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Abstract 

Background:  Monascus pigments are promising sources for food and medicine due to their natural food-coloring 
functions and pharmaceutical values. The innovative technology of extractive fermentation is used to promote pig-
ment productivity, but reports of pigment trans-membrane secretion mechanism are rare. In this study, tracking of 
pigment accumulation and secretion in extractive fermentation of Monascus anka GIM 3.592 was investigated.

Results:  The increased vacuole size in mycelia correlated with fluorescence intensity (r > 0.85, p < 0.05), which 
indicates that intracellular pigments with strong fluorescence accumulated in the cytoplasmic vacuole. After adding 
nonionic surfactant Triton X-100, the uptake of rhodamine123 (Rh123) and 1-N-phenylnaphthylamine (NPN) and the 
release of K+ and Na+ rapidly increased, demonstrating that the physiological performances of the cell membrane 
varied upon damaging the integrity, increasing the permeability, and changing the potential. Simultaneously, the 
fatty acid composition also varied, which caused a weak fluidity in the membrane lipids. Therefore, the intracellular 
pigments embedded in Triton X-100 were secreted through the ion channels of the cell membrane. Dense, spherical 
pigment-surfactant micelles with an average size of 21 nm were distributed uniformly in the extraction broth. Based 
on the different pigment components between extractive fermentation and batch fermentation, a threefold decrease 
in the NAD+/NADH ratio in mycelia and a more than 200-fold increase in glucose-6-phosphate dehydrogenase 
(G6PDH) activity in extracellular broth occurred, further suggesting that a reduction reaction for pigment conversion 
from orange pigments to yellow pigments occurred in non-aqueous phase solution.

Conclusions:  A putative model was established to track the localization of Monascus pigment accumulation and 
its trans-membrane secretion in extractive fermentation. This finding provides a theoretical explanation for microbial 
extractive fermentation of Monascus pigments, as well as other non-water-soluble products.

Keywords:  Monascus anka, Intracellular pigment localization, Trans-membrane secretion, Oxidation–reduction, 
Extractive fermentation
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Background
Monascus pigments are a group of mixed azaphilones 
composed of three color (yellow, orange, and red) com-
ponents [1]. As functional secondary metabolites, 
Monascus pigments have been widely researched and 
used as promising pigment additives in the food and 
pharmaceutical industries [2].

Pigment biosynthesis in Monascus spp. is believed 
to consist of polyketide and fatty acid metabolism [3, 
4]. Genomics, transcriptomics, and proteomics analy-
ses have been used to understand pigment biosynthesis 
and regulatory mechanisms [5, 6]. However, the detailed 
pathways and enzymes involved in pigment biosynthe-
sis remains unclear or controversial [7]. In submerged 
fermentation, Monascus pigments are mainly biosyn-
thesized and accumulated in the mycelia [8, 9], while 
the localization of intracellular pigments has not been 
reported yet. Meanwhile, it is challenging to achieve high 
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intracellular pigment productivity inside the mycelia due 
to feedback inhibition and production degradation [10, 
11].

Extractive fermentation technology is applied as an 
innovative method for promoting the productivity of 
fungal intracellular products [12, 13]. It is known as 
“milking processing”, which describes microbial fermen-
tation of intracellular product in a water–nonaqueous 
solvent system. With the addition of extractive agent 
into the fermentation broth, the permeability of cell 
membrane is enhanced and facilitated the secretion of 
intracellular product to extracellular broth, and then con-
secutive extracted the product into the nonaqueous sol-
vent phase [10]. Surfactant in an aqueous solution forms 
a micelle pseudophase at the surfactant concentration 
above its critical micelle concentration (CMC). The sur-
factant micelle aqueous solution can be separated into 
two phases in a certain temperature, where one is a dilute 
phase (aqueous solution) and the other is a coacervate 
phase (surfactant-rich phase). The two-phase system is 
known as a cloud point system and the temperature is 
defined as cloud point [14]. Under the cloud point, sur-
factant can be inter-soluble with water to form a micelle 
with the hydrophilic side outward and the hydrophobic 
side inward.

The benefits of exporting the intracellular pigments 
into extracellular broth via extractive fermentation in 
Triton X-100 micelle aqueous solution have been inves-
tigated experimentally [10, 15]. The surfactant Triton 
X-100 shows good biocompatibility for cell growth and 
the hydrophobic pigments can cross the cellular mem-
brane by being “milked” in the artificial nonionic micelle 

aqueous solution to prevent feed-back inhibition  and 
facilitate pigment production [14, 16]. The “milked” 
pigments can be concentrated within the surfactant-
rich phase (so called coacervate phase) in a cloud-point 
system induced by a certain temperature level, which 
provides good feasibility to an efficient downstream sepa-
ration process [17, 18]. Further study indicated that the 
cell membrane lipid layer is modified by nonionic sur-
factant [19] and the pigment conversion occurs during 
the extraction process [20]. However, the mechanism for 
pigment trans-membrane secretion in extractive fermen-
tation is unclear and has not yet been reported.

