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Abstract

Background: Glycoconjugated vaccines composed of polysaccharide antigens covalently linked to immunogenic
carrier proteins have proved to belong to the most effective and safest vaccines for combating bacterial pathogens.
The functional transfer of the N-glycosylation machinery from Campylobacter jejuni to the standard prokaryotic host
Escherichia coli established a novel bioconjugation methodology termed bacterial glycoengineering.

Results: In this study, we report on the production of a new recombinant glycoconjugate vaccine against Shigella
flexneri 2a representing the major serotype for global outbreaks of shigellosis. We demonstrate that S. flexneri 2a
O-polysaccharides can be transferred to a detoxified variant of Pseudomonas aeruginosa carrier protein exotoxin A
(EPA) by the C. jejuni oligosaccharyltransferase PglB, resulting in glycosylated EPA-2a. Moreover, we optimized the
in vivo production of this novel vaccine by identification and quantitative analysis of critical process parameters for
glycoprotein synthesis. It was found that sequential induction of oligosaccharyltransferase PgIB and carrier protein
EPA increased the specific productivity of EPA-2a by a factor of 1.6. Furthermore, by the addition of 10 g/L of the
monosaccharide N-acetylglucosamine during induction, glycoconjugate vaccine yield was boosted up to 3.1-fold.
The optimum concentration of Mg”" ions for N-glycan transfer was determined to be 10 mM. Finally, optimized
parameters were transferred to high cell density cultures with a 46-fold increase of overall yield of glycoconjugate
compared to the one in initial shake flask production.

Conclusion: The present study is the first attempt to identify stimulating parameters for improved productivity of
S. flexneri 2a bioconjugates. Optimization of glycosylation efficiency will ultimately foster the transfer of lab-scale
expression to a cost-effective in vivo production process for a glycoconjugate vaccine against S. flexneri 2a in E. coli.
This study is an important step towards this goal and provides a starting point for further optimization studies.
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Introduction

Gram-negative, non-motile, enteroinvasive Shigella bac-
teria are human pathogens that cause severe infection
known as shigellosis. The disease is estimated to affect
165 million people annually, leading to approximately
1.1 million deaths per year (WHO). Especially children
under the age of five living in environments with poor
sanitation and hygiene conditions bear an elevated risk
to contract an infection [1,2]. Among the different Shigella
serotypes S. flexneri 2a is the most widespread strain
worldwide and responsible for most endemic outbreaks in
developing countries [3].

Vaccination has been proven as a powerful strategy to
combat infectious diseases like shigellosis. In the last
years several different approaches have been developed
to combat S. flexneri 2a, including vaccination with at-
tenuated or heat-killed S. flexneri 2a strains [4,5], recom-
binant outer membrane proteins [6,7], subunit-based
vaccines [8] and glycoconjugate vaccines [9]. Particularly,
conjugated vaccines composed of O-polysaccharide units
of the lipopolysaccharide (LPS) covalently linked to im-
munogenic carrier proteins have attracted remarkable at-
tention due to their inherent ability to evoke a T-cell
dependent, long-lasting, serotype specific protective im-
munity. In contrary polysaccharide-only vaccines are
often poor immunogens and elicit only T-cell independ-
ent, short-lived and low-affinity antibody responses
[10,11]. It has already been demonstrated that glycocon-
jugates comprising O-specific polysaccharides of S. flex-
neri 2a covalently bound to Pseudomonas aeruginosa
exoprotein A (EPA) are safe, immunogenic and effica-
cious in clinical phase III studies [12]. However, broad
applicability of glycoconjugated vaccines has been hin-
dered by the complex production process which relies
either on sophisticated chemical synthesis to obtain, ac-
tivate and couple the oligosaccharide to the carrier pro-
tein [9] or on cultivation of the bacterial pathogen in
large cultures to obtain the desired O-specific polysac-
charides which constitutes a major health and safety
issue. Furthermore, processing of the chemical conju-
gates is laborious and requires different purification
steps accompanied by substantial loss of target material,
resulting in a low efficiency and cost-effectiveness [13].
Moreover, chemical crosslinking is highly unspecific,
leading to low robustness and reproducibility of the pro-
duction and consequently to difficulties in quality con-
trol of the vaccine.

Basic research of bacterial N-glycosylation resulted in
the seminal discovery of the functional transfer of the
Campylobacter jejuni N-glycosylation machinery in the
standard prokaryotic host E. coli [14]. Key enzyme of
this recombinant technology is the C. jejuni oligosac-
charyltransferase PglB. It exhibits relaxed substrate spe-
cificity towards glycans from different origins [15] and is
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able to link these polysaccharides covalently to target
proteins (e.g. immunogenic carrier proteins) that contain
specific N-glycosylation sites [16]. Thereby tailor-made
glycoconjugate vaccine candidates can be produced in
non-toxic, engineered E. coli and purified in a simplified
process from the bacterial periplasm as demonstrated re-
cently for several polysaccharides of pathogens [17-20].
Depending on the polysaccharide substrate, there is a
need for improving the glycosylation efficiency. Often a
high percentage of the target protein remains unglycosy-
lated, i.e., the glycoconjugate represents a small portion
of the totally produced recombinant protein. A few stud-
ies describe the optimization of glycosylation efficiency
by manipulation of the cellular metabolism [21-23].

In order to produce a more cost-effective vaccine for
vaccination campaigns in developing countries, glyco-
conjugate yields can be optimized with respect to spe-
cific and volumetric productivity. High cell density
cultivation (HCDC) of recombinant E. coli is a major
strategy for maximizing volumetric productivity of re-
combinant proteins [24,25]. High cell densities can be
reached by fed-batch cultivation, thereby reducing cul-
ture volume, enhancing biomass production and product
recovery and hence reducing costs significantly. So far
only one report describing a fed-batch bioprocess for
in vivo production of a glycoconjugate vaccine against S.
dysenteriae O1 in E. coli has been published [18].

In this study we report on (i) the establishment of an
in vivo production system for the expression of a glyco-
conjugate vaccine against S. flexneri 2a in E. coli, (ii) the
identification of critical parameters and cultivation con-
ditions influencing the in vivo glycosylation efficiency
and finally (iii) the transfer of the identified conditions
to high cell density cultivations under controlled condi-
tions to increase overall glycoconjugate yield. By applying
a fed-batch process with the identified and optimized pa-
rameters the glycoconjugate yield was increased 46-fold
compared to the shake flask cultures under non-optimized
conditions.

