compute specific growth rates and yields for 13C-MFA. 
Biomass data were fitted by multi-phase linear regres-
sion as described in [9]. The model identifies a lag phase, 
one or more exponential phases with corresponding spe-
cific growth rate µ (h−1 ), and a stationary phase. Biomass 
data of technical replicates were jointly fitted (i.e., model 
parameter estimates must be identical for both data sets), 
while biomass data from biological replicates were fitted 
with identical specific growth rates, but a different lag 
phase duration, start of the stationary phase, and initial 
biomass concentration. All parameters and their linear 
statistics were estimated by using lsqnonlin in MATLAB 
R2012b (The MathWorks, Inc., MA, USA). The lack-of-fit 
test (F-test) was used to confirm the presence of multiple 
growth phases ( p < 0.05 ) [35].

Yield estimates were obtained by fitting a straight line 
on metabolite (or biomass) concentrations y (mmol) and 
glucose x concentrations (expressed in 100 mmol/L) from 
the exponential growth phase. The slope corresponds 
to the yield (mmol/100 mmol glucose). Since measure-
ment errors are present on both measurements, Deming 
regression was used to estimate the yields. In Deming 
regression [36] (a special case of total least squares), the 
slope β̂ can be found as:

(1)pco,ij = 1− e
ln(1−p0)

|i−j|

with x̄ and ȳ the average value of the x and y variables, 
n the total number of data points, and σ 2

η  and σ 2
ǫ  the 

variances of the measurement errors in glucose (x) and 
metabolite (y) concentrations, respectively. These val-
ues were estimated from previous experiments, in which 
technical replicates were performed for all exometabo-
lome measurements (data not shown). Standard devia-
tion of the regression coefficients were calculated using 
the jackknife leave-one-out method, which has been 
shown to perform well in the case of Deming regression 
[37].

Pseudo steady-state was assumed during exponential 
growth such that the oxygen uptake rate (OUR) and car-
bon dioxide production rate (CPR) could be calculated 
from the mass balances:

with Fin
g  the ingoing molar air flow rate (calculated from 

the volumetric flow rate and the ideal gas law), and f gin 
and f gout the volumetric fraction in the in- and outgo-
ing air, respectively. In all experiments f ginO2

 , f ginCO2
 , and f ginN2

 
were 20.97%, 0.03% and 78.75%, and f goutH2O

 was 1.1%. The 
total O2 consumption and CO2 production were obtained 
by integration of the OUR and CPR, respectively. By 
doing so, yield calculations of CO2 and O2 can be exe-
cuted in analogy with the extracellular metabolites.
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Flux estimation
Flux estimation and linearized statistical analysis were 
performed in the software package 13CFLUX2 [38]. 
Monte Carlo simulations were performed in influx_s [39] 
to determine the non-linear confidence intervals. The 
network model for the central carbon metabolism was 
implemented in FTBL-format, which is accepted as input 
file by both packages (Additional file  3). Details on the 
model construction are given in Additional file  1. Flux 
estimates were obtained by minimising the differences 
between the measured and simulated values of MIDs 
and net flux measurements via non-linear weighted least 
squares regression [38]. To ensure a global optimum was 
reached, flux fittings were started from 100 sets of ran-
dom, initial flux values. The non-linear confidence inter-
vals were obtained through 200 Monte Carlo runs. Data 
from replicate experiments were jointly fitted by includ-
ing all measurements in the FTBL file.

Calculation of cofactor and energy balances
Cofactor and energy dependencies for the reactions in 
the 13C-MFA model were taken from the genome-scale 
model of S.  lividans [40]. Glucose-6-phosphate dehy-
drogenase and isocitrate dehydrogenase are NADP+

-dependent, while 6-phosphogluconate, malate, glyc-
eraldehyde 3-phosphate, and pyruvate dehydrogenase 
are NADH-dependent. Two enzymatic routes convert α
-ketoglutarate into succinyl-CoA: the NADH-generating 
2-oxoglutarate dehydrogenase complex, and the 2-oxog-
lutarate synthase coupled to ferredoxin-NADP+ reduc-
tase, which generates NADPH. Contribution of each 
reaction pathway was chosen in accordance to their rela-
tive expression in the transcriptomics data.

Cofactor (NADPH, NADH) and energy (ATP) pro-
duction and consumption were calculated based on the 
estimated fluxes and the metabolic requirements for the 
synthesis of biomass and protein, respectively (Addi-
tional file  4). One gram of biomass required 32.5  mmol 
and 13.1  mmol of ATP and NADPH, respectively, and 
resulted in the production of 2.3  mmol NADH. Pro-
tein synthesis required 53.8  mmol ATP and 20.9  mmol 
NADPH per gram, while producing 3.8  mmol NADH. 
Given pseudo steady-state during exponential growth, 
production and consumption of cofactors and energy is 
assumed to be balanced. Excess NADPH was assumed to 
be re-oxidized via transhydrogenase activity, generating 
NADH. Excess NADH was re-oxidized through oxidative 
phosphorylation, generating ATP in accordance to a P/O 
of 1.5 [40]. Excess ATP was assumed to be used in non-
quantifiable cell maintenance processes (mATP), such as 
turn-over of structural molecules and homeostasis.

Results
Differential gene expression and cluster analysis
Differential expression analysis was performed on RNA-
seq data of S. lividans TK24 carrying either pIJ486 (ref-
erence strain) or pIJ486-vsi-celA (CelA-producing strain) 
in the exponential growth phase in a minimal medium 
with glucose. A set of 173 genes out of a total of 7496 
showed differential expression between the reference and 
producing strain with a Benjamini–Hochberg adjusted 
p-value smaller than 0.05. Out of these 173 significantly 
differentially expressed genes, 136 were upregulated and 
37 were downregulated in the CelA-producing strain. For 
this set of differentially expressed genes, a hierarchical 
cluster analysis was performed using an extended data 
collection (21 RNA-seq data sets) including data for the 
wild type, multiple culture phases, and a rich medium. 
The resulting hierarchical cluster tree was split to form 
26 clusters. Unprocessed TPM values and all differen-
tially expressed genes are given in Additional file 5.