In this study, we investigated the localization of pig-
ment accumulation and its trans-membrane secretion in 
Monascus anka GIM 3.592 extractive fermentation. The 
image analysis of intracellular pigments, cell membrane 
physiological characteristics assays, pigment-surfactant 
micelles observation, NAD+/NADH and enzymatic 
analysis was performed. The response of the putative 
localization and trans-membrane secretion model of 
Monascus pigments in extractive fermentation was estab-
lished accordingly.

Results
Correlation between intracellular pigments and lipids 
accumulation
During batch fermentation, little total (intracellular plus 
extracellular) pigments were synthesized in the first day 
with a yield of 30 AU470 approximately. Then, pigment 
production increased and reached approximately 130 
AU470 on 3rd day and 170 AU470 on 6th day (Fig.  1a), 
with quick cells growth up to 9  g/L and 13  g/L DCW, 
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Fig. 1  Pigment and lipid synthesis in different fermentation modes. a intracellular and extracellular pigment yields; b lipid content and DCW. *BF-1 
batch fermentation for 1 day, BF-3 batch fermentation for 3 days, BF6 batch fermentation for 6 days, EF6 extractive fermentation for 6 days, EC6 6-day 
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respectively (Fig.  1b). The lipid content correlated with 
pigment yield (r  >  0.90, p  <  0.05), which was coupled 
with cell growth. However, the increased lipid synthesis 
rate was obviously higher than pigmentation in the later 
stage (Fig. 1b), indicating that the feedback inhibition of 
intracellular pigments facilitated lipid synthesis. A small 
amount of intracellular pigments and lipids could be 
extracted to the extracellular broth simultaneously when 
40 g/L Triton X-100 was added to the 6-days of batch fer-
mentation broth for 1 h of extractive cultivation (Fig. 1). 
Meanwhile, the total pigment yield was unchanged, 
showing that Triton X-100 was able to facilitate intracel-
lular pigment secretion but was limited by the satura-
tion concentration [20]. A higher yield of both the total 
pigment and extracellular pigment were obtained with 
lower lipid content in extractive fermentation compared 
to batch fermentation (Fig.  1). This result demonstrates 
that the feedback inhibition of intracellular pigments was 
relieved and that extractive fermentation facilitated the 
metabolic channel shift from lipid accumulation to pig-
ment yield [21].

Intracellular pigment localization during fermentation
LSCM micrography showed that the mycelia were very 
thin and long with little fluorescence on the first day of 
batch fermentation (Fig. 2a1). Three days later, the myce-
lia became shorter and branched, and the fluorescence 
intensity also increased (Fig. 2a2). By the end of fermen-
tation, all the mycelia were nearly full of fluorescence 
(Fig.  2a3). The fluorescence intensity was constantly 
increased along with the fermentation time (Table  1), 
which was highly correlated with the intracellular 
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Fig. 2  Monascus mycelium image by LSCM and TEM in different growth phase. a1–a3 Pigment fluorescence and mycelium morphology by LSCM 
at 1st, 3rd and 6th day of batch fermentation; b1–b3 internal structure and organelles of the mycelium by TEM at 1st, 3rd and 6th day of batch 
fermentation

Table 1  Pigment fluorescence variance in Monascus myce-
lia through different growth phases

The data are expressed as the mean values ± standard deviations (n > 3). Mean 
values in a column with different lowercase letters (a, b, c) are significantly 
different (p < 0.05)

Fermentation time (days) Fluorescent intensity (%)

1 1.67 ± 0.01a

3 6.47 ± 0.02b

6 8.31 ± 0.02c
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pigment yields (AU410, r > 0.90, p < 0.05; AU470, r > 0.95, 
p < 0.01; AU510, r > 0.90, p < 0.05). As shown in Fig. 2b, 
during batch fermentation, the cytoplasmic vacuole size 
imaged by TEM also increased with the fermentation 
time in a manner consistent with fluorescence intensity 
(r > 0.85, p < 0.05). The vacuoles occupied a considera-
ble area in the cytoplasm and were irregularly scattered, 
which was similar to the different areas of fluorescence 
pigment in mycelia (Fig.  2a). The vacuoles may act as 
reservoirs of the intracellular Monascus pigment, since 
they are less homogeneous in shape and larger than lipid 
droplets. 

