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Abstract

Background: Scientific interest in Enterococcus faecalis has increased greatly over recent decades. Some strains are
involved in food fermentation and offer health benefits, whereas others are vancomycin-resistant and cause infections
that are difficult to treat. The limited availability of vectors able to express cloned genes efficiently in E. faecalis has
hindered biotechnological studies on the bacterium’s regulatory and pathogenicity-related genes. The agmatine
deiminase (AGDI) pathway of E. faecalis, involved in the conversion of agmatine into putrescine, is driven by a response
inducer gene aguR.

Results: This study describes that the exposure to the induction factor (agmatine) results in the transcription of genes
under the control of the aguB promoter, including the aguBDAC operon. A novel E. faecalis expression vector, named
pAGEnt, combining the aguR inducer gene and the aguB promoter followed by a cloning site and a stop codon was
constructed. pAGEnt was designed for the overexpression and purification of a protein fused to a 10-amino-acid
His-tag at the C-terminus. The use of GFP as a reporter of gene expression in E. faecalis revealed that under
induction with 60 mM agmatine, fluorescence reached 40 arbitrary units compared to 0 in uninduced cells.

Conclusion: pAGEnt vector can be used for the overexpression of recombinant proteins under the induction
of agmatine in E. faecalis, with a close correlation between agmatine concentration and fluorescence when
GFP was used as reporter.
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Background
Members of the genus Enterococcus are found through-
out the normal gut of vertebrates and insects and are
commonly associated with fermented foods. In artisanal
Mediterranean cheeses they are believed important in
the development of flavour and aroma [1-3]. Entero-
coccus has been the subject of much research given its
members’ potential as biopreservatives. Some strains iso-
lated from cheese produce enterocins (bacteriocins);
their bactericidal activity may be effective against food-
borne pathogens such as Listeria monocytogenes, Vibrio
cholerae, Staphylococcus aureus, Clostridium botulinum,
Salmonella enterica and Bacillus cereus, as well as against
spoilage microorganisms [4-8]. Indeed, non-pathogenic
enterococci have promising commercial potential [9].
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They are already used as starter cultures in certain arti-
sanal food fermentations and are commercially available
as probiotics [10-12]. For example, Enterococcus faecalis
Symbioflor 1 clone DSM 16431 is included in a commer-
cial probiotic product with potential benefits for human
health - it has been used for over 50 years with no reports
of infection [13]. Given their ability to improve the micro-
bial equilibrium of the intestine, some strains of Entero-
coccus faecium have also been used as probiotic adjunct
cultures in the making of Cheddar cheese [7]. In addition,
enterococci have been used as animal feed additives in the
European Union [14], and as probiotics for farm animals
destined for human consumption [15-17]. The well-
studied probiotic strain E. faecium SF68, produced in
Switzerland under the name Cylactin® (DSM Nutritional
Products Ltd.), is currently authorised by the European
Food Safety Authority (EFSA) for use in goat and kid feed
for the treatment of diarrhoea [18,19].
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Enterococci can, however, also be harmful. Some strains
have been studied because of their production of biogenic
amines (mostly tyramine and putrescine) in fermented
foods [20-23]. Other strains have virulence factors and are
recognised as emerging pathogens responsible for serious
clinical infections [24,25]. Enterococci are also among the
most important multidrug-resistant organisms affecting
immunocompromised patients [26]. This bacterial group
can acquire genetic determinants that confer resistance to
antibiotics and it is particularly concerning the acquisition
of vancomycin resistance [27]. Indeed, the emergence of
vancomycin-resistant enterococci (VRE) has alarmed the
global infectious diseases community given the few op-
tions left for the management of their associated diseases.
The transfer of resistance genes from enterococci to other
strains, the presence of selection pressures for VRE prolif-
eration, and the rapid expansion of resistant populations
are matters of great concern. The prevalence of VRE has
been reported for Europe, Asia, Australia, South America
and some African countries [26].
Our knowledge of the regulation of virulence factors