Three large expression groups were identified from 
hierarchical clustering: (Group  I) 67 genes were sig-
nificantly activated in a CelA-producing strain, with 
little expression in data from the wild-type and empty-
plasmid strain, (Group II) 42 genes were clustered in a 
relatively heterogeneous group containing 11 upregu-
lated and 31 downregulated genes, and (Group  III) 
35 genes had a distinct expression pattern that coin-
cided with the expression of response regulator OsdR. 
Expression groups I and III were sharply defined and 
consistent. Group  II, in contrast, contained no clear 
expression trend, and included both upregulated and 
downregulated genes. Genes in this group were con-
sequently unlikely to be co-expressed as part of a sin-
gle cellular response. These genes, and the 29 genes 
not clustered in one of the three large groups (always 
contained in groups of 5 or less genes) are discussed 
on an individual level, rather than as being part of a 
coordinated response. Normalized expression pat-
terns for Group  I (CelA production-correlated genes) 
and III (OsdR-correlated expression) for the produc-
ing and reference strain are given in Fig. 1. Expression 
patterns for all transcriptomics data used for cluster-
ing—which includes data from the wild-type strain and 
data in a medium supplemented with casamino acids—
are given in Additional file  5. In addition, genes were 
grouped using the developed location-based clustering 
algorithm (Additional file  2). The resulting local gene 
clusters allowed for a more insightful analysis and func-
tional classification, as co-expression along with shared 
genomic location is a strong indicator of a functional 
relation. Results are given in Tables 1, 2, 3, and 4.

Many of the 67 genes that clustered with the pres-
ence and production of CelA (Group I; Fig. 1) are linked 
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to DNA damage repair, protein secretory stress, and 
antibiotic resistance. Table  1 shows an overview of the 
CelA-correlated genes with (partially) known function. 
Among the gene functions linked to DNA damage repair 
were recombinase RecA and its regulator RecX, repair 
protein RadA, nucleotide excision endonuclease sys-
tem UvrABC proteins A and B, Uracil-DNA glycosylase 
Ung2, two ligases, two polymerases, two helicases, and 
a chromosome condensation protein. Secretion stress 
caused the activation of the CssRS two-component sys-
tem, which was previously shown to regulate extracel-
lular surface-bound proteases HtrB, HtrA1 and HtrA2 
in S.  lividans and found to be induced by secretory 
protein oversynthesis, more specifically by the pres-
ence of incorrectly folded protein outside the cytoplasm 

[41]. Significant overexpression of cssRS neighbor htrB 
was indeed observed in the CelA-producing strain, but 
induction of both htrA1 and htrA2 was not found. The 
nearby SLIV_18305+18310 two-component system of 
unknown function was also activated in the CelA-pro-
ducing strain. An additional protease, HtrA3, was shown 
to be unaffected by CssRS in S.  coelicolor by [41], but 
was found to be significantly overexpressed in our CelA-
producing strain. Two penicillin-binding proteins were 
activated, as well as the putative antibiotics efflux pump 
SLIV_26430+26435. Furthermore, four genes for ectoine 
biosynthesis had significantly increased expression.

In Group III (Fig.  1), a total of 35 differentially 
expressed genes followed a distinct expression pattern 
over time: low base expression, increasing expression 
over the exponential phase in a CelA-producing strain in 
a minimal medium, and strong but transient expression 
in the late exponential phase in a medium containing 
casamino-acids (Additional file  5). The Group III genes 
are given in Table 2. The group of genes on the right arm 
of the chromosome (SLIV_36805 to SLIV_37130) repre-
sents the OsdR regulon (oxygen availability, stress, and 
development; also called DevR, in analogy to the Myco-
bacterium tuberculosis dormancy regulator) [42]. The 
OsdR regulon in Streptomyces is not fully understood, 
but in the model organism S. coelicolor it has been linked 
to hypoxia [43, 44], nitrate respiration [44], response to 
oxidative and other forms of stress [42], and intercellular 
signaling through control of cellular homeostasis of nitric 
oxide, nitrite and nitrate—regulating morphological dif-
ferentiation by delaying development of aerial mycelia 
[42, 43] and sporulation [42, 44], and by inducing pro-
duction of the antibiotic undecylprodigiosin [43]. CydA 
and CydB are the subunits of an alternative terminal oxi-
dase—a bd-type menaquinol oxidase—that has a higher 
affinity for oxygen, enabling oxidative phosphorylation 
at limited oxygen concentrations at the cost of lower res-
piratory efficiency. Cytochrome bd has also been shown 
to protect from oxidative and nitrosative stress [45, 46]. 
The SCO0922:0924 (SLIV_33310:33320) operon has pre-
viously been reported to be co-expressed with CydAB, 
and was suggested to encode fumarate reductase, which 
shows to be active together with cytochrome bd under 
microaerobic conditions in S.  coelicolor and M.  tuber-
culosis [47, 48]. The SLIV_05195:05225 genes in turn 
correspond to the secondary isoenzymes for the PPP, 
suggested to provide energy for secondary metabolism 
[49]. Also involved in the central carbon metabolism is 
SLIV_01755, which codes for a secondary glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) Gap3 [50, 51].

Additional genes that were overexpressed in the pro-
ducing strain (exponential phase, MMGLC), but where 
expression was not limited to the CelA-producing strain 
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Fig. 1  Expression of clusters derived from differential expression 
analysis. Z-scored expression profiles in the main hierarchical clusters 
of genes differentially expressed between S. lividans TK24 containing 
pIJ486 and pIJ486-vsi-celA, respectively. Filled circles indicate biomass 
samples for which RNA-seq was performed. DE indicates the data 
points used for differential expression analysis. Hierarchical cluster 
expression profiles for all transcriptomics samples used in hierarchical 
clustering are given in Additional file 5
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(Group I) or correlated to osdR expression (Group III), 
are given in Table  3, while all genes that were underex-
pressed under these conditions are given in Table  4. 