Cell membrane changes during extractive fermentation
The study findings indicated that the K+ and Na+ con-
centrations in the extracellular broth increased when 
Triton X-100 was added to the batch fermentation broth 
(Fig.  3a). This increasing trend became more obvious 
with higher Triton X-100 concentrations, which indi-
cated that K+ and Na+ release upon the addition of Tri-
ton X-100 was concentration-dependent. Meanwhile, the 
fluorescence intensity of Rh123 significantly decreased 
from 100 to 24% during extractive cultivation with 5 g/L 
of Triton X-100. The intensity continuously declined 
to 7 and 4% when the Triton X-100 concentration was 
increased to 40 and 160 g/L, respectively (Fig. 3a). Addi-
tionally, there was rapid NPN uptake as soon as Triton 
X-100 mixed with Monascus fungi suspensions, with 
the maximum achieved in approximately 2  min. There-
after the NPN uptake was almost unchanged or even 
declined until 10 min (Fig. 3b). The fluorescence increase 
was dose-dependent so that the maximum fluorescence 
was greater with higher Triton X-100 concentrations, 
which was in accordance with the membrane integrity 

and potential results. In control suspensions (1% HAc 
or 0 g/L Triton X-100), there was almost no NPN uptake 
after 10  min. These results indicated that, during the 
extractive fermentation, the physiological performances 
of the cell membrane were varied by damaging the 
integrity, increasing the permeability, and changing the 
potential.

The fatty acid composition of the cell membrane in 
different fermentations is shown in Table  2. The major 
fatty acids produced by batch fermentation were tetra-
decanoic acid (C14:0), palmitic acid (C16:0), heptade-
canoate (17:0), stearic acid (C18:0), eicosanoic acid (20:0), 
hexadecenoic acid (16:1), oleic acid (C18:1), linoleic acid 
(C18:2), and linolenic acid (C18:3). Though the fatty 
acid composition did not varied, the unsaturated/satu-
rated fatty acid ratio and the index of unsaturated fatty 
acid (IUFA) value decreased significantly (p < 0.05) from 
2.53 and 101.36 in batch fermentation to 2.18 and 97.15 
in extractive cultivation. Notably, both the major fatty 
acid composition and IUFA value declined in extractive 
fermentation (Table 2). This finding suggests that Triton 
X-100 reduced the fluidity of Monascus anka GIM 3.592 
membrane lipids.

Transformation and colloidization of pigments 
in extractive fermentation
As most pigments were hydrophobic and the surfactant 
was amphipathic in aqueous solutions, Triton X-100 was 
more inclined to form micelles under the cloud point in 
which the hydrophobic pigments were embedded to form 
pigment-surfactant mixed micelles [10]. Therefore, the 
pigment secretion was limited by the saturation concen-
trations of Triton X-100 [20]. TEM micrography (Fig. 4a) 
revealed the occurrence of dense, spherical micelles with 
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an average size of 21  nm, indicating that the pigment-
surfactant micelles in which pigments and Triton X-100 
coexisted were distributed uniformly in extractive fer-
mentation broth. To further examine the distribution of 
Triton X-100 between both sides of the cell wall during 
extractive fermentation, the mature cells were soaked in 
Triton X-100 (Table 3, initial) aqueous solutions for 1 h 
extractive cultivation. It found that a high concentra-
tion of Triton X-100 that embedded intracellular pig-
ments existed in the extracellular broth (Table  3, 0). 
Subsequently, the mycelia were collected and dispersed 
in the same volume of distilled water for 1 h, and then, 
the mycelia suspension solution was centrifuged again 
to determine the extracellular Triton X-100 concentra-
tion in supernatant (Table  3, 1). After that, the mycelia 
were collected to repeat the above washing operations 
with distilled water for 2–7 times, and the supernatants 
were used to determine the extracellular Triton X-100 
concentration in sequence (Table  3, 2–7). After washed 
seven times, the mycelia were collected to detect the 
intracellular Triton X-100 concentration (Table  3, cel-
lular). It showed that the concentration of Triton X-100 
inside the cell was much higher than that in the extracel-
lular broth even after seven times washing with distilled 

water (Table  3, 7 and cellular). This finding indicates 
that Triton X-100 might enter cells and extract pigment 
back to the extracellular broth, and the concentration 
of Triton X-100 in aqueous micellar systems might be 
a rapid dynamic equilibrium process during extractive 
cultivation. 

The extracellular pigment components in extractive 
fermentation were different from those in batch fermen-
tation (Fig. 4b), which indicates pigment conversion dur-
ing the extraction process, as shown in a previous study 
[20]. Moreover, the high G6PDH activity was observed 
in extractive cultivation (1.485 U/mL) and was higher in 
extractive fermentation (2.415 U/mL) than the extremely 
low level (0.015  U/mL) observed in batch fermentation 
(Table  4). Additionally, the NAD+/NADH ratio in cells 
decreased when adding Triton X-100 into batch fermen-
tation broth for extractive cultivation, and the decreasing 
trend became more obvious in extractive fermentation 
(Table 4). This finding illustrates that the NAD+/NADH 
ratio in the extracellular broth may increase due to the 
metabolic balance of NADH to NAD+ conversion during 
the trans-membrane secretion process. Therefore, there 
may be a reduction reaction for pigment conversion dur-
ing the trans-membrane transport process in extractive 
fermentation.

