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Abstract

compounds that are industrially valuable.

L-arginine (ARG) is an important amino acid for both medicinal and industrial applications. For almost six decades,
the research has been going on for its improved industrial level production using different microorganisms. While
the initial approaches involved random mutagenesis for increased tolerance to ARG and consequently higher ARG
titer, it is laborious and often leads to unwanted phenotypes, such as retarded growth. Discovery of L-glutamate
(GLU) overproducing strains and using them as base strains for ARG production led to improved ARG production
titer. Continued effort to unveil molecular mechanisms led to the accumulation of detailed knowledge on amino
acid metabolism, which has contributed to better understanding of ARG biosynthesis and its regulation. Moreover,
systems metabolic engineering now enables scientists and engineers to efficiently construct genetically defined
microorganisms for ARG overproduction in a more rational and system-wide manner. Despite such effort, ARG
biosynthesis is still not fully understood and many of the genes in the pathway are mislabeled. Here, we review the
major metabolic pathways and its regulation involved in ARG biosynthesis in different prokaryotes including recent
discoveries. Also, various strategies for metabolic engineering of bacteria for the overproduction of ARG are
described. Furthermore, metabolic engineering approaches for producing ARG derivatives such as L-ornithine
(ORN), putrescine and cyanophycin are described. ORN is used in medical applications, while putrescine can be
used as a bio-based precursor for the synthesis of nylon-4,6 and nylon-4,10. Cyanophycin is also an important
compound for the production of polyaspartate, another important bio-based polymer. Strategies outlined here

will serve as a general guideline for rationally designing of cell-factories for overproduction of ARG and related

Keywords: Metabolic engineering, L-Arginine, L-Ornithine, Putrescine, Biopolymers, Polyaspartate

Introduction

L-arginine (ARG) is a semi-essential amino acid that is im-
portant for medicinal and industrial applications. ARG is
known to stimulate secretion of growth hormones [1],
prolactin [2], insulin [3] and glucagon [4], promote muscle
mass [5], enhance wound healing [6] and as a precursor
for nitric oxide [7]. Physiological importance of ARG sup-
plementation is further raised by the important roles of ni-
tric oxide in cardiovascular and neurological systems [8].
For many important applications of ARG, its industrial
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level production has become an important task. It can be
produced by microbial fermentation at an industrial scale
[9] as for other amino acids such as L-glutamate (GLU)
[10], L-lysine (LYS) [11], L-tryptophan (TRP) [12], L-
valine (VAL) [13], L-threonine (THR) [14] and L-alanine
(ALA) [15]. For these amino acids, model organisms such
as Corynebacterium glutamicum [16] and Escherichia coli
[17] have been widely used as production hosts, while
ARG production has been performed using B. subtilis [18]
and C. glutamicum [9]. It has been almost six decades
since ARG production has been explored and studied
using microorganisms. As in the cases for other amino
acid production, random mutagenesis has been used in
order to obtain efficient producer strains [19]. However,
random mutagenesis is problematic due to the unwanted
genomic changes introduced. Thus, much effort has been
exerted to develop strains through metabolic engineering.
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Systems metabolic engineering now allows construction
of efficiently performing cell-factories for the microbial
production of not only amino acids but also bio-fuels
[20,21], pharmaceuticals [22], bio-plastics [23], platform
chemicals [24-26] and even silk proteins [27]. It is pow-
ered by rapidly advancing tools and continuously accumu-
lating genetic and molecular information. It also aims to
develop strains based on optimization of the entire biopro-
cess from strain design to industrial level cultivation. Its
strategies include deletion of competing pathways [28],
strengthening upstream pathways for increasing precursor
pool [11], engineering transporters [29] and fine-tuning
expression levels [30]. Systems metabolic engineering
approach has been successfully applied in order to
rationally design ARG producer strain for the efficient
industrial level production which can be potentially
engineered to produce ARG derivatives as well [9].

Systems metabolic engineering strategies can also be
used for producing ARG-related compounds, such as L-
ornithine (ORN), putrescine, and cyanophycin that share
common pathways. ORN is a non-proteinogenic amino
acid that has shown to improve athletic performance
along with ARG and L-citrulline (CIT), another inter-
mediate metabolite in the ARG biosynthetic pathway
[31]. Putrescine is a four-carbon diamine platform chem-
ical that can be incorporated into various polymers such
as nylon-4,6 and nylon-4,10. Cyanophycin can be used
to produce polyaspartate which is another bio-polymer
for various technical applications. However, efficient
metabolic engineering for such compounds has been
limited by incomplete understanding on ARG biosynthesis
even with the publically available genome sequences [32].
Here, we review the three major pathways for ARG bio-
synthesis in prokaryotes including the recent discoveries.
We also discuss various strategies applied to engineer
strains for the efficient production of ARG, ORN, putres-
cine and cyanophycin using recently established examples.