Underexpressed genes notably included the sporula-
tion control protein SsgA, and developmental sigma 
factor gene bldN and five of its known targets: three 

Table 1  Genes with  (partially) known function that  are significantly overexpressed in  CelA-producing S.  lividans TK24 
with a Benjamini–Hochberg FDR 0.05, and that are only expressed in a CelA-producing strain

A clustering algorithm was used for grouping nearby genes with similar expression patterns. For all S. lividans genes, the corresponding ortholog of the model 
organism S. coelicolor is given

* Genes included for completeness, but p-value does not satisfy FDR 0.05

Locus Function Expression [TPM] p-value

SLIV SCO Ref. CelA log2(FC)

01700 7522 DNA ligase 2 6 36 2.50 7.9e−06

01705 7521 Beta-lactamase 2 12 2.88 3.1e−02

03875 7076 Two-component histidine kinase 5 30 2.72 4.5e−05

03880 7075 Response regulator 21 105 2.29 3.7e−05

04015 7047 Undecaprenyl-diphosphatase 1 7 53 2.87 7.6e−05

06835 6262 Helicase 9 36 1.95 1.5e−04

09765 5770 Regulatory protein RecX 36 172 2.24 5.3e−07

09770 5769 Recombinase RecA 314 1327 2.08 1.9e−11

09810 5761 ATP-dependent DNA helicase 6 19 1.58 7.4e−04

10645 5566 ATP-dependent DNAhelicase RecG 27 63 1.25 1.8e−03

10985 5504 Integral membrane protein 83 476 2.52 8.3e−09

11035 5494 DNA ligase 1 57 103 0.86 1.1e−02*

13140 5049 Putative NADHdehydrogenase/NAD(P)H nitroreductase 0 225 8.84 2.9e−24

13190 5039 Penicillin-binding protein 121 240 0.99 1.1e−03

13680 4938 ECF-sigma factor 1 20 4.99 2.5e−04

13690 4936 ABC transporter ATP-binding protein 3 244 6.16 2.5e−23

13695 4935 Integral membrane protein 2 238 7.25 4.1e−40

17590 4157 Protease HtrB 4 875 7.70 4.0e−63

17595 4156 Response regulator CssR 6 494 6.40 2.5e−37

17600 4155 Sensor histidine kinase CssS 2 101 5.98 1.0e−23

18305 4021 Two component system histidine kinase 1 81 5.82 3.6e−22

18310 4020 Putative transcriptional regulatory protein 16 493 4.95 3.5e−32

18435 3977 Protease HtrA3 62 204 1.71 5.8e−07

19310 3798 Chromosome condensation protein 9 260 4.82 1.5e−24

20575 3542 Integral membrane protein with kinase activity 45 61 0.43 2.7e−01*

20580 3541 DNA polymerase III subunit delta 59 88 0.57 1.1e−01*

20605 3434 DNA polymerase I 11 43 1.97 3.0e−04

21020 3351 DNA repair protein RadA 148 277 0.91 2.6e−03

26430 2258 ABC transporter 22 91 2.07 4.4e−05

26435 2257 Putative Daunorubicin/doxorubicin resistance ATP-binding protein 19 98 2.35 9.4e−06

27700 2003 DNA polymerase I 158 287 0.87 1.8e−03

27885 1966 UvrABC system protein B 59 190 1.69 2.1e−06

27925 1958 UvrABC system protein A 53 123 1.20 2.0e−04

28335 1876 RNA polymerase sigma factor 14 69 2.28 8.2e−03*

28340 1875 Penicillin binding protein 72 456 2.66 2.5e−14

28380 1867 Ectoine hydroxylase 100 778 2.95 7.8e−20

28385 1866 l-Ectoine synthase 221 2079 3.24 5.3e−21

28390 1865 Diaminobutyrate-2-oxoglutarate transaminase 24 169 2.81 1.9e−11

28395 1864 l-2,4-Diaminobutyric acid acetyltransferase 30 118 2.00 5.5e−04

31060 1343 Uracil-DNA glycosylase 2 Ung2 191 394 1.04 1.7e−03
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Table 2  S. lividans TK24 genes with (partially) known function with expression correlating to that of the OsdR regulatory 
protein, and significantly higher expression in a CelA-producing strain in exponential phase (Benjamini–Hochberg FDR 
0.05)

Locus Function Expression [TPM] p-value

SLIV SCO Ref. CelA log2(FC)