Discussions
Monascus pigments synthesized by natural strains mainly 
contain intracellular pigments that accumulate in myce-
lia [10]. In this study, increasing intercellular mass or 
granular inclusions in mycelia were observed (Fig.  2a) 
with the continuous accumulation of hydrophobic intra-
cellular pigments, which was coupled with cell growth 
in batch fermentation (Fig.  1). Moreover, the fluores-
cence intensity imaged by LCSM was also constantly 
increased with the increment of intracellular pigments 
in Monascus mycelia (r > 0.90, p < 0.05). Some intracel-
lular pigments are found to have strong fluorescence [2], 
and intercellular mass or granular inclusions have been 
hypothesized as storage for an accumulation of synthe-
sized intracellular pigments [22]. Interestingly, the size 
of vacuoles in Monascus mycelia increased in conjunc-
tion with fluorescence intensity (r > 0.85, p < 0.05), and 
occupied a high proportion of cytoplasm during batch 
fermentation (Fig.  2b). The fungal vacuole is an impor-
tant cellular organelle in metabolite storage and cyto-
solic ion homeostasis [23] as well as some key enzymes 
involved in secondary metabolites [24]. The morphology 
of vacuoles varies among different species and the size of 
vacuoles increases during the cell cycle [25]. Moreover, 
the irregular scattering of vacuoles in the cytoplasm was 
consistent with the random distribution of pigment fluo-
rescence from the mycelia (Fig. 2). The vacuoles may act 

Table 2  Cell membrane fatty acid composition (% total 
fatty acid) in  Monascus anka with  different fermentation 
modes

a  BF batch fermentation for 6 days, EF extractive fermentation for 6 days, 
EC day-6 batch fermentation broth was added to 40 g/L Triton X-100 to 
conduct extractive cultivation for 1 h. The data are expressed as the mean 
values ± standard deviations (n = 3). Mean values in a row with different 
lowercase letters (a, b, c) are significantly different (p < 0.05)
b  (C16:1 + C18:1 + C18:2 + C18:3)/(C14:0 + C16:0 + C18:0 + C20:0)
c  C16:1 + C18:1 + 2 × C18:2 + 3 × C18:3

Fatty acid composition Fermentation modesa

BF EC EF

Saturated fatty acid

 Tetradecanoate (14:0) 0.09 ± 0.00 0.17 ± 0.03 –

 Palmitic acid (16:0) 15.74 ± 0.02 16.20 ± 0.10 20.11 ± 1.01

 Heptadecanoate (17:0) 0.18 ± 0.02 0.35 ± 0.00 –

 Stearic acid (18:0) 12.83 ± 0.65 14.50 ± 0.66 14.20 ± 0.54

 Eicosanoic acid (20:0) 0.09 ± 0.00 0.21 ± 0.00 –

Unsaturated fatty acid

 Hexadecenoic acid 
(16:1)

0.16 ± 0.02 0.28 ± 0.05 –

 Oleic acid (18:1) 42.57 ± 2.33 41.62 ± 0.06 38.87 ± 0.95

 Linoleic acid (18:2) 26.37 ± 1.08 24.76 ± 0.04 25.16 ± 0.81

 Linolenic acid (18:3) 1.97 ± 0.05 1.91 ± 0.03 1.66 ± 0.01

Unsaturated/saturated 
fatty acid ratiob

2.45 ± 0.30a 2.18 ± 0.23b 1.91 ± 0.11c

IUFA (index of unsatu-
rated fatty acid)c

101.36 ± 0.49a 97.15 ± 0.29b 94.16 ± 0.26c
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as repositories for these intracellular hydrophobic pig-
ments, which is consistent with the results reported by 
Suh and Shin [26]. Astaxanthin, an analogue compound 
of Monascus pigments, has also been reported being 
accumulated in yeast cell liposomes (similar to vacuoles) 
with an irregular, scattered distributed [27]. The lipid 
content showed a relationship to pigment yield in batch 
fermentation (r > 0.90, p < 0.05) and could be extracted to 
extracellular broth with the intracellular pigments during 
extractive cultivation (Fig. 1). This finding indicated that 
lipids might also be located in the vacuole with the intra-
cellular pigments due to a similar precursor acetyl CoA 
in the metabolic pathway [28] and similar hydrophobic 
properties [21].