Results

In vivo glycosylation of EPA with S. flexneri 2a
O-polysaccharides

In vivo glycosylation of immunogenic carrier proteins
with O-polysaccharides of bacterial pathogens in genet-
ically engineered E. coli have been demonstrated to be a
promising synthesis route for the production of glycocon-
jugate vaccines [17-20,26]. Due to the relaxed substrate
specificity of the C. jejuni oligosaccharyltransferase PglB,
various O-polysaccharides (O-PS) from Gram-negative
and Gram-positive bacteria were successfully transferred
to carrier proteins. We aimed at extending this palette of
potential vaccines by producing a glycoconjugate against
Shigella flexneri 2a, one of the most clinically relevant
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Shigella serotypes. In doing so, an E. coli strain was engi-
neered harboring the O-antigen cluster of S. flexneri 2a
integrated on its genome under control of its native,
constitutive promoter and thereby replacing the en-
dogenous wb cluster. Among other genetic modifica-
tions (see Materials and methods section) this strain
lacks the O-antigen ligase waal, thus preventing
O-antigen transfer to the lipid A core, thereby promoting
PglB-mediated transfer of the O-PS to the desired carrier
protein. By co-expression of PglB under control of the
IPTG-inducible P,,. promoter with a detoxified version of
Pseudomonas aeruginosa exotoxin A (EPA) engineered
with two N-glycosylation sites and an E. coli DsbA signal
sequence for export to the periplasm, the S. flexneri 2a
O-polysaccharides are supposed to be transferred to the
respective sites of the carrier protein. As negative control,
PgIB was replaced by an inactive variant referred to as
PglBuc (W458A and D459A). After extraction of the
periplasmatic fraction of induced E. coli cells, Western
blot analysis either with anti-EPA antibody (Figure 1A)
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or with anti-S. flexneri 2a antibody (Figure 1B) was per-
formed. A dominant band at 70 kDa was detected after
hybridization with anti-EPA antibody in lane 1 and 3
(Figure 1A), representing the unglycosylated EPA carrier
protein. A ladder of bands with higher molecular mass
between 100-130 kDa was additionally and exclusively
detected in lane 1 and constitutes glycosylated EPA pro-
tein with polysaccharide chains of different length gener-
ated by the coordinated action of the enzymes Wzy and
Wzz. Wzy is responsible for polymerization of the O-PS
and Wzz determines the extent of polymerization. In the
uninduced sample in lane 2 only a very faint band at
70 kDa arising from leaky EPA expression from the P,,,z4p
promoter was visible. To elucidate whether also a specific
antibody against S. flexneri 2a reacts with the proposed
glycoprotein, Western blots of periplasmic extracts were
hybridized with anti-2a antibody. The ladder of bands of
high molecular mass was also detected with this specific
antibody (lane 1, Figure 1B) while no glycoprotein was
detected in the PglB., and uninduced samples. This
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Figure 1 In vivo glycosylation of EPA with Shigella flexneri 2a O-polysaccharides. £. coli expressing Shigella flexneri 2a polysaccharides, EPA
carrier protein and either PglB or PgIB,,: were grown in shake flasks at 30°C and induced with T mM IPTG and 2 g/L arabinose or retained
uninduced. 24 h post induction ODggo-normalized periplasmic extracts were prepared and analyzed by Western blot with A) anti-EPA antibody or
B) anti-2a antibody (B: right panel overexposed Western blot). C) Periplasmic extracts from A) and B) were analyzed and quantified by sandwich
enzyme-linked immunosorbent assay (ELISA). Error bars represent the standard deviations of three biological replicates.
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confirmed the result from Figure 1A and showed that PglB
is responsible and necessary for glycoprotein synthesis.
Distinct bands below 70 kDa were also visible (Figure 1B,
left and right overexposed panel, lanes 1, 2 and 3) and
most likely represent undecaprenyl pyrophosphate (UPP)-
linked O-antigens or degradation products. Although Shi-
gella flexneri 2a O-PS were successfully transferred to
EPA, most of the carrier protein remained unglycosylated
(Figure 1A). Hence, a primary target of this study was to
identify parameters and factors improving the yield of S.
flexneri 2a glycoconjugates.

Development of a reliable assay for quantification of
glycoprotein

A prerequisite for optimization of glycoprotein yield is the
availability of a reliable quantification method. In Figure 1A
and 1B it was demonstrated that anti-EPA and anti-2a anti-
bodies recognize EPA carrier and O-antigens, respectively.
Therefore, we developed a sandwich enzyme-linked
immunosorbent assay (ELISA) by coating high affinity
96-well plates with anti-EPA antibody as capture antibody
and detecting bound glycoproteins from periplasmic frac-
tions with anti-2a antibody (detection antibody). Appropri-
ate dilutions of periplasmic extracts and antibody solutions
were crucial to obtain high signal-to-noise ratios. Periplas-
mic samples from Figure 1A and Figure 1B were applied to
the described ELISA format. The glycoprotein-containing
sample resulted in a high readout at 450 nm while only
negligible background signals were detected for the unin-
duced and PglB,, samples, thus reflecting the Western
blot results accurately (Figure 1C). With the described
ELISA configuration the relative yield of EPA-2a in
periplasmic extracts obtained from different cultivation
conditions could be easily compared on the same
ELISA plate. However, absolute quantification is chal-
lenging because unglycosylated EPA is competing with
EPA-2a for capture antibody binding sites. Hence, puri-
fied EPA-2a does not represent an appropriate standard
for this approach.

Kinetics of EPA-2a production in shake flask and
bioreactor

After establishment of the quantification method for
EPA-2a, the time course of in vivo glycosylation was
monitored to obtain information about the optimal
induction period at shake flask and bioreactor scale.
Samples were taken periodically post induction and
glycoprotein content was analyzed by ELISA after ex-
traction. For both scales, specific productivity (i.e. glyco-
protein content per cell) increased from 0 to 24 h with a
maximum at 24 h (Figure 2A and 2B). Western blot
analysis of bioreactor samples confirmed this result
(Figure 2C). Since both profiles (Figure 2A and B) depict
a similar progression of glycosylation per cell, the time-
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Figure 2 Time course of in vivo glycosylation. EPA-2a producing
E. coli cells were cultivated at 30°C in shake flasks (A) orin a 1
L-bioreactor (B and C). Samples were taken periodically after induction
with 1 mM IPTG and 2 g/L arabinose followed by preparation of
ODgno-normalized periplasmic extracts and analysis by sandwich ELISA
(A and B) or Western blot with anti-EPA antibody (C).

dependent production of EPA-2a glycoconjugates can be
transferred directly from shake flask to bioreactor scale.
In all following experiments engineered E. coli were in-
duced for 24 h for EPA-2a production.

Induction strategy affects product yield

The oligosaccharyltransferase PgIB is under control of
the IPTG-inducible P,,. promoter while the carrier pro-
tein EPA is controlled by the P, ,pap promoter and its
expression can be initiated by the addition of arabinose.
This setup provides the opportunity to start expression
of the two proteins at different time points. We therefore
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investigated whether the induction strategy has an impact
on the specific productivity of EPA-2a by inducing PglB
and EPA, either simultaneously or sequentially (first EPA,
then PglB or vice versa). While inducing EPA 2 h before
initiating PglB expression resulted in similar yield of glyco-
protein compared to the simultaneously induced samples
(Table 1), the sequential strategy with induction of PglB
expression 2 h prior to that of EPA yielded a 1.6-fold in-
crease of glycoconjugates (Figure 3 and Table 1). We fur-
ther investigated different intervals from 0 to 2 h between
both inducer pulses and found that glycoconjugate yield
increased from simultaneous induction (0 h) to 0.5 h and
reached a plateau at =1 h (Figure 3). The sequential in-
duction did not lead to any significant change in the
ODgg reached compared to simultaneous induction (data
not shown). Thus, we conclude that a sequential induc-
tion strategy is advantageous for glycosylation efficiency
and increases the specific yield of EPA-2a significantly
(1.6-fold).