in E. faecalis, and of the environmental signals that
contribute towards pathogenicity, remains poor [28]; a
pressing need exists to understand this infectious agent
at the genetic and physiological level. Studies in these
areas, however, require molecular and genetic tools be
available. For many investigations, e.g., on genetic regu-
lation, knock-out complementation, the heterologous ex-
pression of bacteriocins in bacteriocin-negative hosts, or
research on membrane permeases, the overexpression of
genes is often required [29-31]. For Enterococcus, some
expression vectors based on bacteriocin-inducible pro-
moters have been developed, but these require the genes
encoding the kinase and regulator proteins supplied in
trans [32]. Beside this, the widely used Lactococcus lactis
NICE system is suitable for use in other Gram-positive
species including Enterococcus, either by using two
simultaneous compatible plasmids - one harbouring the
expression cassette and the other carrying the nisRK
genes- [33], or as a single-plasmid expression vector in-
cluding both cassettes [34]. In addition, other E. faecalis
expression systems based on rhamnose as inducer [35]
or under control of the pheromone cCF10 [36] have
been described. Yet, the molecular genetic tools avail-
able for E. faecalis are more limited than for some
other microorganisms. In recent years, research has there-
fore focused on the development of alternative Gram-
positive bacterial expression systems for the production of
industrially important proteins [36]. The development of
controlled gene expression systems for homologous and
heterologous gene expression therefore remains an im-
portant goal.
The agmatine deiminase (AGDI) genes cluster of

E. faecalis contains the genes necessary for the biosynthesis
of putrescine from agmatine. aguD encodes for the
agmatine/putrescine antiporter, aguA encodes for the
agmatine deiminase, aguB encodes for the putrescine
transcarbamylase, and aguC encodes for a specific carba-
mate kinase [22]. Overall, the locus is organized in an
operon constituted by the metabolic genes aguB, aguD,
aguA and aguC, which are cotranscribed in a single
mRNA from the aguB promoter (PaguB), in a divergent
orientation with the putative regulator gene (aguR) that
has its own promoter (PaguR) [37] (Figure 1A). Our work-
ing hypothesis is that AguR would activate the transcrip-
tion from PaguB and therefore, we could construct a
genetic expression system inducible by the addition of
agmatine in the culture medium.
In the present work, by combining the aguR inducer gene

and the PaguB promoter (with its natural ribosome binding
site), a new agmatine-inducible expression system – the
“agmatine controlled expression (ACE)” system - was de-
veloped. This system was successfully used in the produc-
tion of green fluorescent protein (GFP) in E. faecalis V583,
and offers a practical and straightforward method for the
heterologous expression of other recombinant proteins in
E. faecalis.
Results
Influence of agmatine on putrescine production
Since agmatine is the substrate for putrescine biosyn-
thesis in the AGDI pathway, the potential of E. faecalis
V583 to produce putrescine in GM17 supplemented with
a range of different concentrations of agmatine (0, 0.05,
0.1, 0.25, 0.5, 1, 5, 10 or 20 mM) was investigated. Liquid
cultures were inoculated (2% v/v) with overnight cul-
tures and incubated at 37°C for 24 h. Accumulation of
putrescine in the supernatants was analysed by UPLC™
(Figure 1B). As expected, a positive correlation was seen
between agmatine supplementation and putrescine accu-
mulation in the extracellular medium. Putrescine was first
detectable in the supernatant after treatment with 0.1 mM
agmatine. Above this concentration, putrescine accumula-
tion was gradually increased with increasing agmatine
concentration.
Transcriptional regulation of the AGDI operon by
agmatine
The expression profile of the genes of the AGDI operon
was analysed by RT-qPCR in GM17 media with supple-
mentation of 0, 0.05, 0.1, 0.25, 0.5, 1, 5, 10 or 20 mM
agmatine. RNA samples were taken at the end of the
exponential phase of growth (t = 6 h; i.e., once putrescine
production had started) and mRNA levels compared.
Since aguB, aguD, aguA and aguC are coexpressed in a
single transcript, the expression of aguA is shown as
representative of all aguBDAC mRNA.
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Figure 1 Genetic organization of the AGDI cluster of E. faecalis V583 and putrescine production. A. The AGDI cluster of E. faecalis is
composed of five genes, aguR encoding a putative regulator, followed by aguB, aguD, aguA and aguC which encode the putrescine biosynthesis
pathway (accession number NC_004668). The PaguR and PaguB promoters are shaded and their predicted transcripts are indicated below (dotted
arrows). B. Putrescine production by E. faecalis V583 in 24 h cultures grown with 0, 0.05, 0.1, 0.25, 0.5, 1, 5, 10 or 20 mM agmatine. Values are the means
of three independent assays and error bars denote standard deviation.
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The expression level of aguR remained almost con-
stant under all conditions of agmatine supplementation
(Figure 2). However, the expression of aguBDAC was
strictly dependent on agmatine, and a significant in-
crease in aguBDAC mRNA was observed under agmatine
A BaguR