Extractive fermentation with the nonionic surfactant 
Triton X-100 is an efficient method of promoting Monas-
cus pigment production, and some intracellular hydro-
phobic pigments that are only distributed in mycelia 
demonstrated transport behavior through the cell mem-
brane to the extracellular broth [14]. Herein, similar 
results showed that intracellular pigment components 
accumulated in the cytoplasmic vacuoles could be well 
extracted to the extracellular environment with extrac-
tive fermentation using Triton X-100 (Fig. 4b, c). Moreo-
ver, high yields of extracellular and intracellular pigment 

were obtained, with a little decline of biomass compared 
with the traditional batch fermentation (Fig. 1). This indi-
cated that the Monascus mycelia was grown properly and 
maintained a high pigment biosynthesis activity, although 
the cells had been sustained by the toxicity of high Triton 
X-100 concentration (40  g/L). A previous study found 
that mycelia morphology consisting of hyphae and myce-
lial pellets was influenced and damaged in extractive fer-
mentation of Monascus anka [22]. It is also reported that 
the toxicity of Triton X-100 molecules would be inserted 
in the cell membrane lipid bilayer, and then affected the 
cell membrane structure [29]. In this study, it was found 
the composition and physiological performances of the 
cell membrane were changed to increase the cell mem-
brane permeability in extractive fermentation (Fig.  3; 
Table  2). Moreover, TEM micrography showed that the 
cell wall and the cytoplasmic vacuoles of Monascus myce-
lia were destructed with the addition of Triton X-100 
in batch fermentation broth, and the internal contents 
including pigments were irregularly distributed. This also 
traced by the LSCM that the pigment fluorescence was 
instantly declined due to the increase of cell membrane 
permeability to facilitate intracellular pigment secretion 
(will be published in the next work). The determina-
tion of Triton X-100 concentration also showed that the 
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Fig. 4  Distribution of pigment-surfactant micelles (a) in extracellular broth and HPLC–PDA chromatogram of extracellular (b) and intracellular (c) 
pigments fermented under different modes. BF batch fermentation for 6 days, EF extractive fermentation for 6 days, EC 6-day batch fermentation 
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Triton X-100 concentration in cellular was much higher 
than that in supernatant even after seven times washing 
the extracted mature cells with distilled water (Table 3). 
These facts indicated that Triton X-100 might enter the 
cell and extract pigment back to the extracellular broth.

The cytoplasmic cell membrane is a structural compo-
nent, which may become damaged and functionally inva-
lid when fungi suspensions are exposed to anti-microbial 
agents [30]. Organic matter, such as Tween-80, toluene, 
ether, and chitosan, can increase cell membrane pen-
etrability and cause cytoplasm leakage [31, 32]. In this 
work, the permeability and integrity of the cell mem-
brane varied significantly via increasing uptake of the 
hydrophobic probe NPN and release of K+ or Na+ [30] 
in extractive cultivation induced by Triton X-100 (Fig. 3). 
Moreover, the release of K+ or Na+ also demonstrated 
an influence on the ion channel as well as cell membrane 
potential variation [33, 34]. The cell membrane potential 
is a good indicator for cell vitality and functional char-
acteristics, and changes in the cell membrane potential 
(Fig.  3a) induce potassium (K+) channel opening. The 
enhancement of K+ or Na+ secretion leads to further 
hyperpolarization of the membrane potential, resulting 
in the variation of other ion channels [33]. Multiple ion 
channels for Na+, K+, Ca+, and Cl− exist in the cell mem-
brane facilitate material transport [35]. Small particles, 
such as inorganic ions and small organic molecules, can 
leave the cell via specialized trans-membrane carrier or 
channel proteins [13]. Therefore, due to their low mol-
ecule weights, intracellular pigments were likely to be 
taken up and excreted through trans-membrane trans-
port from ion channels in the cell membrane, because 
the decreased ratio of unsaturated/saturated fatty acid in 
Monascus anka (Table 2) resulted in reduced membrane 
lipid fluidity [36].

Characteristic variation of intracellular and extracel-
lular pigments has been found in fed-batch and continu-
ous extractive fermentation with Monascus anka [37]. 
In this work, many new extracellular pigments were 
found in extractive fermentation, which were different 

from the components biosynthesized in batch fermenta-
tion (Fig.  4b, c). The generated pigments possess char-
acteristic spectra of yellow pigments with the peak 
absorbance at approximately 430  nm and four new pig-
ment components have separated in our late work [38]. 
It has been reported that the intracellular yellow and 
orange pigments are converted due to the enzyme cata-
lytic reaction in the non-aqueous phase solution dur-
ing the trans-membrane secretion process [20]. Herein, 
it was showed that the NAD+/NADH ratio in mycelia 
was decreased threefold, indicating a conversion from 
NADH to NAD+ in extracellular broth during extractive 
fermentation of Monascus anka (Table  4). The NAD+/
NADH ratio reflects the intracellular oxidation–reduc-
tion capacity [39]. Some pathways in cell growth and 
production metabolism can be controlled by maintain-
ing the redox level balance via adjusting the NADP+/
NADPH and NAD+/NADH ratios [40]. Moreover, high 
G6PDH activity was found in extractive broth com-
pared to the extremely low level in batch fermentation 
(Table 4). These results were consistent with the fact that 
the orange pigment can be transformed into yellow pig-
ments by chemical hydrogenation with the help of related 
enzymes [4, 41]. Additionally, the oxidation–reduction 
potential (ORP) value varied with the increase in Triton 
X-100 concentration (Additional file  1: Table S1). The 
ORP reflects the redox level for fermentation broth has 
been studied as a control parameter in fermentation pro-
cesses [42], and may be a novel indicator for Monascus 
yellow pigment biosynthesis [43]. Therefore, there must 
be a reduction reaction for orange pigment to yellow pig-
ment during the trans-membrane transport process in 
extractive fermentation.