N-acetylglucosamine stimulates glycosylation efficiency

Serological classification of Shigella serotypes is based on
the nature of the repeating unit (RU) of the O-specific
polysaccharide moiety of the outer lipopolysaccharide
layer (LPS), which acts as a major virulence factor for
Shigella [27] and is the main target of the host adaptive
immunity. The repeating unit of S. flexneri 2a is composed
of a D-N-acetylglucosamine (D-GIcNAc) at the reducing
end and three consecutive L-rhamnose (L-Rha) residues.
This specific polysaccharide sequence motivated us to
examine whether supplementation of the culture broth
with monosaccharides occurring on the polysaccharide
(D-GlcNAc, L-rhamnose) can stimulate glycoprotein syn-
thesis. While addition of L-rhamnose exhibited only a
marginal effect on the yield of EPA-2a (data not shown),
D-GlcNAc increased the specific yield of glycosylated pro-
tein considerably. Analysis of ODggo-normalized periplas-
mic extracts revealed that the amount of glycoconjugate
per cell was improved 2-fold by the addition of 4 g/L D-
GIcNAc compared to the sample without D-GIcNAc
addition (Figure 4A). Since overexpression of recombinant
proteins and particularly membrane proteins like PgIB are
considered to cause high stress to E. coli cells [28,29] and
numerous publications pointed out that the disaccharide

Table 1 Induction strategies and influence on EPA-2a yield
Specific EPA-2a yield (A450 nm/ODgqo)

Order of induction

Simultaneous 063
Sequential (1. EPA 2. PgIB) 0.55
Sequential (1. PgIB 2. EPA) 1.0

EPA-2a expressing cells were incubated at 30°C. Cultures were induced either
simultaneously with T mM IPTG and 2 g/L arabinose, or EPA was induced 2 h
prior to PgIB (1. EPA 2. PgIB) or vice versa by the addition of 1 mM IPTG and
2 g/L arabinose. Values were obtained based on ODggo-normalized
periplasmic extracts.
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Figure 3 Impact of order of induction on EPA-2a yield. For
EPA-2a production engineered E. coli were incubated at 30°C in
shake flasks, and PgIB and EPA carrier protein were induced either
simultaneously (0 h) with 1T mM IPTG and 2 g/L arabinose, respectively,
or EPA was induced at indicated time points after PgIB induction.
ODgoo-normalized periplasmic extracts were prepared 24 h post
induction and analyzed by sandwich ELISA. Error bars represent the
standard deviations of three biological replicates.

trehalose is synthesized as a stress-responsive factor
[30-32], we investigated if supplementation of the cul-
ture medium with trehalose is also advantageous for
EPA-2a synthesis. However, no significant effect on
glycoprotein yield could be detected after trehalose
addition (data not shown). To examine the specific ef-
fect of N-acetylglucosamine in more detail, a dose—
response curve with different amounts of D-GIcNAc
was recorded in 96-deep well plates. An increase of
N-acetylglucosamine concentration led to improved
specific productivity of EPA-2a up to 3.1-fold with
10 g/L GlcNAc (Figure 4B). This improved production of
EPA-2a was not due to any effect of GIcNAc on the bio-
mass as shown in Figure 4C, thereby confirming the spe-
cific, stimulating effect of N-acetylglucosamine for EPA-2a
formation.

Involvement of Mg?* ions on glycoprotein synthesis

The transfer of O-PS to the desired target protein is me-
diated by the oligosaccharyltransferase PglB thereby
forming an N-glycosidic linkage between the amide ni-
trogen of the acceptor asparagine and a distinct carbon
of the monosaccharide at the reducing end of the poly-
saccharide chain. The precise reaction mechanism is not
understood. However, it has been demonstrated that
PgIB and other oligosaccharyltransferases require diva-
lent cations like Mn** or Mg>* for activity [33,34]. Three
acidic amino acids (D56, D154 and E149) in the catalytic
pocket coordinate the binding of a total of three divalent
cations. Mutations of these residues resulted in a de-
crease of glycosylation efficiency of > 50% [35]. Therefore,
glycosylation efficiency of EPA with S. flexneri 2a O-PS
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Figure 4 Effect of N-acetylglucosamine on glycoconjugate
synthesis. A) Comparison of specific EPA-2a yield in the absence (-)
or presence (+N-Ac) of N-acetylglucosamine (4 g/L) during simultaneous
induction of PgIB and EPA in shake flasks. B) EPA-2a expression in the
presence of increasing amounts of N-acetylglucosamine (0 g/L — 10 g/L)
in 96-deep well plates. Values were divided by the corresponding final
ODgpo before normalization to exclude that the beneficial effect of
N-acetylglucosamine is only due to increase of biomass formation. £. coli
cells were incubated at 30°C, and PgIB and EPA were induced
simultaneously for 24 h by addition of 1 mM IPTG and 2 g/L arabinose,
respectively. C). The final ODgq Values in the presence of increasing
amounts of N-acetylglucosamine (0 g/L — 10 g/L) in 96-deep well plates.
Error bars represent the standard deviations of three biological replicates.

was analyzed in the presence of different MgSO, concen-
trations. An increase of Mg”* ions in the range from 0 to
10 mM resulted in elevated glycoconjugate levels with an
optimum of a MgSO, concentration at 10 mM (Figure 5A).
Mg** ions in the range from 0 to 10 mM did not lead to
any significant change in biomass reflexed by ODgg, values
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Figure 5 Mg>* stimulates EPA-2a expression. A) Culture medium
was supplemented with different amounts of Mg?*, and EPA-2a was
quantified in ODggo-normalized periplasmic extracts by ELISA after
incubation at 30°C and simultaneous induction with T mM IPTG and
2 g/L arabinose for 24 h in 96-deep well plates. B) Influence of
different amounts of Mgz+ on the final ODgq values i in 96-deep
well plates. Error bars represent the standard deviations of three
biological replicates.

(Figure 5B). In the presence of higher MgSO, concentra-
tions (20 and 50 mM) a decrease in product yield was ob-
served. These results demonstrate the promoting effect of
Mg** on EPA-2a formation up to 10 mM.

Synergistic effect of sequential induction and addition of

N-acetylglucosamine

After identification of critical parameters e.g. the order
of induction, the addition of N-acetylglucosamine and
the presence of Mg”* ions, the combined effect of opti-
mized conditions was evaluated in shake flasks. Simul-
taneous induction of PglB and EPA carrier without
addition of N-acetylglucosamine was used as the non-
optimized conditions. Sequential induction of both pro-
teins with a gap of 2 h between the inducer additions
increased the yield 1.7-fold. The highest yield was ob-
tained when the required proteins were induced sequen-
tially and 10 g/L N-acetylglucosamine was added
concomitantly to the culture broth, leading to a 2.6-fold
increase of glycoconjugate yield compared to the non-
optimized condition. The economical feasibility of the
glycoconjugate production processes depends both on
the attainment of high cell density and high levels of
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glycoprotein per cell. In order to produce glycoconjugate
vaccines against S. flexneri 2a in sufficient amounts for
immunization campaigns, the conditions optimized in
this study were finally applied to high cell density cul-
tures. EPA-2a producing cells were grown at 30°C until
the optical density reached an ODgqg value of 9. At this
time 1 mM IPTG and 10 g/L N-acetylglucosamine were
added to the culture. 2 h later the carrier protein EPA
was induced by addition of 2 g/L arabinose, and feed
medium was applied with a constant rate of 7.8 ml/h to
provide the cells with required nutrients. Table 2 sum-
marizes and compares directly the results from non-
optimized and optimized shake flask experiments with
bioreactor fermentations. While simultaneously induced
shake flask cultures without N-acetylglucosamine reached
a final ODgqg of 1.9, sequential induction and the addition
of 10 g/L N-acetylglucosamine led to an ODggg of 2.6 in
shaken cultures and to an ODgq of 41.1 in fed-batch fer-
mentations after 24 h of induction. The specific yield of
optimized conditions determined by ELISA increased 2.6-
fold in shake flasks and 2.1-fold in fed-batch cultivations,
respectively. The obtained high cell density led to an in-
crease of volumetric productivity by a factor of 46.2 com-
pared to the non-optimized shake flask condition, while
optimized conditions resulted in an increase of volumetric
productivity by a factor of 3.6 in shake flask. The specific
productivity was slightly decreased from a Ayso value of
1.00 to 0.82 when optimized shake flask cultures were dir-
ectly compared to high cell density fermentations, an ef-
fect which has also been observed previously [36].