01755 7511 Glyceraldehyde-3-phosphate dehydrogenase Gap3 52 323 2.65 2.8e−08

05195 6663 Transketolase 25 207 3.06 4.0e−13

05200 6662 Transaldolase 1 53 158 1.57 3.6e−04

05205 6661 Glucose-6-phosphate 1-dehydrogenase 40 110 1.46 1.9e−04

05215 6659 Glucose-6-phosphate isomerase 1 64 134 1.06 2.4e−03

05220 6658 6-phosphogluconate dehydrogenase 144 221 0.62 4.0e−02*

05225 6657 Membrane-associated oxidoreductase 26 33 0.32 3.9e−01*

18590 3946 CydB cytochrome d ubiquinol oxidase, subunit II 127 204 0.68 2.4e−02*

18595 3945 CydA cytochrome oxidase subunit I 250 892 1.83 2.0e−09

33310 0924 Cytochrome B subunit 45 273 2.59 5.9e−09

33315 0923 Fumarate dehydrogenase 17 96 2.50 3.9e−09

33320 0922 Fumarate dehydrogenase 26 78 1.59 3.1e−03

36805 0219 Respiratory nitrate reductase, gamma subunit 0 28 Inf 5.2e−07

36810 0218 Nitrate reductase subunit delta 0 36 Inf 2.0e−08

36815 0217 Nitrate reductase beta chain 0 111 8.23 1.0e−28

36820 0216 Nitrate reductase alpha subunit 2 192 6.86 3.5e−49

36825 0215 Nitroreductase† 1 82 7.14 4.0e−15

36830 0214 Pyridoxamine 5′-phosphate oxidase† 4 58 4.03 1.4e−04

36835 0213 Nitrate/nitrite transporter 3 114 5.46 1.0e−20

36845 0211 Two-component sensor 2 73 5.21 1.4e−08

36850 0209 Cystathionine β-syntase† 1 109 6.97 1.4e−20

36855 0208 Pyruvate, phosphate dikinase 1 65 5.90 5.4e−24

36865 0206 Putative pyruvate formate-lyase 0 74 Inf 3.1e−05

36867 Putative pyruvate formate-lyase-activating protein, N-terminal frag-
ment, putative pseudogene

0 74 Inf 7.7e−06

36875 0204 Transcriptional regulatory protein OsdR 16 391 4.60 3.1e−25

36880 0203 Two-component sensor OsdK 23 56 1.30 4.2e−03*

36890 0201 Thiosulfate dehydrogenase (quinone)† 1 464 8.97 3.5e−37

36895 0200 Universal stress protein† 0 317 Inf 2.5e−04

36900 0199 Alcohol dehydrogenase 1 214 8.55 9.3e−26

36905 0198 Universal stress protein† 1 72 6.16 2.9e−11

36910 0197 Pyridoxamine 5′-phosphate oxidase† 6 97 4.07 3.1e−09

37035 0181 Universal stress protein† 2 175 6.76 4.0e−22

37040 0180 Universal stress protein† 0 69 Inf 2.7e−14

37045 0179 Zinc-containing dehydrogenase 4 293 6.37 6.9e−32

37050 0178 Universal stress protein† 8 28 1.72 1.2e−01

37060 0177 Membrane protein 2 112 6.22 2.5e−12

37070 0174 pyridoxamine 5′-phosphate oxidase† 1 232 8.50 6.0e−32

37075 0173 OsmC regulator of disulfide bond formation redox protein† 7 78 3.48 2.8e−06

37080 0172 Universal stress protein† 3 17 2.76 1.1e−01

37085 0171 Nicotinate phosphoribosyltransferase 0 56 Inf 3.5e−17

37095 0169 Cystathionine β-synthase† 10 398 5.29 4.0e−30

37100 0168 Regulator protein 10 625 5.94 5.1e−33
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Table 3  S. lividans TK24 genes with (partially) known function with significantly higher expression in a CelA-producing 
strain compared to  an  empty plasmid-containing strain in  early exponential phase (Benjamini–Hochberg FDR 0.05), 
but of which expression can not solely be contributed to CelA production

A clustering algorithm was used for grouping nearby genes with similar expression patterns. When present, the corresponding ortholog of the model organism 
S. coelicolor is given

Locus Function Expression [TPM] p-value

SLIV SCO Ref. CelA log2(FC)

07685 6091 Integral membrane protein 30 70 1.24 2.4e−03

22330 3073 Urocanate hydratase 4 37 3.14 5.3e−07

12430 5190 DNA-binding protein 35 165 2.24 1.5e−04

29930 1559 Methionine import ATP-binding protein MetN 26 75 1.52 2.2e−03

29940 1557 Lipoprotein 130 384 1.56 6.0e−05

01630 7536 Integral membrane protein 34 164 2.28 1.4e−09

09290 5863 Sensor protein CutS 11 37 1.82 2.7e−03

11255 5450 ABC transporter 2 18 3.15 7.7e−05

12070 5259 Permease 12 54 2.17 6.3e−04

12810 5114 ABC transporter integral membrane protein BldKC 43 125 1.52 4.5e−04

12815 5113 ABC transporter lipoprotein BldKB 168 314 0.90 1.7e−03

13790 4917 Purine nucleoside phosphorylase 5 64 3.70 3.6e−06

13805 4914 Deoxyribose-phosphate aldolase 7 69 3.24 1.1e−06

13870 4901 Adenosine deaminase 1 11 49 2.16 3.9e−04

16725 4334 Integral membrane protein 8 29 1.95 3.5e−03

16965 4286 Solute-binding protein 12 43 1.90 1.6e−03

17390 4198 DNA-binding protein 170 508 1.58 1.1e−04

18135 4054 Integral membrane protein 24 75 1.65 2.9e−03

19300 3800 Acyl-CoA dehydrogenase 9 56 2.67 2.6e−07

21345 3289 Large membrane protein 12 49 2.04 3.0e−03

22130 3111 ABC transport system ATP-binding protein 37 122 1.74 2.9e−04

22135 3110 ABC transport system integral membrane protein 21 71 1.78 7.6e−06

22235 3090 ABC transporter 55 149 1.45 1.6e−05

22240 3089 ABC transporter ATP-binding protein 87 246 1.51 9.3e−05

23095 2920 Secreted protease 38 116 1.60 3.0e−05

23520 2829 Amino acid ABC transporter transmembrane protein 9 48 2.47 1.3e−03

26890 2164 Integral membrane efflux protein 31 65 1.05 3.4e−03

28875 1773 Alanine dehydrogenase 4 78 4.15 2.3e−11

29635 1621 Glycine/betaine transport ATP-binding protein 6 46 2.96 1.5e−05

29640 1620 Glycine/betaine transport system permease 3 40 3.85 4.4e−12

Table 2  (continued)

A clustering algorithm was used for grouping nearby genes with similar expression patterns. When present, the corresponding ortholog of the model organism 
S. coelicolor is given

* Genes included for completeness, but p-value does not satisfy FDR 0.05
†  Function taken from [42]

Locus Function Expression [TPM] p-value

SLIV SCO Ref. CelA log2(FC)

37105 0167 Universal stress protein† 4 297 6.35 8.5e−31

37130 0162 Nitroreductase† 0 91 8.28 3.5e−17

37090 0170 Cystathionine β-synthase† 6 252 5.44 1.2e−21
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hydrophobic cell-surface proteins known as chaplins 
(SLIV_24080, SLIV_28720 and SLIV_29370), structural 
cell wall protein NepA, and a transferase (SLIV_12510) 
[52, 53]. Expression of bldN has been linked to OsdR and 
its role in delaying aerial mycelia development, though 
the exact mechanism remains elusive [42].

Overall, differential expression and hierarchical clus-
tering revealed two large expression trends in CelA-
producing S. lividans: a stress response mainly linked to 
secretory stress and DNA damage, and increasing expres-
sion throughout the exponential phase in MMGLC of a 
co-expressed group of genes containing response regula-
tor OsdR. The latter included both the known OsdR reg-
ulon, as well as a set of enzymes of which most are linked 
to central carbon metabolism.