In conclusion, the results of this work indicate that 
Triton X-100 damaged the cell wall and increased the 
cell membrane permeability. Afterwards, Triton X-100 
entered into the cell and embedded intracellular pig-
ments that accumulated in the cytoplasmic vacuoles for 
secretion through the cell membrane ion channels. The 
coexisting pigment-surfactant micelles were distributed 
uniformly with dense, spherical micelles in the extracel-
lular broth. Furthermore, orange pigment in the extracel-
lular broth could be converted to yellow pigment through 
a reduction reaction. Based on these facts, we established 
a putative localization model of Monascus pigment accu-
mulation and its trans-membrane secretion in extractive 
fermentation (Fig.  5). In this model, pigment secretion 
occurs through rapid trans-membrane transport (data 
not shown), which is limited by the saturation concentra-
tions of Triton X-100 [20]. The mechanism discovered 
in this manuscript provides a theoretical explanation for 
microbial extractive fermentation of Monascus pigments 
as well as other non-water-soluble products.

Table 4  The NAD+/NADH and  G6PDH activity in  different 
fermentation modes

a  BF 6-day batch fermentation, EF 6-day extractive fermentation, EC 6-day batch 
fermentation broth was added to 40 g/L Triton X-100 to conduct extractive 
cultivation for 1 h. The data are expressed as the mean values ± standard 
deviations (n = 3). Mean values in a column with different lowercase letters (a, b, 
c) are significantly different (p < 0.05)

Fermentation modea NAD+/NADH G6PDH (U/mL)

BF 4.23 ± 0.10a 0.015 ± 0.002a

EC 2.35 ± 0.21b 1.485 ± 0.023b

EF 1.47 ± 0.28c 2.415 ± 0.026c
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Methods
Microorganism and fermentation media
The Monascus anka GIM 3.592 fungi was deposited in 
Guangdong culture collection center of microbiology 
(GDMCC/GIMCC, China) and maintained on potato 
dextrose agar (PDA) medium at 4 °C.

The seed medium consisted of glucose 20  g, yeast 
extract 3  g, peptone 10  g, KH2PO4 4  g, KCl 0.5  g, and 
FeSO4·7H2O 0.01  g/L of distilled water. The fermenta-
tion medium consisted of glucose 50  g, (NH4)2SO4 5  g, 
KH2PO4 5 g, MgSO4·7H2O 0.5 g, KCl 0.5 g, MnSO4·H2O 
0.03 g, ZnSO4·7H2O 0.01 g and FeSO4·7H2O 0.01 g/L of 
distilled water. The initial pH in both the seed and fer-
mentation media was not controlled.

Batch fermentation and extractive batch fermentation
A Monascus anka GIM 3.592 sub-culture was main-
tained on a PDA plate at 30 °C for 7 days to collect spore 
suspensions by adding 6  mL of 0.1% (m/v) Tween-80 
solution onto each plate. Then 3  mL of spore suspen-
sion was inoculated into a 250-mL Erlenmeyer flask 

containing 50 mL of the seed medium and incubated at 
30 °C for 30 h in a rotary shaker at 180 rpm. Afterwards, 
2 mL of the seed culture broth was withdrawn and inoc-
ulated into 25  mL of fermentation medium in 250-mL 
Erlenmeyer flasks to continue the submerged fermenta-
tion. Cultivation was performed at 30 °C and 180 rpm for 
6  days as batch fermentation (BF). Extractive fermenta-
tion (EF) was performed in the same manner as the batch 
fermentation except that both 2  mL of the seed culture 
broth and 40 g/L Triton X-100 were added into 25 mL of 
fermentation medium in 250-mL Erlenmeyer flasks.

Pigment, biomass and lipid assays
The estimation of pigment concentration and biomass 
followed the same method as detailed in our previous 
work [11, 43]. It has been reported that the fermented 
Monascus pigments are mixtures containing different 
types of individual pigments [1, 2, 9]. Due to the high 
complexity in the pigment compositions, it is difficult to 
quantify the composition of each chemical compound in 
grams or moles. Alternatively, Monascus pigment content 
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is generally demonstrated by their integrated color char-
acteristics through the visible spectrum and the visible 
absorbance at 410  nm for yellow pigments, 470  nm for 
orange pigments and 510 nm for red pigments [4, 8, 10, 
11, 14–16, 19, 21, 26, 36, 43–46]. Additionally, the total 
pigment yield was defined as the yields of intracellular 
pigments plus extracellular pigments. The absorbance 
analysis of extracellular pigments was directly deter-
mined by supernatant of fermentation broth in the water-
solvent two-phase system according to the common 
method [10, 11, 14–16, 19–22, 37, 38]. The biomass char-
acteristic to dry cell weight (DCW) was determined by 
drying the mycelia at 60  °C until a constant weight was 
achieved. Additionally, the estimation of lipid content fol-
lowed the same method as described by Huang et al. [36].