Discussion

Bacterial glycoengineering enables the in vivo glycosyl-
ation of immunogenic carrier proteins with bacterial
O-polysaccharides, thus providing a novel platform for
the production of tailor-made glycoproteins as safe and ef-
fective vaccines against various pathogens. Thereby the ex-
pensive and sophisticated chemical synthesis and coupling
process is circumvented and cost-effective vaccines for
immunization campaigns for developing countries can be
realized. The most widely used enzyme technology ex-
ploits the relaxed substrate specificity of the Campylobac-
ter jejuni oligosaccharyltransferase PgIB towards diverse
lipid-linked polysaccharides [15,37,38]. The PglB system
was recently applied to produce glycoconjugate vaccines
against S. dysenteriae serotype O1, E. coli O121, Francisella
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tularensis and Brucella abortus [17-20,39]. In this study
we report the bioconjugation of S. flexneri 2a polysaccha-
rides to the well-established immunogenic carrier exotox-
oid A of P. aeruginosa (EPA). The S. flexneri 2a repeating
unit consists of three rhamnose residues and a GIlcNAc at
the reducing end, similarly to other Shigella and E. coli
serotypes, e.g. S. dysenteriae type 1 and E. coli O7 oligo-
saccharide [40,41]. We could show that S. flexneri 2a
O-polysaccharides are a substrate for PglB-mediated
transfer to EPA and that the resulting glycoproteins were
recognized by a specific antibody targeting S. flexneri 2a
glycans. After establishing the S. flexneri 2a system, our
study aimed at identifying critical parameters stimulating
glycoconjugate yield. Analysis of samples at different time
points post induction showed that maximum glycoconju-
gate yield per cell was obtained after 24 h, even though
high amounts of EPA carrier protein were already present
in the periplasm 1 h after induction. A similar observation
was made when EPA-Shigella O1 glycoconjugates were
produced in E. coli [18]. This leads to the assumption that
either PglB activity, O-polysaccharide assembly or polysac-
charide precursor supply is rate-limiting. Induction time
point and induction period plays a pivotal role in the ex-
pression of many recombinant proteins and the effective-
ness of bioprocesses [42-44]. Upon addition of the
inducer, overexpression of recombinant proteins con-
sumes high amounts of essential biosynthetic precursors
(e.g. amino acids, nucleotides). Thereby the cellular me-
tabolism is negatively influenced which finally leads to
multiple stress responses, reduced biomass formation and
in turn to impaired recombinant protein expression
[45-48]. Using the here described enzymatic protein gly-
can coupling technology, the situation is even more severe
compared to the overexpression of single recombinant
proteins. In this case, numerous components, i.e. oligosac-
charyltransferase PglB, periplasmic protein carrier EPA
and a whole set of enzymes required for lipid-linked
O-polysaccharide synthesis have to be functionally
expressed in a coordinate manner to enable maximum
yield of the glycoconjugates. In the S. flexneri 2a system,
the glycosyltransferase cluster was integrated in the host
genome and constitutively expressed from its natural pro-
moter. However, PglB oligosaccharyltransferase and EPA
carrier protein were under control of the P,,. and P,,,z4p
promoters and were induced by IPTG and L-arabinose,
respectively. The beneficial effect of sequential induction

Table 2 Comparison of specific and volumetric EPA-2a yields in shake flask and high cell density cultivations

Type of Induction N-acetylglucosamine  ODgq0 at Final ODgoo  Specific yield Volumetric yield X-fold
cultivation strategy g/L induction (A450 nm/ODgpo)*  (A450 nm/volume) increase
Shake flask Simultaneous - 08 1.9 038 0.72 -

Shake flask Sequential 10 08 26 1.00 26 36
Bioreactor fed-batch ~ Sequential 10 9.1 411 0.82 337 46.2

*Values were obtained based on ODggp-normalized periplasmic extracts.
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of PglIB and EPA carrier expression observed in our study
is probably related to the temporal separation of the over-
expression of both components. This might relax the
metabolic burden to some extent and allow a functional
integration of PgIB with its 13 transmembrane helices into
the cell membrane by the precise interplay of translocases
and insertases [49]. A correctly inserted, functional PglB,
which is already present at induction of carrier protein ex-
pression, presumably is able to better transfer Shigella
flexneri 2a glycans to EPA during export of the carrier
polypeptide to the periplasm, possibly before folding. In
the case of simultaneous or opposite induction, a larger
portion of EPA remains unglycosylated due to the absence
of functional PglB immediately after induction.

We have shown in this study that the addition of
N-acetylglucosamine increased the yield of EPA-2a sig-
nificantly. N-acetylglucosamine (GlcNAc) is an acetylated
glucosamine derivative and plays a key role at the bacterial
cell surface. Besides, it is also an important signaling mol-
ecule [50]. The first step in Shigella flexneri 2a O-
polysaccharide assembly is the addition of one GIcNAc
residue from the nucleotide activated sugar donor UDP-
GIcNAc to the membrane-bound undecaprenyl pyrophos-
phate [51,52]. The UDP-GIcNAc is de novo synthesized in
E. coli by the conversion of fructose-6-phosphate to
glucosamine-6-phosphate [53], which is further processed
by a glucosamine mutase to glucosamine-1-phosphate
[54]. Acetylation of the latter intermediate leads to forma-
tion of GIcNAc-1-phosphate, which is the substrate for
the final uridyl transfer generating UDP-GIcNAc [55]. It is
assumed that synthesis of glucosamine-6-phosphate is
the rate limiting step in UDP-GIcNAc synthesis [56]. In
contrast to eukaryotic cells, bacteria are not able to
synthesize GIcNAc-6-phosphate. However, when N-
acetylglucosamine is present in the culture medium, the
N-acetylglucosamine transporter NagE in the inner
membrane of E. coli imports GIcNAc to the cytosol
where it is immediately phosphorylated by the phospho-
transferase system (PTS) to form GIcNAc-6-phosphate
[57]. GlcNAc-6-phosphate is then converted via mul-
tiple enzymatic steps to GlcNAc-1-phosphate, which is
finally activated by UTP to UDP-GlcNAc. Hence, the
rate-limiting step of the de novo synthesis of glucosamine-
6-phosphate is circumvented, which might result in an
increased pool of the cytosolic activated sugar donor
UDP-GIcNAc for glycan assembly and thus increase
glycoprotein production. This hypothesis is supported
by a recently published study, aiming at identifying
genes beneficial for in vivo glycosylation of C. jejuni
AcrA in a genome wide screen [21]. Among five other
identified genes, the bi-functional enzyme Dxs, an
UDP-N-acetylglucosamine pyrophosphorylase/glucosa-
mine-1-phosphatase involved in UDP-GIcNAc precursor
synthesis was identified and led to 1.6 fold increased AcrA
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glycosylation [21]. Interestingly, if GlcNAc was added to
mammalian cells exogenously, it was also converted to
UDP-GIcNAc, increasing the intracellular UDP-GIcNAc
pool. The elevated level of UDP-GIcNAC is believed to re-
sult in enhanced N-glycan branching of glycosylated pro-
teins in the Golgi apparatus [58].