13
C‑based metabolic flux analysis

Biomass profiles of S.  lividans respectively carrying 
pIJ486 and pIJ486-vsi-CelA are shown in Fig. 2. Multiple 
batch experiments with both strains grown on a mini-
mal medium with glucose were performed and two bio-
logical repetitions were cultured on an optimal mixture 
of 13C-labeled glucose (56% U-GLC and 44% 1-GLC). 
Repeated experiments showed consistent specific growth 
rates. Two growth phases were identified by multi-linear 
regression, where the second phase coincided with the 
most pronounced metabolite changes (see Additional 
file  6). Although not confirmed, preculture effects pre-
sumably played a role in the first growth phase. Since 
these effects obscure 13C-based flux analysis, this phase 
was not further considered. The specific growth in the 

Table 4  S.  lividans TK24 genes with  (partially) known function with  significantly lower expression in  a  CelA-producing 
strain compared to an empty plasmid-containing strain in early exponential phase (Benjamini–Hochberg FDR 0.05)

A clustering algorithm was used for grouping nearby genes with similar expression patterns. When present, the corresponding ortholog of the model organism 
S. coelicolor is given

Locus Function Expression [TPM] p-value

SLIV SCO Ref. CelA log2(FC)

01030 7657 Secreted protein 1297 430 − 1.59 2.2e−04

01080 7647 Calcium-binding protein 251 54 − 2.22 1.7e−03

01125 7638 Enolase 2 197 40 − 2.30 4.4e−05

09410 5839 Peptidase 486 140 − 1.80 4.0e−04

09470 5827 Transmembrane transporter 227 47 − 2.28 3.7e−06

09475 5826 Putative membrane protein 396 124 − 1.67 3.0e−03

10950 5511 Membrane associated phosphodiesterase 232 75 − 1.62 4.1e−04

12120 5249 Nucleotide-binding protein 944 305 − 1.63 5.2e−04

12275 5218 Integral membrane protein 182 43 − 2.08 3.8e−04

12510 5174 Transferase 217 71 − 1.61 1.7e−03

14370 4798 Peptidase 125 37 − 1.75 2.3e−03

17195 4239 Small membrane protein 531 146 − 1.86 1.1e−03

17200 4238 Guanyltransferase 284 81 − 1.82 1.9e−03

18400 4002 Structural cell wall protein NepA 5745 1211 − 2.25 2.4e−07

18605 3943 Transcriptional regulator 285 88 − 1.70 1.9e−03

18635 3926 Sporulation control protein SsgA 175 30 − 2.55 2.1e−03

20395 3579 WhiB-family transcriptional regulator 1517 449 − 1.76 1.2e−04

20705 3413 HTH-type transcriptional activator TipA 435 14 − 4.97 5.3e−18

21025 3350 Alanine-rich protein 57 11 − 2.37 1.5e−03

21180 3323 ECF sigma factor BldN 1502 445 − 1.76 3.9e−05

23265 2884 Cytochrome P450 190 51 − 1.89 6.6e−04

24080 2718 Hydrophobic surface protein 170 20 − 3.06 6.7e−04

28720 1800 Hydrophobic surface protein 10,102 3979 − 1.34 1.3e−03

29370 1674 Hydrophobic surface protein 24,089 8481 − 1.51 4.1e−04

31930 1174 Putative aldehyde dehydrogenase 245 43 − 2.53 4.8e−07

32840 6393 Transposase 299 57 − 2.40 9.1e−07

34120 0762 Protease inhibitor protein 1495 485 − 1.62 1.1e−03

35005 0588 Sensor kinase 113 34 − 1.74 3.4e−03
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second exponential phase was 0.191  h−1 for the refer-
ence strain, and 0.115 h−1 for the CelA-producing strain, 
which was significantly lower (Fig. 2).

Yields for biomass, metabolites, cellulase A, and 
secreted proteins were computed for the second expo-
nential growth phase for both experiments and are given 
in Table  5. Carbon recoveries are also given in Table  5, 
and were acceptable for the first round of experiments 
and very good for the second round of experiments. The 

original concentration profiles are available in Additional 
file 6. Cellulase A production was observed, with the final 
concentration reaching 7.5 mg/L.

Besides CelA secretion, the total protein secretion 
increased in the CelA-producing strain, with CelA only 
making up approximately 16% of the total amount of 
secreted proteins. Furthermore, a lower biomass yield 
(33%; Table 5) and lower glucose uptake rate (20%) were 

Fig. 2  Biomass data of repeated batch experiments of S. lividans TK24 containing pIJ486 and pIJ486-vsi–celA used for 13C - fluxomics. The average 
standard deviation on the biomass concentration measurements ( gDWL−1 ) is 0.20. Specific growth rates are given along with their standard 
deviations. Time points analyzed for isotopic labeling in intracellular proteinogenic amino acids are indicated. Flux maps are computed for the 
second time point. A multi-linear regression according to [9] is performed to identify exponential growth phases

Table 5  Estimated yields per  100  mmol glucose for  the  CelA-producing and  the  empty-plasmid S.  lividans based 
on concentration measurements from repeated experiments in minimal medium with glucose (MMGLC)

Standard deviations are given between brackets and the carbon recovery per experiment is calculated. The carbon content of the biomass was determined through 
elemental analysis, and found to be 35.17 (±0.45) mmol/gDW

Dry weight (DW), carbon dioxide ( CO2 ), acetic acid (ACE), α-ketoglutaric acid (AKG), lactic acid (LAC), pyruvic acid (PYR), succinic acid (SUCC), total secreted proteins 
(Protein), and secreted CelA, nd not determined

Yield (per 100 mmol glucose)* S. lividans with pIJ486 S. lividans with pIJ486-vsi-celA

Experiment 1 Experiment 2 Experiment 1 Experiment 2

DW (g)* 7.67 ( ± 0.26) 9.31 ( ± 0.19) 4.96 ( ± 0.17) 6.99 ( ± 0.21)