Image analysis of intracellular pigment localization 
by LSCM and TEM
Laser scanning confocal microscopy (LSCM)
Image analysis of intracellular pigments by LSCM was 
performed as follows: 1 mL of batch fermentation broth 
withdrawn from the cultivation for the 1st, 3rd, and 6th 
day, respectively, were centrifuged at 8000 rpm for 5 min. 
The mycelia were collected and washed three times with 
distilled water. Afterwards, the mycelia were re-sus-
pended with 0.1 M phosphate buffer solution (PBS) and 
imaged using LSCM (LSM 710, Zeiss, Germany) with an 
excitation wavelength of 488 nm and an emission wave-
length of 542–573  nm. In particular, the fluorescent 
image of intracellular pigment was excited by itself with-
out addition of fluorescent reagent.

Transmission electron microscope (TEM)
Mycelia were prepared similar to the LSCM method. The 
washed mycelia by distilled water were then fixed with 
1 mL of fixative (4% glutaraldehyde and 3% paraformal-
dehyde) for 4 h, collected by centrifugation at 8000 rpm 
for 5  min and washed three times with 0.1  M PBS to 
remove residual fixative. The mycelia were then fixed 
with 0.1  mL of 1% osmic acid overnight, washed four 
times with 0.1 M PBS, and dehydrated successively with 
30, 50, 70, 85, 95, and 100% (v/v) ethanol. Subsequently, 
the mycelia were embedded in resin and further polym-
erized at 65  °C for 2  days. Finally, the treated samples 
were sliced using an ultra-microtome (UCT, Leica, Ger-
many), stained with uranium acetate and lead citrate, and 
observed using TEM (H-600, Hitachi, Japan).

Physiological performances of cell membrane assays
GC–MS analysis of cell membrane fatty acids
After cultivation for 6 days, the batch fermentation broth 
was added to 40  g/L Triton X-100 for extractive culti-
vation (EC) at 30 °C with 180 rpm for 1 h. Then, 25 mL 

of broth was withdrawn from batch fermentation (BF), 
extractive cultivation (EC), and extractive fermentation 
(EF), respectively, to collect mycelia to extract, purify 
and methylate the cell membrane fatty acids according to 
the method described by Wang et al. [19]. The fatty acid 
composition was analyzed using the gas chromatogra-
phy-mass spectrometry (GC–MS) method described by 
Huang et al. [36].

K+ and Na+ concentration analysis using FAAS
After cultivation for 6  days, the batch fermentation 
broth was withdrawn and 0, 5, 40, and 160  g/L Triton 
X-100, respectively, were added, followed by incubation 
at 30 °C with 180 rpm for 1 h. Subsequently, the extrac-
tive cultivation broths were centrifuged at 8000 rpm for 
5 min to separate the mycelia, and the supernatants were 
used to determine the K+ and Na+ concentration using 
a flame atomic absorption spectrometry (FAAS) method 
described by Wei et al. [47].

Determination of cell membrane potential
Cell membrane potential was determined using the rho-
damine123 (Rh123) assay [48]. The batch fermentation 
broth cultivated for 6  days was withdrawn and centri-
fuged at 8000 rpm for 5 min. The collected wet mycelia 
were washed three times and re-suspended with 0.1  M 
PBS. The suspension broth was then diluted 10-times. 
Afterwards, 1 mL of diluted suspension broth was mixed 
with 1.5 mL of 0, 5, 40, and 160 g/L Triton X-100 aque-
ous solutions, respectively, followed by extractive culti-
vation at 30 °C for 30 min. Subsequently, 10 μL of 1 g/L 
Rh123 was added into the extractive cultivation broths 
for 10  min incubation in the dark. Finally, the reaction 
broths were centrifuged at 8000 rpm for 5 min to remove 
the supernatants, and the mycelia were washed three 
times and re-suspended with 0.1 M PBS to determine the 
florescence intensity using a fluorescence spectropho-
tometer (Spectra Max M5, USA) with an excitation wave-
length of 488 nm and an emission wavelength of 530 nm.