In addition to the stimulating effect of N-acetylgluco-
samine, we found that Mg®" ions are able to promote
EPA-2a synthesis. Maximum EPA-2a yield was achieved
by supplementation of the culture medium with 10 mM
MgSO,. Divalent metal ions like Mg** and Mn** are es-
sential co-factors for enzymatic reactions catalyzing the
formation of phosphodiester bonds. The first reaction of
the S. flexneri 2a O-polysaccharide assembly, the transfer
of the GIcNAc moiety from UDP-GIcNAc to undecapre-
nyl pyrophosphate, is catalyzed by the integral mem-
brane protein WecA in E. coli. In vitro assays with crude
membrane extracts from overexpressing wecA E. coli
cells demonstrated the absolute requirement of Mg
ions for the GlcNAc transfer [51]. Purified WecA from
T. maritima revealed a Mg”>* -dependent activity profile
with a maximum at 10 mM and inhibitory effects with
higher Mg** concentrations similar to our data [59].
However, in contrast to the in vitro assay, EPA-2a was
also produced in the absence of additional Mg>* ions.
This might be due to the complex medium components,
yeast extract and soy peptone, in the culture medium
which contain considerable amounts of metal ions. Ac-
cording to Liu et al. [60], the two glycosyltransferases
WbgF and WbgG define the specific sequence of the re-
peating unit of the S. flexneri 2a O-polysaccharide by
sequential addition of three rhamnose residues. The
donor substrate for these glycosyltransferases is dTDP-
rhamnose. Detailed biochemical characterization of
WhbgF and WbgG is lacking, so the requirement of diva-
lent cations for their acitivity is speculative. The same
holds true for Gtrll, a glucosyltransferase attaching a
glucose residue to rhamnose III, converting the repeat-
ing unit of S. flexneri serotype Y in 2a [61]. There is a
general agreement that metal ions are required for oli-
gosaccharyltransferase activity in different organisms
[34,62,63]. A recent study on PglB from Campylobacter
lari demonstrated the requirement of either Mn** or
Mg** for DQNAT sequon binding of acceptor peptides
[33]. It was shown that Mn?* binds the acceptor with
higher affinity than Mg>*, but this does not necessarily
correlate with higher oligosaccharyltransferase catalytic
activity. When essential amino acids (Asp-56 and Glu-
319) involved in metal ion binding were mutated, glyco-
sylation efficiency decreased dramatically and a double
mutant was completely inactive [35]. Although Mn>* is
supposed to be the physiological cation for PglB, we
performed our experiments in the presence of different
MgSO, which is an essential component of the production
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media for high cell density cultivations [64]. The increased
EPA-2a yield in the presence of 10 mM MgSO, might be
generated by an overlapping effect of increased activity of
involved glycosyltransferases (WecA, WbgF, WbgG) for
O-polysaccharide assembly and enhanced catalytic activity
of the oligosaccharyltransferase PglB. It would now be in-
teresting to test whether the addition of extra Mn>" also
has a beneficial effect.

Conclusion

The present study is the first attempt to identify stimu-
lating parameters for improved productivity of S. flexneri
2a bioconjugates. Three major factors were identified
and quantitatively analyzed. A sequential induction strat-
egy with a 2 hour gap between both inducer pulses, the
addition of 10 g/L N-acetylglucosamine and the pres-
ence of 10 mM MgSO, were favorable for EPA-2a
production. By applying these parameters to high cell
density cultures, EPA-2a yield was increased 46-fold
compared to initial shake flask conditions. It is likely
that these factors are not S. flexneri 2a specific but en-
able increased productivities also of other glycoconju-
gates with similar structural features, i.e. a GIcNAc
residue at the reducing end. However, this needs to be
analyzed in further studies. Optimization of glycosylation
efficiency will ultimately foster the transfer of lab-scale
expression to a cost-effective and reasonable in vivo pro-
duction process for a glycoconjugate vaccine against S.
flexneri 2a in E. coli. This study is an important step to-
wards this goal and provides a starting point for further
optimization studies.

Materials and methods

Bacterial strains and plasmids

E. coli 1052 (W3110, F~, IN(rrnD-rrnE)1, rph', Awbbl,
Awbb], AwbbK, gtrS::gtrll, AwaaL, wb cluster:O-antigen
cluster of S. flexneri 2457 T, araBAD::cat) (provided by
GlycoVaxyn AG, Schlieren, Switzerland) harboring the
O-antigen cluster of S. flexneri 2a under control of its
native (constitutive) promoter on the genome was used
as the production strain for all in vivo glycosylation experi-
ments in this study. This strain also carries a genomic in-
tegration of the gene encoding glucosyltransferase Gtrll,
which attaches a glucose branch to the middle rhamnose
residues essential for proper immune response, at the gtrS
locus. The oligosaccharyltransferase PgIB from C. jejuni
was expressed from a spectinomycin-selectable, low-copy
number expression plasmid (backbone pEXT21 [65], ori-
gin of replication IncW) under control of the IPTG-
inducible hybrid promoter P, The PgIB sequence was
codon-optimized for expression in E. coli by gene syn-
thesis (GenScript, Piscataway, NJ, USA). A glycosylation
deficient PglB variant (PglB,,,,) harboring two point mu-
tations (W458A and D459A) was used as negative
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control. For Western blot detection a hemagglutinin oligo-
peptide tag (HA) was genetically fused to the C-terminal
end of the corresponding PgIB sequences. As carrier pro-
tein, a detoxified version of P. aeruginosa exotoxin A
(EPA, L552V, AE553) containing two engineered N-
glycosylation sites (N262 and N398) was expressed from
an ampicillin-resistant, high-copy number plasmid under
control of the arabinose-inducible promoter P,.pap
(pEC415 [39]). For Sec-dependent secretion to the peri-
plasm a DsbA signal peptide was genetically fused at the
N-teminal end of EPA.

Expression of EPA-2a in shake flasks

Small scale recombinant expression of the glycoconjugate
vaccine EPA-2a was performed in 100 ml Erlenmeyer
flasks (without baffles) filled with 50 ml medium. The
complex medium used in this study was composed of
10 g/L yeast extract (Bacto yeast extract, BD, Le Pont de
Claix, France), 20 g/L soy peptone (soy peptone A3 SC,
Organotechnie, La Courneuve, France), 9 g/L. KH,PO,,
5 g/L (NHy)»SO,, 1 g/L citric acid, 4 g/L glycerol, 10 mM
MgSO, and 10 ml/L trace element solution (10 g/L
CaCos, 20 g/L FeCl3*6 H,0O, 1.5 g/L MnCl,*4 H,0, 0.3 g/
L H3BOs3, 0.25 g/L CoCly*6 H,0, 0.15 g/L CuSQ,, 0.5 g/L
ZnCl,, 2 g/L. NaMoQOy,, 84.4 g/L Na,EDTA*2 H,0, 20 ml/
L, 37% HCI). To maintain plasmid stability the medium
was supplemented with 100 pg/ml ampicillin and 80 pg/
ml spectinomycin. Shake flasks were inoculated from
overnight tube cultures to a starting ODgg value of 0.08
and incubated at 30°C and 160 rpm until cultures reached
an ODgqp of 0.6 — 0.8. PgIB expression was induced by the
addition of 1 mM IPTG, and the protein carrier EPA was
induced by the addition of 2 g/L arabinose. For sequential
induction, IPTG was added at an ODgyy of 0.6 — 0.8 and
2 h later 2 g/L arabinose was added (if not stated other-
wise). N-acetylglucosamine was always added concomi-
tantly with IPTG. Induced bacteria cells were incubated
over night before harvesting by centrifugation (6500 x g,
5 min, 4°C).

Cultivation in 96-deep well plates

For screening of parameters that influence EPA-2a pro-
duction, recombinant E. coli cells were grown in 96-
deep well plates (DWPs) (VWR, order No. 732-0585) in
1.6 ml of the same medium used for shake flask cultures.
DWPs were inoculated with an uninduced overnight
shake flask culture to a starting ODggg of 0.05 — 0.1 and
incubated at 30°C and 500 rpm in a specialized micro-
plate incubator (Infors HT Microton, Bottmingen,
Switzerland). When cultures reached an ODggy of 0.4 —
0.6, PgIB and EPA expression was induced by adding
1 mM IPTG and 2 g/L arabinose respectively. N-
acetylglucosamine was added simultaneously with IPTG
(similar to shake flask experiments). After overnight
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incubation, 900 ul culture per well were transferred with
a multi-channel pipette to a new DWP and harvested by
centrifugation (1600 x g, 10 min, 4°C). Supernatant was
withdrawn with a multi-channel pipette and periplasmic
extracts were prepared as described below.