CO2 (mmol)* 213.38 ( ± 7.47) 213.55 ( ± 88.31) 246.07 ( ± 13.14) 182.61 ( ± 9.67)

ACE (mmol)* 8.71 ( ± 3.33) 5.97 ( ± 4.07) 22.64 ( ± 0.60) 28.48 ( ± 3.73)

AKG (mmol)* 0.11 ( ± 0.01) 0.44 ( ± 0.27) 0.24 ( ± 0.04) 0.47 ( ± 0.04)

LAC (mmol)* 1.36 ( ± 0.24) 1.25 ( ± 0.27) 1.37 ( ± 0.12) 1.62 ( ± 0.09)

PYR (mmol)* 0.11 ( ± 0.03) 0.86 ( ± 0.57) 8.56 ( ± 0.28) 16.96 ( ± 2.24)

SUCC (mmol)* 0.10 ( ± 0.01) 0.00 ( ± 0.00) 0.18 ( ± 0.03) 0.15 ( ± 0.01)

Protein (mg)* 59.59 ( ± 8.16) 94.30 ( ± 4.34) 118.43 ( ± 12.56) 119.89 ( ± 6.38)

CelA (mg)* nd nd 20.47 ( ± 5.66) 16.96 ( ± 2.25)

C recovery 0.89 ( ± 0.02) 0.99 ( ± 0.15) 0.86 ( ± 0.02) 0.95 ( ± 0.03)
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observed for the CelA-producing strain compared to the 
empty-plasmid strain.

Organic acids were secreted by both strains. Ace-
tic, α-ketoglutaric, lactic and pyruvic acid were clearly 
detected, with pyruvic acid representing the largest dif-
ference between both strains. Production of succinic acid 
was negligible. Secretion of acetic acid and pyruvic acid 
was much higher in the CelA-producing strain, demon-
strating a metabolic flux shift.

Mass isotopomer distributions (MIDs) of intracellular 
protein-bound amino acids were determined in the expo-
nential growth phase. Flux maps were computed for one 
time point in the second exponential growth phase, indi-
cated in Fig. 2. Isotopic steady state could be observed in 
time series MID data (data not shown). To avoid biases 
in the MIDs due to the different metabolic state in the 
first growth phase, MIDs were corrected with MIDs 
measured at the start of the second growth phase. The 
MIDs are given in Additional file 7. Data sets of repeated 
experiments were jointly fitted to maximize the informa-
tion content and parameter estimation confidence. Esti-
mated values for the free fluxes and associated non-linear 
confidence intervals are summarized in Additional file 8. 

These values were used to compute fluxes for all reac-
tions, which are summarized in flux maps.

Flux maps for the central carbon metabolism in the 
CelA-producing and empty-plasmid strain are depicted 
in Fig. 3. Main internal differences between both strains 
were situated at the level of the glycolysis/PPP split ratio, 
the TCA fluxes, and the anaplerotic fluxes. Compared to 
the reference strain, the flux through the oxidative part of 
the PPP increased from 51.7 to 75.3%, leading to a shift 
in split ratio between glycolysis and the PPP from 48/52 
to 35/75 in the producing strain. The fluxes through the 
non-oxidative part of the PPP were 50 to 70% higher in 
the CelA-producing strain. Although the growth rate of 
the CelA-producing strain was lowered, all fluxes in the 
TCA cycle increased over 40%. In the CelA-producing 
strain, phosphoenolpyruvate carboxylase solely replen-
ishes the TCA.

Production and consumption of reductive power 
(NADPH, NADH) and energy (ATP) were deduced from 
the carbon flux distributions. A distribution of fluxes 
between the alternative reactions 2-oxoglutarate dehy-
drogenase complex ( NAD+-dependent) and the 2-oxo-
glutarate synthase ( NADP+-dependent) was deduced 
from gene expression levels, found to be 78% and 22%, 
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respectively. The P/O ratio was fixed at 1.5 in accordance 
with [9, 54]. Excess NADH was assumed to be completely 
re-oxidized via oxidative phosphorylation (thus generat-
ing ATP). In the CelA-producing strain, the overproduc-
tion of NADPH was assumed to be converted to NADH 
via transhydrogenase activity. The final results are shown 
in Table  6. In the reference strain, NADPH production 
and consumption were nearly balanced. The difference 
in NADPH could be compensated by NADPH generated 
via PntAB. The excess NADPH in the CelA-producing 
strain eventually leads to a higher estimation of the main-
tenance ATP. The ATP balance was closed by assuming 
that the total ATP production was split between ATP-
requirements for biomass and protein biosynthesis on 
the one hand, and cell maintenance on the other hand. 
Consequently, the non-growth associated maintenance 
ATP-requirements were 15.0 and 8.5mmol · gDW−1 · h−1 
for the producing and reference strains, respectively.

To link metabolic and gene expression changes, all 
TPM values of genes coding for enzymes catalysing 
metabolic reactions in the central carbon metabolic 
network model are given in Additional file  9. Genes of 
several (iso)enzymes of PPP reactions—e.g., glucose-6-P-
dehydrogenase, transketolase, and transaldose—were 
upregulated, which is consistent with the increased 
metabolic flux through these reactions. Furthermore, 
both pyruvate dikinase and GAPDH enzyme Gap3 were 
significantly upregulated and clustered with the OsdR 
regulon. Pyruvate dikinase overexpression—though lim-
ited in absolute value—suggests a flux from pyruvate 
back to phosphoenolpyruvate, yet the normalized net 
flux towards pyruvate was found to be higher. Expres-
sion of Gap3 ( SLIV_01755 ) was much lower than primary 
GAPDH enzyme Gap1 ( SLIV_27980 ), and no significant 
flux change was detected. A third GAPDH enzyme, Gap2 
( SLIV_04050 ), is associated with gluconeogenesis [50] 
and not expressed in the exponential phase. All of the 
genes coding for these differentially expressed enzymes 
clustered with the OsdR regulon, as shown in Table  2. 

Significantly lower expression was only detected for 
an enolase isoenzyme, but the normalized flux through 
this pathway is increased rather than decreased. Finally, 
although TCA fluxes increased, expression of genes cod-
ing for TCA reactions were not significantly changed in 
the CelA-producing strain.