Determination of outer membrane permeabilization
Triton X-100 outer membrane (OM) permeabilization 
activity was analyzed using a 1-N-phenylnaphthylamine 
(NPN) assay [49] according to the method described by 
Xing et  al. [29] with some modification. The batch fer-
mentation broth cultivated for 6  days was withdrawn 
and centrifuged at 8000 rpm for 5 min. The collected wet 
mycelia were washed three times and re-suspended with 
0.5% NaCl solution, and the suspension broth was then 
diluted 100-times. The solutions of 0, 5, 40, and 160 g/L 
Triton X-100 as well as 1% acetic acid solution (control) 
were adjusted to pH 4.0. Then, 1.5  mL of Triton X-100 
solutions or acetic acid solution was mixed with 20  μL 
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of 1 mM NPN. Afterwards, 1 mL of diluted cell suspen-
sion was added and the fluorescence was recorded imme-
diately as a function of time due to partitioning of NPN 
into the OM. The fluorescence was recorded with a flu-
orescence spectrophotometer (Spectra Max M5, USA) 
with an excitation wavelength of 350 nm and an emission 
wavelength of 420 nm, respectively.

NAD+/NADH and reductase analysis
Twenty-five milliliter of broths from BF, EC and EF, 
respectively, were withdrawn and centrifuged at 
8000 rpm for 5 min to separate the mycelia. The super-
natants were used to determine the reductase by the 
glucose-6-phosphate dehydrogenase (G6PDH) assay 
according to the method described by Liao et  al. [50] 
with some modifications. The reaction mixture (3  mL) 
with 0.6  mL of 1  M Tris–HCl (pH 8.0), 2.1  mL of dis-
tilled water, 0.15 mL of 0.1 M glucose-6-phosphate diso-
dium, 0.05 mL of 0.1 M NADP+, and 0.1 mL of the crude 
enzyme solution (supernatants) was added to catalyze 
the reduction reaction at 30 °C for 20 min. The G6PDH 
activity was determined using an ultraviolet spectropho-
tometer (UV-2802S, Unico, USA) at 340 nm. One unit of 
enzyme activity was defined as per milliliter of fermenta-
tion broth that dropped 1.0 of A340nm per min under the 
assay conditions. The results were expressed as U/mL.

Meanwhile, the mycelia were collected to extract the 
NAD+ and NADH for high-performance liquid chro-
matography (HPLC) determination according to the 
method described by Liu et al. [51] with some modifica-
tions. To extract the NADH, the mycelia were grinded 
by liquid nitrogen and then transferred to 10  mL of 
0.4 M KOH. After 10 min of cultivation in a 30 °C water 
bath, the supernatants were collected by centrifugation 
at 8000  rpm for 10  min and neutralized to pH 7.0 with 
0.1  M HCl. For NAD+, the grinded mycelia were col-
lected and soaked in 10 mL of HCl (pH 1.3). After 10 min 
of cultivation in a 50 °C water bath, the supernatants were 
collected by centrifugation at 8000  rpm for 10  min and 
neutralized to pH 7.0 with 0.1 M KOH. The HPLC system 
(e2695, Waters, USA) was equipped with a 2998 Photo-
diode Array (PDA) detector (2998, Waters, USA) and a 
Zorbax Ecipse Plus C18 column (5  μm, 250 ×  4.6  mm, 
Waters, USA). The mobile phase consisted of 95% elu-
ent A (0.01 M KH2PO4) and 5% eluent B (methanol) at a 
flow rate of 0.800 mL/min. The detection temperature of 
the column oven was set at 30 °C and the detection wave-
length was set to 260 nm.

Pigment‑surfactant micelle distribution analysis
Micrographs of the pigment-surfactant micelles were 
recorded on a TEM (JEM-2100, JEOL, Japan) at 200 kV. 
The supernatant of the extractive fermentation broth 

with definite concentration of pigments and Triton X-100 
(approximately 40 g/L for Triton X-100 and 30 AU470 for 
pigments) were prepared and then a drop of the solutions 
was dispersed on the surface of a TEM copper grid (200 
meshes). The solution was dried before data acquisition 
and at least three different areas were scanned for each 
sample.

The nonionic surfactant Triton X-100 concentra-
tion was determined using the HPLC method. Metha-
nol was used as the eluent with a flow rate of 1.000 mL/
min. The detection temperature of the column oven 
was set to 30 °C and the detection wavelength was set to 
277 nm. The pigment compositions were analyzed using 
HPLC method according to our previous work [20]. The 
mobile phase consisted of eluent A (water: phosphoric 
acid = 10,000:3, v/v) and eluent B (acetonitrile) at a flow 
rate of 1.000  mL/min, and the elution gradient was as 
follows: 0  min, 80% A; 25  min, 20% A; 35  min, 20% A; 
36 min, 80% A; and 40 min, 80% A. The temperature of 
the column oven was set to 30 °C and the detection wave-
length was set to 410 nm.

Statistical analysis
Data were expressed as the mean values ± standard devia-
tion (SD) for each measurement. The data were subjected 
to ANOVA analysis and significance of differences was 
determined by Duncan’s multiple range tests where nec-
essary. p < 0.05 was considered statistically significant in 
all cases. All analyses were performed with the SPSS soft-
ware package (version 22.0, SPSS Inc., Chicago, IL, USA).
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