Bioreactor fermentations

Optimization studies of high-cell density cultures were
carried out in a 4-parallel bioreactor system (Infors HT,
Multifors 2, Bottmingen, Switzerland) with a total vessel
volume of 1 L. The composition of the complex medium
was the same as described in the shake flask section, ex-
cept that the initial carbon concentration was increased
to 25 g/L glycerol. MgSO,, trace element solution and
antibiotics were sterilized separately and added after
autoclaving. The feeding solution consisted of 33 g/L
yeast extract (Bacto yeast extract, BD, Le Pont de Claix,
France), 67 g/L soy peptone (soy peptone A3 SC,
Organotechnie, La Courneuve, France), 250 g/L glycerol,
10 mM MgSO, and 10 ml/L trace element solution. The
initial batch culture was started by inoculation of 0.5 L
medium with an overnight seed culture to a final start-
ing ODggg of 0.05. The pH was adjusted to 7.00+/-0.05
by the addition of 25% H3PO, and 4 M KOH. Dissolved
oxygen levels (DO,) were kept at 30% saturation by
automated-enriching of the inlet air with pure oxygen.
Bioreactors were stirred at 1000 rpm during the whole
bioprocess. Foam formation was inhibited by the manual
addition of the anti-foaming agent Antifoam 204
(Sigma-Aldrich, Buchs, Switzerland). PglB and EPA ex-
pression were induced by addition of 1 mM IPTG and
2 g/L arabinose, respectively. After induction, inducers
were also added to the feed solution (concentration in
feed: 1 mM IPTG, 2 g/L arabinose) to ensure their con-
stant concentrations in the culture broth. Cell growth was
monitored during the whole process by measuring the op-
tical density (OD) at 600 nm using a UV-visible spectro-
photometer (Genesys 6, ThermoSpectronic, Lausanne,
Switzerland). Culture samples were diluted with deionized
H,O until the final ODgg value was less than 0.4.

Preparation of periplasmic extracts

In order to determine the specific productivity of glyco-
protein production under altered conditions periplasmic
proteins were isolated by an osmotic shock method [66].
In brief, cells corresponding to 2 (or 10) ODggg units
were harvested by centrifugation at 6500 x g for 5 mi-
nutes and 4°C. Subsequently cell pellets were resus-
pended in 200 pl (or 1 ml) of chilled sucrose-lysozyme
buffer (30 mM Tris—HCI pH 8, 20% w/v sucrose, 1 mM
EDTA, 1 mg/ml lysozyme and complete protease inhibi-
tor mix (Roche, Basel, Switzerland)) to a final ODggo of
10 and incubated on ice for 30 minutes. Periplasmic pro-
teins were separated from cell debris and protoplasts by
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centrifugation at 6500 x g for 10 minutes at 4°C, and
supernatant was withdrawn and stored at —-20°C until
further analysis.

Enzyme-linked immunosorbent assay (ELISA)

For quantification of relative glycoconjugate yields in
periplasmic extracts a sandwich ELISA was applied in a
96-well format (F96 MaxiSorp, Nunc). As capture anti-
body, protein G purified goat-anti-EPA antiserum (US
Biological/Lucerna Chem AG, Lucerne, Switzerland) was
diluted with 1 x PBS to a final concentration of 10 pg/ml,
and microtiter plate wells were coated with 60 pl of
capture antibody solution at 4°C overnight. All subsequent
incubation steps were performed at room temperature.
After four washing steps with 300 ul washing buffer PBST
(1 x PBS, 0.05% Tween) separated by a 2 minutes incuba-
tion period under vigorous shaking using an automated
microplate washer (Wellwash Versa, Thermo-Scientific,
Zurich, Switzerland) wells were blocked for 2 h with
300 pl blocking solution (1 x PBS, 10% dry milk) followed
by another washing procedure as described above. Sub-
sequently, periplasmic extracts containing glycoproteins
were diluted with dilution buffer (1 x PBS, 1% dry milk)
to appropriate final dilutions of 1:100, 1:1000 or
1:10000, respectively, and 50 pl diluted periplasmic ex-
tracts were applied to ELISA plates and incubated for
1 h thereby allowing the antigen EPA to bind to the
capture antibody. Unbound EPA-2a and unbound,
unglycosylated EPA carrier protein were removed by
four washing cycles with 300 pl washing buffer per well.
Next 50 pl of a specific polyclonal antibody against the
S. flexneri 2a polysaccharide chain developed in rabbit
(rabbit-anti-2a; GVXN#92, GlycoVaxyn AG, Schlieren,
Switzerland) were added as a 1:10000 dilution in 1 x
PBS + 1% dry milk to the wells. After a 1 h incubation,
plates were washed four times with washing buffer
PBST to remove residual anti-2a antibody and probed
for another hour with 50 pl of a 1:20000 dilution in 1 x
PBS + 1% dry milk of the peroxidase-coupled detection
antibody (goat anti-rabbit IgG-HRP, Bio-Rad, Reinach,
Switzerland). Four final washing steps were performed
before ELISA signals were developed with 100 ul Ultra-
TMB-ELISA HRP substrate (Thermo-Scientific Pierce).
The color reaction was stopped by addition of 100 pl of
1 N H,SO, per well, and absorbance was measured in a
96-well photometer (BioTek, Synergy Mx, Lucerne,
Switzerland) at 450 nm. The obtained A,y values
allowed the relative comparison of EPA-2a in periplas-
mic extracts on the same plate. The highest Ays value
was subsequently normalized to 1.

Western blot analysis
Periplasmic extracts (5 pl) were supplemented by equal
volumes of 2 x SDS-PAGE sample buffer (4% SDS, 20%
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glycerol, 10% 2-mercaptoethanol, 0.004% bromphenol
blue, 0.125 M Tris HCl) and denatured at 95°C for 5 mi-
nutes. Samples were analyzed by 8% SDS-PAGE and
transferred on a nitrocellulose membrane using the iBlot
blotting system (Invitrogen, Carlsbad, USA). After block-
ing with 1 x PBS 10% milk for 1 h, membranes were
probed with either rabbit anti-EPA antiserum (Sigma-
Aldrich, Buchs, Switzerland) or rabbit anti-2a antiserum
(GVXN#92, GlycoVaxyn AG, Schlieren, Switzerland),
both applied as 1:20000 dilution in 1 x PBS 1% dry
milk for 1 h. Prior to ECL-based chemiluminescent de-
tection of EPA-2a glycoconjugates (ChemiDoc-It, UVP,
Upland, USA) the membranes were hybridized with a
peroxidase-coupled secondary antibody (goat anti-rabbit
IgG-HRP, Bio-Rad, Reinach, Switzerland, 1:20000 in 1 x
PBS 1% dry milk).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

MMK, MB, DS and JI conceived the study, designed the experiments and
interpreted the results. MMK performed all experiments and wrote the
manuscript. QR contributed to data interpretation, helped to draft the
manuscript and gave essential input. JI participated in drafting the
manuscript. LTM provided financial and administrative support and
participated in the design of the study and assisted in writing the
manuscript. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by the SNF SSAJRP Research Program from the
University of Basel (SMC JRP 03).

Author details

1Laboratory for Biointerfaces, Swiss Federal Laboratories for Materials Science
and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen,
Switzerland. 2Glyco\/axyn AG, Grabenstrasse 3, 8952 Schlieren, Switzerland.

Received: 5 September 2014 Accepted: 12 January 2015
Published online: 23 January 2015

References

1. Kotloff KL, Winickoff JP, Ivanoff B, Clemens JD, Swerdlow DL, Sansonetti PJ,
et al. Global burden of Shigella infections: implications for vaccine
development and implementation of control strategies. Bull World Health
Organ. 1999;77(8):651-66.

2. Niyogi SK. Shigellosis. J Microbiol. 2005;43(2):133-43.

3. Levine MM, Kotloff KL, Barry EM, Pasetti MF, Sztein MB. Clinical trials of
Shigella vaccines: two steps forward and one step back on a long, hard
road. Nat Rev Microbiol. 2007;5(7):540-53.