Figure 2 Relative gene expression of aguR (A) and aguA (B) in culture
The expression of each gene at 0 mM was independently normalised to 1,
three independent assays and error bars denote standard deviation. Asteris
levels with respect to the no-agmatine condition (*P < 0.05; **P < 0.01; ***P
supplementation. In fact, agmatine induction of aguR
transcription (approximately 2-fold increase in relative
transcript levels) was much lower than that of the aguB-
DAC operon (approximately 10,000-fold increase in rela-
tive transcript levels) (Figure 2).
aguA

s grown with 0, 0.05, 0.1, 0.25, 0.5, 1, 5, 10 or 20 mM agmatine.
and used as the reference condition. Values shown are the means of
ks indicate statistically significant differences in relative expression
< 0.005; Student t test).



Linares et al. Microbial Cell Factories 2014, 13:169 Page 4 of 9
http://www.microbialcellfactories.com/content/13/1/169
Construction of the expression vector pAGEnt
The core of the lactococcal vector pNZ8048 [38,39],
which includes the replication cassette and the chloram-
phenicol resistance marker, was used as a starting point
for the construction of the pAGEnt vector. First, a frag-
ment of the chromosomal AGDI cluster from E. faecalis
V583 including the aguR promoter (PaguR), the aguR
gene, and the aguB promoter (PaguB), was amplified by
PCR using the primers indicated in Table 1, and cloned
into the BglII-NcoI sites of pNZ8048. A fragment includ-
ing the multicloning site and the histidine tag (His-tag) se-
quence was then PCR-amplified using plasmid pNZErmC
[40] as a template, employing the primers Expvfor1 and
Expvrev1. The products were digested and cloned into the
NcoI-HindIII sites of the previous vector, thus providing
plasmid pAGEnt (Figure 3).
The resulting pAGEnt vector offers the possibility of

traditional cloning without the His-tag, i.e., the insertion
of the gene of interest into the extensive range of sites
provided by the multiple cloning site, or the fusion of an
optional C-terminal 10x His-Tag by cloning the target
gene specifically into the NcoI-PstI sites. The latter alterna-
tive enables the insertion of a promoterless gene into the
correct frame, fused to the His-tag and ready for expres-
sion. Subsequent protein purification is therefore possible.
Thus, this vector can be used for gene overexpression,
protein immunodetection, and purification purposes.

Controlled heterologous expression of gfp
To test the usefulness of pAGEnt in the expression of a
foreign gene, tests were performed to determine whether
the aguR/PaguB cassette was able to drive the expression
of heterologous genes. The promoterless gene gfp en-
coding green fluorescent protein was cloned (using the
Table 1 Oligonucleotides used

Primer Function

aguAq F aguA expression analysis (F)

aguAq R aguA expression analysis (R)

aguRq F aguR expression analysis (F)

aguRq R aguR expression analysis (R)

recA F recA internal control (F)

recA R recA internal control (R)

EFV583-tufF tuf internal control (F)

EFV583-tufR tuf internal control (R)

AguR-EntBglII Cloning PaguR-AguR-PaguB cassette (F)

AguR EntNco Cloning PaguR-AguR-PaguB cassette (R)

Expvfor1 Insertion of His-tag (F)

Expvrev1 Insertion of His-tag (R)

GfF1 Cloning of GFP (F)

GfR1 Cloning of GFP (R)

F, forward; R, reverse; PaguR , aguR promoter; PaguB , aguB promoter; recA, recombina
primers indicated in Table 1) as a reporter into the NcoI-
PstI sites of pAGEnt, generating the vector pAGEnt-GFP.
Fluorescence measurements revealed that, upon the
addition of the induction factor agmatine (20 mM), AguR
significantly enhanced the expression of gfp by up to 10.13
arbitrary units. Parallel cultures harbouring the empty vec-
tor pAGEnt, or the vector pAGEnt-GFP with no agmatine
present, provided negative controls; expression of the gene
of interest was undetectable (<0.5 arbitrary units).