In conclusion, the CelA-producing strain was found to 
be slower growing, with increased secretion of organic 
acid and non-CelA proteins. It showed a higher flux 
through the oxidative PPP and the TCA cycle, seem-
ingly leading to NADPH overproduction. The increased 
flux through the PPP corresponded to the significantly 
increased expression of a group of PPP enzymes. A visual 
overview of the observed phenomena is given in Fig. 4.

Discussion
We set out to determine the changes in gene expression 
and central carbon fluxes resulting from heterologous 
production and secretion of thermostable cellulase CelA 
in S. lividans through RNA-seq and 13C-MFA on a both a 
strain containing pIJ486-vsi-CelA and a reference strain 
containing empty pIJ486. CelA production negatively 
impacts growth, and results in increased secretion of 
organic acids (Table 5). The increased organic acid secre-
tion agrees with the study on recombinant S.  lividans 
heterologously producing mTNFα , where metabolomics 
revealed that production of the recombinant protein 
lead to organic acid overflow [8]. However, a significant 
change in growth between the mTNFα-producing strain 
and a corresponding empty-plasmid reference strain 
was not observed [8], suggesting the increased organic 
acid secretion and reduced growth in our study might be 
unrelated.

It is clear that heterologous production and secretion 
of CelA induces a distinct stress response in S.  lividans 
(Table 1), which seems mainly related to secretory stress 
and, surprisingly, DNA damage. The cause of this (per-
ceived) DNA damage is unclear, as no direct link with 
heterologous protein production has been documented 

Table 6  Calculated NADPH, NADH and  ATP production and  consumption (mmol/g biomass) based on 13C-MFA fluxes 
and biomass and protein synthesis requirements

A balance is obtained by diverting differences ( � ) to maintenance ATP (mATP), returning the non-growth associated ATP maintenance (NGAM) (mmol gDW−1 h−1)

S. lividans with pIJ486 S. lividans with pIJ486-vsi-celA

Production Consumption � Production Consumption �

NADPH 11.6 − 13.3 −1.7 25.2 − 13.6 11.7

NADH 43.1 0.0 43.1 77.3 0.0 77.3

ATP 33.9 − 52.3 − 18.3 58.9 − 61.7 −2.9

mATP 43.8 130.6

NGAM 8.4 15.0
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in literature. A better understanding of the production-
induced stress, and its effect on product yields and cell 
integrity could lead to identification and mitigation of 
production bottlenecks.

The presence of secretory stress is not unexpected, 
and could be directly linked to CelA overproduction and 
secretion, though it should be noted that the CelA-pro-
ducing strain also shows an increase in non-CelA pro-
tein secretion (Table  5). Secretory stress was previously 
also observed in S.  lividans overexpressing its native α
-amylase AmlB, leading to induction of the CssRS–HtrB 
protease system [41, 55]. In [41, 55], two additional 
HtrA-like proteases—HtrA1 and HtrA2—are found 
to be controlled by CssRS. The Htr protease system is 
under delicate control, since deletion or overexpression 
of any of the three proteases, as well as deletion of cssR 
or cssS resulted in severe reduction of AmlB enzymatic 
activity [41, 55]. On top of degradation of incorrectly 
folded proteins, the system might include chaperone-
like activities—promoting correct protein (re)folding 
[56]. In our study, HtrA1 and HtrA2 have very low and 
constitutive expression, respectively, and show no sign 
of being induced by CelA production. A third potential 
HtrA-like gene, SLIV_18435, which was found to not to 
be influenced by CssRS in [41], is significantly induced 
by CelA production in our study (Table 1). Understand-
ing the proofreading system for correct folding of pro-
teins secreted through the Sec pathway—where protein 

folding occurs upon secretion—could prove essential for 
obtaining a high-producing S. lividans, but requires fur-
ther study.

Increased expression of four ectoine biosynthe-
sis genes (SLIV_28380:28395; Table  1) would typically 
imply the presence of osmotic stress. However, a study 
in S. coelicolor shows that three of these gene products—
SCO1865:1867—are targeted to the membrane com-
partment [57], where ectoine may promote stability of 
membrane proteins [58]. Hence, the expression of these 
genes in our study may be related to secretion-induced 
membrane stress rather than osmotic stress.

The increasing expression of the OsdR regulon in the 
CelA-producing strain cannot easily be explained, and is 
obfuscated by the plethora of functions attributed to this 
regulon. The transient high expression in a medium con-
taining casamino acids (Additional file  5) agrees with a 
cell signalling/regulatory function [42, 43], while the ris-
ing expression throughout the exponential phase in the 
producing strain seems to correspond more to a form of 
increasing stress. Transcription of osdR is induced under 
both hypoxia and oxidative stress, but a clear link to het-
erologous protein production is missing. The upregu-
lation of the cytochrome bd and fumarate reductase 
operons—known to be co-expressed in M.  tuberculosis 
and S. coelicolor—suggests respiration under microaero-
bic conditions [47, 48]. Whether their co-expression 
with the hypoxia-linked OsdR regulon [43, 44] entails a 
direct regulatory interaction, or that an environmental 

Fig. 4  Schematic overview transcriptomic and metabolomic responses in S. lividans producing CelA. S. lividans containing pIJ486-vsi-celA shows 
stress responses linked to secretion and DNA damage, increased fluxes through the pentose phosphate pathway (PPP) and the tricarboxylic 
acid (TCA) cycle, and increasing expression of the OsdR regulon throughout the exponential phase. A series of PPP enzymes linked to secondary 
metabolism was found to be co-expressed with the OsdR regulon. The increased fluxes through the PPP and TCA cycle lead to an increased NADPH 
production, which can only be partly be attributed to higher NADPH need for additional protein synthesis. Surplus NADPH is assumed to be 
reoxidized, yet the mechanism for reoxidation of NADPH in S. lividans remains unknown
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activator is shared in the form of (local) hypoxic condi-
tions, remains unclear. Though a lower growth rate and 
an increased yield of lactate—a known marker for micro-
aerobic growth conditions [9, 54, 59]—in the CelA-pro-
ducing strain (Table  5) may be seen as indicators, the 
evidence for hypoxia can not be truly confirmed. Fur-
ther research is required to (i) confirm the link between 
production of CelA—or heterologous protein in gen-
eral—and the Group III genes (Table 2), and (ii) show the 
presence or absence of microaerobic conditions when the 
OsdR regulon is activated in a producing strain.