4. Ranallo RT, Fonseka S, Boren TL, Bedford LA, Kaminski RW, Thakkar S, et al.
Two live attenuated Shigella flexneri 2a strains WRSf2G12 and WRSf2G15: a
new combination of gene deletions for 2nd generation live attenuated
vaccine candidates. Vaccine. 2012:30(34):5159-71.

5. Barman S, Koley H, Ramamurthy T, Chakrabarti MK, Shinoda S, Nair GB, et al.
Protective immunity by oral immunization with heat-killed Shigella strains in
a guinea pig colitis model. Microbiol Immunol. 2013;57(11):762-71.

6. Martinez-Becerra FJ, Chen X, Dickenson NE, Choudhari SP, Harrison K,
Clements JD, et al. Characterization of a novel fusion protein of IpaB and
IpaD of Shigella and its potential as a pan-Shigella vaccine. Infect Immun.
2013;81(12):4470-7.

7. Pore D, Mahata N, Pal A, Chakrabarti MK. Outer membrane protein A
(OmpA) of Shigella flexneri 2a, induces protective immune response in a
mouse model. PLoS One. 2011,6(7):e22663.

20.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

Page 11 of 12

Riddle MS, Kaminski RW, Williams C, Porter C, Bagar S, Kordis A, et al. Safety
and immunogenicity of an intranasal Shigella flexneri 2a Invaplex 50 vaccine.
Vaccine. 2011;29(40):7009-19.

Phalipon A, Tanguy M, Grandjean C, Guerreiro C, Belot F, Cohen D, et al. A
synthetic carbohydrate-protein conjugate vaccine candidate against Shigella
flexneri 2a infection. J Immunol. 2009;182(4):2241-7.

Weintraub A. Immunology of bacterial polysaccharide antigens. Carbohydr
Res. 2003,338:2539-47.

Avci FY, Kasper DL. How Bacterial Carbohydrates Influence the Adaptive
Immune System. Annu Rev Immunol. 2010;28:107-30.

Cohen D, Ashkenazi S, Green M, Lerman Y, Slepon R, Robin G, et al. Safety
and immunogenicity of investigational Shigella conjugate vaccines in Israeli
volunteers. Infect Immun. 1996,64(10):4074-7.

Frasch CE. Preparation of bacterial polysaccharide-protein conjugates:
analytical and manufacturing challenges. Vaccine. 2009,27(46):6468-70.
Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, et al.
N-linked glycosylation in Campylobacter jejuni and its functional transfer into
E. coli. Science. 2002;298(5599):1790-3.

Wacker M, Feldman MF, Callewaert N, Kowarik M, Clarke BR, Pohl NL, et al.
Substrate specificity of bacterial oligosaccharyltransferase suggests a
common transfer mechanism for the bacterial and eukaryotic systems. Proc
Natl Acad Sci USA. 2006;103(18):7088-93.

Kowarik M, Young NM, Numao S, Schulz BL, Hug |, Callewaert N, et al.
Definition of the bacterial N-glycosylation site consensus sequence. EMBO
Journal. 2006;25(9):1957-66.

Cuccui J, Thomas RM, Moule MG, D'Elia RV, Laws TR, Mills DC, et al. Exploitation
of bacterial N-linked glycosylation to develop a novel recombinant glycoconjugate
vaccine against Francisella tularensis. Open Biol. 2013;3(5):130002.

lhssen J, Kowarik M, Dilettoso S, Tanner C, Wacker M, Thony-Meyer L. Production
of glycoprotein vaccines in Escherichia coli. Microb Cell Fact. 2010,961.
Iwashkiw JA, Fentabil MA, Faridmoayer A, Mills DC, Peppler M, Czibener C,
et al. Exploiting the Campylobacter jejuni protein glycosylation system for
glycoengineering vaccines and diagnostic tools directed against brucellosis.
Microb Cell Fact. 2012;11:13.

Wetter M, Kowarik M, Steffen M, Carranza P, Corradin G, Wacker M.
Engineering, conjugation, and immunogenicity assessment of Escherichia
coli 0121 O antigen for its potential use as a typhoid vaccine component.
Glycoconj J. 2013;30(5):511-22.

Pandhal J, Woodruff LB, Jaffe S, Desai P, Ow SY, Noirel J, et al. Inverse
metabolic engineering to improve Escherichia coli as an N-glycosylation
host. Biotechnol Bioeng. 2013;110(9):2482-93.

Pandhal J, Desai P, Walpole C, Doroudi L, Malyshev D, Wright PC. Systematic
metabolic engineering for improvement of glycosylation efficiency in
Escherichia coli. Biochem Biophys Res Commun. 2012;419(3):472-6.

Pandhal J, Ow SY, Noirel J, Wright PC. Improving N-glycosylation efficiency
in Escherichia coli using shotgun proteomics, metabolic network analysis,
and selective reaction monitoring. Biotechnol Bioeng. 2011;108(4):902-12.
Choi JH, Keum KC, Lee SY. Production of recombinant proteins by high cell
density culture of Escherichia coli. Chemical Engineering Science.
2006,61(3):876-85.

Lee SY. High cell-density culture of Escherichia coli. Trends Biotechnol.
1996;14(3):98-105.

Terra VS, Mills DC, Yates LE, Abouelhadid S, Cuccui J, Wren BW. Recent
developments in bacterial protein glycan coupling technology and
glycoconjugate vaccine design. J Med Microbiol. 2012,61:919-26.

Lindberg AA, Karnell A, Weintraub A. The lipopolysaccharide of Shigella
bacteria as a virulence factor. Rev Infect Dis. 1991;13 Suppl 4:5279-84.
Wagner A, Stiegler G, Vorauer-Uhl K, Katinger H, Quendler H, Hinz A, et al.
One step membrane incorporation of viral antigens as a vaccine candidate
against HIV. J Liposome Res. 2007;17:139-54.

Wagner S, Bader ML, Drew D, de Gier JW. Rationalizing membrane protein
overexpression. Trends Biotechnol. 2006,24:364-71.

Purvis JE, Yomano LP, Ingram LO. Enhanced trehalose production improves
growth of Escherichia coli under osmotic stress. Appl Environ Microbiol.
2005;71(7):3761-9.

Joseph TC, Rajan LA, Thampuran N, James R. Functional characterization of
trehalose biosynthesis genes from E. coli: an osmolyte involved in stress
tolerance. Mol Biotechnol. 2010;46(1):20-5.

Strom AR, Kaasen I. Trehalose metabolism in Escherichia coli: stress
protection and stress regulation of gene expression. Mol Microbiol.
1993;8(2):205-10.



Kampf et al. Microbial Cell Factories (2015) 14:12

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Gerber S, Lizak C, Michaud G, Bucher M, Darbre T, Aebi M, et al. Mechanism
of bacterial oligosaccharyltransferase: in vitro quantification of sequon
binding and catalysis. J Biol Chem. 2013;288(13):8849-61.

Sharma CB, Lehle L, Tanner W. N-Glycosylation of yeast proteins.
Characterization of the solubilized oligosaccharyl transferase. Eur J Biochem.
1981;116(1):101-8.

Lizak C, Gerber S, Numao S, Aebi M, Locher KP. X-ray structure of a bacterial
oligosaccharyltransferase. Nature. 2011;474(7351):350-5.

Jeong KJ, Lee SY. High-level production of human leptin by fed-batch
cultivation of recombinant Escherichia coli and its purification. Appl Environ
Microbiol. 1999,65(7):3027-32.

Chen MM, Glover KJ, Imperiali B. From peptide to protein: comparative
analysis of the substrate specificity of N-linked glycosylation in C. jejuni.
Biochemistry. 2007;46(18):5579-85.