Sensitivity of the pAGEnt system to the inducer:
dose–response curve
The control afforded by the agmatine-induced expres-
sion system in the production of recombinant proteins
was tested. The production of GFP in cultures, induced
with a range of agmatine concentrations (between 0 and
60 mM), was analysed by whole-cell fluorescence. Figure 4
shows an increase in fluorescence with even low concen-
trations of agmatine (1 mM). Induction levels increased
with the agmatine concentration; indeed, a close correl-
ation was seen between agmatine concentration and fluor-
escence (R2 = 0.979). In the presence of 60 mM agmatine,
fluorescence reached 40 arbitrary units compared to 0 in
uninduced cells. The virtual lack of fluorescence with
0 mM agmatine demonstrates the absence of any leaky
activity of the promoter PaguB.

Toxicological assessment of agmatine in Enterococcus
faecalis
Agmatine has been reported to act as an anti-proliferative
agent in several non-intestinal mammalian cell models
[41]. Since high induction concentrations were tested in
the present work, assays were performed to see whether
these affected bacterial viability.
Sequence (5′ to 3′)

TTGTGCCGCTTCATAAAATGG

CACCTGGTGAAGTGGCTTGTATT

CGGGTTCATCTGATTGATTTTCTTC

CGTGATTTTCCTCTGTCGGTTCTT

CAAGGCTTAGAGATTGCCGATG

ACGAGGAACTAACGCAGCAAC

CAGGACATGCGGACTACGTTAA

TAGGACCATCAGCAGCAGAAAC

CCCCAGATCT TTAAAAAGAAACAAGGTGGTGGCCG

CCCCATGG TGTGTTCCTCCTAAAAGTTGTTTTTG

CACACACACCCATGGCTAATCGACTGCAGGAAAATTTATACTTCCAAGGTC

CTATCAATCAAAGCAACACGTG

CACACACACCCATGGAATTCAGTAAGGGAGAAGAACTTTTC

CACACACACCTGCAG ACTAGTTTTGTAGAGCTCATCCATGC

se A; tuf, elongation factor Tu.
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CACCATCACC ATCATTAATG CAGGCATGCG GTACCACTAG TTCTAGAGAG CTCAAGCTTT
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Figure 3 Genetic map of the expression vector pAGEnt and zoom-in of the expression cassette. repC and repA, replication genes; cmr,
chloramphenicol resistance gene; aguR, gene encoding the regulatory protein AguR; PaguR, aguR promoter; RBS, ribosome binding site; T, transcription
terminator; PaguB, aguB agmatine-inducible promoter; TGene, open reading frame for target gene of interest; His-tag; C-terminal histidine
tag. Representative restriction sites are indicated.
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Figure 4 Sensitivity of the aguR/PaguB expression system to the inducer. A. Induction strength of gfp in E. faecalis V583 cultures containing
pAGEnt-GFP under induction with a range of agmatine concentrations. Cultures harbouring the empty vector pAGEnt, or the vector pAGEnt-GFP
with no agmatine present, were carried in parallel as negative controls. Error bars: mean standard deviation of three independent experiments.
B. Correlation between inducer concentration (mM) and reporter fluorescence (arbitrary units).
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E. faecalis cultures were grown in liquid GM17 supple-
mented with, 20, 40 or 60 mM agmatine. After 24 h incu-
bation, serial dilutions of each suspension were prepared
and immediately plated to determine the number of viable
bacteria (colony forming units per millilitre [cfu/ml]).
Under all conditions, the average viable count ranged
from 8.85 to 9.39 log10[cfu/ml] units; no significant differ-
ences were seen between the different agmatine-treated
and untreated cultures (Figure 5). Thus, agmatine has no
toxic effect on E. faecalis V583 cell viability after 24 hours
of exposure, even at the high concentrations required for
maximal induction.

Discussion
Some strains of E. faecalis have commercial uses, e.g., as
probiotics that promote a beneficial gut environment
[42] and in food fermentation processes [1,43-45]. Other
strains, however, can pose food safety problems and yet
others are a leading cause of opportunistic, hospital-
acquired infections (including urinary tract infections,
septicaemia, bacteraemia and endocarditis) [2]. The
extensive use of antibiotics has resulted in the rise of
multiresistant E. faecalis strains, making the treatment
of infections difficult. The identification of traits that
contribute to their pathogenicity is important in under-
standing the dual nature of this organism [24,46,47].
Despite scientific interest in this bacterium in recent