The significantly lower expression of the developmental 
sigma factor BldN and its targets—three chaplins, NepA, 
and transferase—may be the result of OsdR expression, 
as OsdR is suggested to be a regulator of bldN expression 
[42]. The parallel downregulation of ssgA, a gene found to 
be essential for sporulation [60], could indicate a coordi-
nated response. Both the decreased expression of these 
genes, and the potential presence of (increased) hypoxia 
in the CelA-producing strain could point to morphologi-
cal changes, yet no observable morphological differences 
from the reference strain were recorded.

The link between the OsdR regulon and metabolic 
enzymes coupled to secondary metabolism (Table 2) was 
not previously reported. Isoenzymes of the PPP reactions 
are upregulated in the CelA-producing strain, which 
correlates well with the increased PPP fluxes. Whether 
this upregulation is actually required to support the 
flux increases is unclear. 13C-MFA on a deletion mutant 
for one or more of these isoenzymes could potentially 
address this.

Due to the increased flux through both the oxidative 
PPP and the TCA cycle, the NADPH yield per gram bio-
mass is more than 50% higher in the CelA-producing 
strain. In S. lividans, only glucose-6-phosphate dehydro-
genase is NADP+-dependent and additional NADPH is 
generated in the TCA cycle, mainly via NADP+-depend-
ent isocitrate dehydrogenase activity and partly via 
2-oxoglutarate dehydrogenase activity coupled to NADP+

-dependent ferroreductase. The redirection of carbon to 
the oxidative part of the PPP instead of glycolysis, which 
creates more NADPH, aligns with other studies on het-
erologous protein production in other micro-organisms, 
e.g., Pichia pastoris [61, 62], Bacillus subtilis [63], and 
Aspergillus niger [64, 65]. It was also demonstrated that 
overexpression of glucose-6-phosphate dehydrogenase 
(zwf1) and 6-gluconolactonase PPP (sol3) effectively 
increases the NADPH production in Pichia pasto-
ris, which augments heterologous protein production 
[62]. Increased NADPH production can, however, only 
partly be explained by the need for extra NADPH for 
protein production, in this case including heterologous 
CelA protein as well as other secreted proteins. To keep 

cofactors balanced, i.e., to maintain redox balance, the 
excess NADPH in the CelA-producing strain needs to 
be regenerated to NADP+ . Since S.  lividans TK24 lacks 
the cytoplasmic transhydrogenase UdhA (gene not pre-
sent, [20]) which typically oxidizes NADPH into NADP+ , 
an alternate route must be present. Genes coding for 
the membrane-bound transhydrogenase PntAB are pre-
sent in S.  lividans TK24, but re-oxidation of NADPH 
through PntAB is thermodynamically not feasible [66]. 
Moreover, pntA and pntB expression levels in both the 
producing and reference strain are negligible. In many 
bacteria, PntAB supplies NADPH to balance require-
ments in anabolic reactions, which is not needed in our 
strains. A potential alternative for NADPH re-oxidation 
is NuoF (NADH-quinone oxidoreductase subunit F 
from NADH hydrogenase), which in E.  coli was shown 
to alternatively function with NADPH and take over the 
function of UdhA upon its deletion [67]. However, no 
significant nuoF ( SLIV_15430 ) expression was observed 
in the exponential growth phase. Hence, no clear expla-
nation can be given, and further studies are required to 
unravel how S. lividans handles NADPH overproduction. 
Overproduction of NADPH has been reported previ-
ously in overproducing S.  lividans strains [68, 69]. The 
additional ATP created by the assumed re-oxidation of 
the surplus NADPH could partially be destined to sup-
ply ATP-dependent protein secretion via the Sec pathway 
SecA ATPase [1].

Overexpression of Gap3 clusters this gene with the 
OsdR regulon (Group III, Table  2), but does not corre-
spond to a significant normalized net flux change from 
glyceraldehyde-3-phosphate to 2-phosphoglycerate 
(lumped reaction in the model). With Gap1 identified as 
the constitutive main glycolytic enzyme, and Gap2 the 
gluconeogenetic enzyme, the exact nature and function 
of Gap3 remains unknown. In other bacteria, NADP+

-dependent GADPH (GapN) has been reported [70], 
catalysing a one-step reaction from glyceraldehyde-
3-phosphate to 3-phosphoglycerate. This would follow 
the general tendency to overproduce NADPH in case of 
heterologous protein production, yet no experimental 
evidence exists for its presence in S. lividans.

Conclusions
In S. lividans TK24, heterologous production and secre-
tion of CelA leads to a reduced growth rate, a distinct 
shift in the central carbon metabolism towards NADPH-
production, and clear gene expression changes in sub-
sets of genes correlating to CelA-production and the 
OsdR regulon. Transcriptomics data uncovered stress 
responses in the recombinant CelA-producing strain 
mostly related to secretory stress and DNA damage. The 
cause of this (perceived) DNA-damage and secretory 
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stress is unclear and requires further study. The latter 
could indicate unknown bottlenecks in secretion, but 
identification of specific targets for strain improvement 
again requires additional research.

Isoenzymes linked to secondary metabolism are co-
expressed with the OsdR regulon, and could be (partially) 
responsible for the measured flux increase through the 
PPP. Increased fluxes through both the PPP and the TCA 
lead to higher NADPH generation in a CelA-producing 
strain, which exceeds the amount needed for protein 
production. Redox balancing in the heterologous protein 
producing S. lividans fails and alternative routes are not 
yet fully understood. Further studies to the contribution 
of PPP isoenzymes and understanding transhydrogenase 
activity are required.

The findings presented here help build a foundation for 
strain improvement of the industrially important organ-
ism S. lividans.
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