Feldman MF, Wacker M, Hernandez M, Hitchen PG, Marolda CL, Kowarik M,
et al. Engineering N-linked protein glycosylation with diverse O antigen
lipopolysaccharide structures in Escherichia coli. Proc Natl Acad Sci USA.
2005;102(8):3016-21.

Wacker M, Wang L, Kowarik M, Dowd M, Lipowsky G, Faridmoayer A, et al.
Prevention of Staphylococcus aureus infections by glycoprotein vaccines
synthesized in Escherichia coli. J Infect Dis. 2014;209(10):1551-61.

Dmitriev BA, Knirel YA, Kochetkov NK, Hofman IL. Somatic antigens of Shigella -
structural investigation on o-specific polysaccharide chain of Shigella dysenteriae
type-1 lipopolysaccharide. Eur J Biochem. 1976,66(3):559-66.

Lvov VL, Shashkov AS, Dmitriev BA, Kochetkov NK, Jann B, Jann K. Structural
studies of the o-specific side-chain of the lipopolysaccharide from Escherichia
coli o-7. Carbohydr Res. 1984;126(2):249-59.

Collins T, Azevedo-Silva J, da Costa A, Branca F, Machado R, Casal M. Batch
production of a silk-elastin-like protein in E. coli BL21 (DE3): key parameters
for optimisation. Microb Cell Fact. 2013;12:21.

Lecina M, Sarro E, Casablancas A, Godia F, Cairo JJ. IPTG limitation avoids
metabolic burden and acetic acid accumulation in induced fed-batch
cultures of Escherichia coli M15 under glucose limiting conditions. Biochem
Eng J. 2013;70:78-83.

Pinsach J, de Mas C, Lopez-Santin J. Induction strategies in fed-batch
cultures for recombinant protein in Escherichia coli: Application to rhamnulose
1-phosphate aldolase. Biochem Eng J. 2008:41(2):181-7.

Carneiro S, Ferreira EC, Rocha . Metabolic responses to recombinant
bioprocesses in Escherichia coli. J Biotechnol. 2013;164(3):396-408.
Hoffmann F, Rinas U. Stress induced by recombinant protein production in
Escherichia coli. Adv Biochem Eng Biotechnol. 2004,89:73-92.

Neubauer P, Lin HY, Mathiszik B. Metabolic load of recombinant protein
production: Inhibition of cellular capacities for glucose uptake and
respiration after induction of a heterologous gene in Escherichia coli.
Biotechnol Bioeng. 2003;83(1):53-64.

Bentley WE, Kompala DS. Optimal induction of protein-synthesis in recombinant
bacterial cultures. Ann N Y Acad Sci. 1990,589:121-38.

Dalbey RE, Wang P, Kuhn A. Assembly of bacterial inner membrane
proteins. Annu Rev Biochem. 2011;80:161-87.

Konopka JB. N-acetylglucosamine (GIcNAc) functions in cell signaling.
Scientifica (Cairo) 2012;Article 1D 489208.

Amer AQ, Valvano MA. Conserved aspartic acids are essential for the
enzymic activity of the WecA protein initiating the biosynthesis of
O-specific lipopolysaccharide and enterobacterial common antigen in
Escherichia coli. Microbiology. 2002;148(Pt 2):571-82.

Yao Z, Valvano MA. Genetic analysis of the O-specific lipopolysaccharide
biosynthesis region (rfb) of Escherichia coli K-12 W3110: identification of
genes that confer group 6 specificity to Shigella flexneri serotypes Y and 4a.
J Bacteriol. 1994;176(13):4133-43.

Dutka-Malen S, Mazodier P, Badet B. Molecular cloning and overexpression
of the glucosamine synthetase gene from Escherichia coli. Biochimie.
1988;70(2):287-90.

Mengin-Lecreulx D, van Heijenoort J. Characterization of the essential gene
glmM encoding phosphoglucosamine mutase in Escherichia coli. J Biol
Chem. 1996;271(1):32-9.

Mengin-Lecreulx D, van Heijenoort J. Copurification of glucosamine-1-
phosphate acetyltransferase and N-acetylglucosamine-1-phosphate
uridyltransferase activities of Escherichia coli: characterization of the gimU
gene product as a bifunctional enzyme catalyzing two subsequent steps in
the pathway for UDP-N-acetylglucosamine synthesis. J Bacteriol.
1994;176(18):5788-95.

56.

57.

58.

59.

60.

62.

63.

64.

65.

66.

Page 12 of 12

Milewski S. Glucosamine-6-phosphate synthase-the multi-facets enzyme.
Biochim Biophys Acta. 2002;1597(2):173-92.

Rogers MJ, Ohgi T, Plumbridge J, Soll D. Nucleotide sequences of the
Escherichia coli nagE and nagB genes: the structural genes for the
N-acetylglucosamine transport protein of the bacterial phosphoenolpyruvate:
sugar phosphotransferase system and for glucosamine-6-phosphate
deaminase. Gene. 1988,62(2):197-207.

Sasai K, lkeda Y, Fujii T, Tsuda T, Taniguchi N. UDP-GIcNAc concentration is
an important factor in the biosynthesis of betal,6-branched oligosaccharides:
regulation based on the kinetic properties of N-acetylglucosaminyltransferase
V. Glycobiology. 2002;12(2):119-27.

Al-Dabbagh B, Mengin-Lecreulx D, Bouhss A. Purification and
characterization of the bacterial UDP-GIcNAc:undecaprenyl-phosphate
GIcNAc-1-phosphate transferase WecA. J Bacteriol. 2008;190(21):7141-6.
Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Wang Q, et al.
Structure and genetics of Shigella O antigens. FEMS Microbiol Rev.
2008;32(4):627-53.

Lehane AM, Korres H, Verma NK. Bacteriophage-encoded glucosyltransferase
Gtrll of Shigella flexneri: membrane topology and identification of critical
residues. Biochem J. 2005;389(Pt 1):137-43.

Igura M, Maita N, Kamishikiryo J, Yamada M, Obita T, Maenaka K, et al.
Structure-guided identification of a new catalytic motif of
oligosaccharyltransferase. EMBO J. 2008;27(1):234-43.

Welply JK, Shenbagamurthi P, Lennarz WJ, Naider F. Substrate recognition
by oligosaccharyltransferase. Studies on glycosylation of modified Asn-X-
Thr/Ser tripeptides. J Biol Chem. 1983;258(19):11856-63.

Riesenberg D, Schulz V, Knorre WA, Pohl HD, Korz D, Sanders EA, et al. High
cell density cultivation of Escherichia coli at controlled specific growth rate.
J Biotechnol. 1991,20(1):17-27.

Dykxhoorn DM, St Pierre R, Linn T. A set of compatible tac promoter
expression vectors. Gene. 1996;177(1-2):133-6.

Ihssen J, Kowarik M, Wiesli L, Reiss R, Wacker M, Thony-Meyer L. Structural
insights from random mutagenesis of Campylobacter jejuni
oligosaccharyltransferase PglB. Bmc Biotechnol. 2012;12:67.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central




	Abstract
	Background
	Results
	Conclusion

	Introduction
	Results
	In vivo glycosylation of EPA with S. flexneri 2a O-polysaccharides
	Development of a reliable assay for quantification of glycoprotein
	Kinetics of EPA-2a production in shake flask and bioreactor
	Induction strategy affects product yield
	N-acetylglucosamine stimulates glycosylation efficiency
	Involvement of Mg2+ ions on glycoprotein synthesis
	Synergistic effect of sequential induction and addition of N-acetylglucosamine

	Discussion
	Conclusion
	Materials and methods
	Bacterial strains and plasmids
	Expression of EPA-2a in shake flasks
	Cultivation in 96-deep well plates
	Bioreactor fermentations
	Preparation of periplasmic extracts
	Enzyme-linked immunosorbent assay (ELISA)
	Western blot analysis

	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