years, the genetic toolbox and methodologies available
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Figure 5 Susceptibility of E. faecalis V583 to agmatine. E. faecalis
cultures were grown in liquid GM17 supplemented with 0 mM, 20 mM,
40 mM or 60 mM agmatine. After 24 h of incubation, serial dilutions of
the suspension were prepared and immediately plated to determine
the number of viable bacteria (cfu/ml). The number of bacteria
observed was within the range of 30 to 300 cfu per plate. Error bars
represent standard deviation of three independent experiments.
for overexpressing genes of interest are more limited
than for some other microorganisms [48]. Although
heterologous gene expression in an E. coli background is
the most common method of producing recombinant
proteins from other bacteria, autologous gene expression
is an alternative when heterologous expression has failed
[49]. Availability of appropriate expression vectors for
E. faecalis becomes essential to express cloned genes ef-
ficiently, to study regulatory proteins, or to carry genetic
complementation studies [50]. A number of expression
systems for Enterococcus are available. Probably the best
known controllable expression system for Gram-positive
bacteria is based on the autoregulatory properties of
nisin biosynthesis in L. lactis [38,39,51,52]. The system
can be used in a wide range of genera including Lacto-
coccus, Streptococcus, Enterococcus, Leuconostoc and
Lactobacillus [53]. However, when used in Enterococcus,
the regulatory genes nisR and nisK need to be supplied
in trans. Similarly, the enterocin regulatory system for
controlling the expression of heterologous genes in En-
terococcus requires the regulator- and kinase-encoding
genes entR and entK be expressed in trans [32]. In order
to tackle this disadvantage, the NICE system was opti-
mised to be used in Enterococcus as a single-plasmid ex-
pression vector [34]. Other inducible expression vectors
for E. faecalis are available: the rhamnose-inducible
system [35] and the recently described one that is under
control of the pheromone cCF10 [54]. The present work
describes an alternative system for controlled gene ex-
pression in E. faecalis using a single-plasmid expression
system.
The present results show putrescine accumulation by

E. faecalis V583 to be strictly agmatine-dependent. They
also show that aguR gene expression is not modified by
an increase in agmatine concentration of the culture
medium, whereas aguBDAC gene expression is signifi-
cantly upregulated by agmatine concentrations of over
0.25 mM. The suitability of the aguR/PaguB system (the
regulatory part of the AGDI system of E. faecalis V583)
as an agmatine-induced gene expression system was
therefore explored. An expression vector combining the
aguR activator gene and the aguB promoter, followed by
convenient cloning sites for introducing the gene of
interest, was constructed. An important feature of the
developed pAGEnt system is the addition of a histidine
tag, which makes the vector an option for protein purifi-
cation purposes. By cloning the target gene into the
NcoI-PstI sites, the gene is inserted into the correct frame
and fused to the His-tag. This His-tag was obtained from
expression vectors previously shown to perform efficiently
when used in protein overproduction, immunodetection
and purification settings [40,55].
This expression system was assessed by expressing the re-

porter gene gfp (which codes for green fluorescent protein).
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Very strong fluorescence induction (40 arbitrary units
compared to 0 in uninduced cells) was seen in the pres-
ence of 60 mM agmatine. It should be noted that agma-
tine concentrations of 60 mM are within the range
associated with no toxic effect in Enterococcus. A potential
benefit of having an expression system based on aguR/
PaguB is that gene expression can be finely controlled upon
the addition of appropriate concentrations of agmatine.
Agmatine is an intermediate in polyamine biosynthesis,
and ubiquitous in living cells. However, it is normally
present only in trace amounts - tissue concentrations are
usually below 1 μM [56]. It should also be noted that this
system requires the expression of no additional proteins
supplied in trans.
The present results clearly show that this system can

effectively control the expression of genes in response to
non-toxic agmatine in E. faecalis. This could be a useful
tool for the overexpression of proteins in this species, and
expands the toolbox available to use with it. Moreover,
this system may be active in other Enterococcus species
and perhaps in other Gram-positive hosts (as the NICE
system may be used), although this needs to be confirmed.

Conclusions
The described agmatine-inducible system represents an
attractive means for the overproduction and purification
of recombinant proteins in E. faecalis. The present work
describes the construction of an E. faecalis aguR/PaguB
controlled expression system and demonstrates its poten-
tial as a means of overproducing recombinant proteins.
This system was assessed by expressing the reporter gene
gfp, and very strong fluorescence was induced in the pres-
ence of 60 mM agmatine (40 arbitrary units compared to
0 in uninduced cells). The potential benefit of this system
is that gene expression can be finely controlled by the
addition of appropriate concentrations of agmatine. The
addition of a histidine tag to the pAGEnt vector renders
the system suitable for protein purification purposes.

Methods
Bacterial strains and growth conditions
L. lactis NZ9000 was grown at 30°C in M17 medium
(Oxoid, Basingstoke, United Kingdom) supplemented
with 30 mM glucose. E. faecalis V583 was grown at 37°C
in M17 medium (Oxoid, Basingstoke, United Kingdom)
supplemented with 30 mM glucose (GM17). When re-
quired, the indicated concentration of agmatine (Sigma-
Aldrich, St. Louis, MO) was added to the medium.
Chloramphenicol (5 μg ml−1) was added as required.

Analytical chromatography methods
Cultures were centrifuged at 8000 g for 10 min and the
resulting supernatants filtered through a 0.2 μm Supor mem-
brane (Pall, NY). Putrescine and agmatine concentrations
were analysed by ultra-performance liquid chromatography
(UPLC™) using a Waters H-Class ACQUITY UPLC™ appar-
atus controlled by Empower 2.0 software and employing a
UV-detection method based on derivatization with diethy-
lethoxymethylene malonate (Sigma-Aldrich), as previously
described [57].

DNA manipulation procedures
The procedures used for DNA manipulation and recom-
bination were essentially those described by Sambrook
et al. [58]. Table 1 lists the primer sequences used. Gen-
etic constructs for Enterococcus were achieved using
L. lactis NZ9000 as an intermediate host. Plasmid and
total DNA of L. lactis and Enterococcus were isolated
and transformed as previously described [59]. All plas-
mid constructs were verified by nucleotide sequencing at
Macrogen Inc. (Seoul, Republic of Korea). All enzymes
for DNA technology were used according to the manu-
facturer’s specifications.

RNA extraction
Total RNA was extracted at 6 h of incubation using the
TRI Reagent (Sigma) as previously described [21]. E. fae-
calis was grown in M17 or in M17 supplemented with
30 mM glucose and 0, 0.05, 0.1, 0.25, 0.5, 1, 5, 10 or
20 mM agmatine. The cells were then harvested by cen-
trifugation and disrupted using glass beads (diameter up to
50 μm) in a Fast-Prep FP120 apparatus (Thermo Savant-
BIO101/Q-Biogen) at 4°C for 6 × 30 s (power setting 6).
The resulting samples were treated as recommended by
the manufacturer. Purified RNAs were resuspended in
RNAse-free water. After extraction, RNA samples were
treated with DNase (Fermentas, Vilnius, Lithuania), as
described by the manufacturer, to eliminate any genomic
contamination. Total RNA concentrations were deter-
mined by UV spectrophotometry by measuring absorbance
at 260 nm in a BioPhotometer (Eppendorf, Germany).

Gene expression quantification by RT-qPCR
Gene expression analysis was performed by reverse
transcription-quantitative PCR (RT-qPCR) in a 7500 Fast
Real-Time PCR System (Applied Biosystems, Carlsbad,
CA) using SYBR® Green PCR Master Mix (Applied
Biosystems). After 2-fold dilution of the cDNA, 5 μl were
added to 20 μl of PCR mixture (12.5 μl of SYBR Green
Supermix, 1 μL of each primer at 7 μM, and 5.5 μl of
RNAse-free water). Amplifications were performed with
specific primers (Table 1) designed with Primer Express
software (Applied Biosystems); primers specific for elong-
ation factor thermo-unstable (tufA) and recombinase A
(recA) genes were used as references. The cycling settings
were those default-established by Applied Biosystems. For
each condition, RT-qPCR analysis was performed on RNA
purified from three independently grown cultures.
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Green fluorescence measurements
For whole-cell fluorescence measurements, equal amounts
of cells were harvested, washed and subsequently resus-
pended in 50 mM KPi, pH 7.2, as previously described
[40]. GFP emission was measured in a volume of 200 μl of
cells, using a Cary Eclipse fluorescence spectrophotometer
(Varian Inc., Palo Alto, CA), at an excitation wavelength
of 485 nm and an emission wavelength 530 nm. For direct
comparison, all the GFP fluorescence data were normal-
ized to the same A600. Background fluorescence levels
were assessed by measuring non-fluorescent control cells,
and these values subtracted.

Statistical analysis
Student t tests were used to evaluate the consistency of
the data.

Abbreviations
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