L-Arginine biosynthetic pathway and its regulation

In prokaryotes, there are three major biosynthetic path-
ways for ARG; “linear”, “recycling” and the “new” path-
ways (Figure 1) [33,34]. Each pathway is comprised of
eight enzymatic steps from GLU and the major diffe-
rences in these pathways are in that different genes are
involved for conversion of N-acetylornithine (Ac-ORN)
for further downstream reactions toward ARG [35]. In
the linear pathway (Figure 1A), Ac-ORN is converted to
ORN by acetylornithinase (AOase; encoded by argE)
[36], whereas in the recycling pathway (Figure 1B) this is
catalyzed by a different enzyme, ornithine acetyltransfe-
rase (OATase; encoded by arg/) [37]. In the third path-
way, which has not been named, ORN is bypassed and
instead N-acetylcitrulline (Ac-CIT) is formed by acety-
lornithine carbamoyltransferase (AOTCase; encoded by
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argF’, Figure 1C) [38]. While certain aspects of the path-
way components are still under debate, they are un-
doubtedly important in ARG biosynthesis and metabolic
engineering purposes.

In the linear pathway (Figure 1A), GLU is converted to
acetylglutamate (Ac-GLU) by N-acetylglutamate syn-
thase (NAGS, encoded by argA) which is inhibited by
ARG through negative feedback regulation [36,39]. Se-
quential catalytic reactions catalyzed by the next three
enzymes, N-acetylglutamate kinase (NAGK, encoded by
argB), N-acetylglutamate semialdehyde dehydrogenase
(encoded by argC) and N-acetylornithine transaminase
(encoded by argD), which are common in the three
pathways (Figure 1), yield N-acetylornithine (Ac-ORN)
[34]. The next step, which distinguishes the linear path-
way from the other two pathways, is deacetylation of
Ac-ORN by AOase to yield ORN [40,41]. The next and
final steps are carried out by ornithine carbamoyltrans-
ferase (OTC or OTCase, encoded by argF), argininosuc-
cinate synthase (encoded by argG) and argininosuccinate
lyase (encoded by argH), which finally yield ARG [35].
This pathway has been found in a few species such as
Myxococcus xanthus [41] and E. coli [36].

In many other prokaryotes including Geobacillus stear-
othermophilus (formerly Bacillus stearothermophilus)
[37,42,43], Thermotoga neapolitana [42], Pseudomo-
nads [44], Neisseria gonorrhoeae [45] Streptomyces coe-
licolor [46] and C. glutamicum (formerly Micrococcus
glutamicus) [19,47], ARG is synthesized via the recyc-
ling pathway and many aspects remain unknown herein
(Figure 1B). The recycling pathway is regarded as more
evolved and economical than the linear pathway and is
“recycling” in the sense that the acetyl group deacety-
lated from Ac-ORN in the fifth biosynthetic step (simi-
larly as in AOase) is re-used to acetylate GLU in the
first committed step (similarly as in NAGS) of the path-
way (Figure 1B). The OATase involved in the recycling
step is either monofunctional or bifunctional depending
on the species. For example, the OATase from G. stear-
othermophilus [37] and N. gonorrhoeae [40] is bifunctional
and accepts both Ac-CoA and Ac-ORN as substrates to
acetylate GLU, whereas that from S. coelicolor only accepts
Ac-ORN as a substrate and considered monofunctional
[46]. However, many of monofunctional OATases are
mislabeled as bifunctional and some are still being cor-
rected [48]. For example, the OATase from C. glutami-
cum which had been known to be bifunctional for
decades [19,47,49-51] has been re-considered as mono-
functional [52-54], while that from C. crenatum remains
bifunctional [34]. For species such as S. coelicolor, the
OATase is characterized. However, NAGS has not been
identified in this bacterium, while new classes of NAGS
are continuously being discovered for other species
[53]. For example, the novel type of NAGS (C-NAGS)
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Figure 1 Representative ARG biosynthesis routes in prokaryotes. (A) The linear pathway, (B) the recycling pathway and (C) the newly
discovered pathway for the ARG biosynthesis are shown. Dashed line indicates feedback inhibition by ARG on the first (NAGS) (A) and second
(NAKG) (B) committed steps in the pathways. Blue arrows indicate argF used in the linear pathway (A). Orange arrows indicate argJ used in the
recycling pathway (B). Green arrow indicates argfF’ used in the newly found pathway (C). ARG catabolic pathways are also shown. Ac-GLU,
N-acetylglutamate; Ac-GLU-P, N-acetylglutamyl-5-phosphate; Ac-GLU-SA, N-acetylglutmate-5-semialdehyde; ARG-Suc, L-argininosuccinate; GLU-SA,

many organisms.

L-glutamate-5-semialdehyde; P5C, 1-pyrroline-5-carboxylate. The asterisk indicates putative NAGS that has not been characterized in

[53] encoded by ¢g3035 from C. glutamicum adds to the
diversity of NAGS including (1) the classical NAGS (as in
the linear pathway), (2) the bifunctional OATase (as in the
recycling pathway), (3) ArgH(A) fusion types (argH-argA
fusion) [55], and (4) the short versions of NAGS (S-
NAGS) [56]. Additionally, for species that have both
NAGS and OATase such as G. stearothermophilus [43]
and N. gonorrhoeae [57], there is a functional redun-
dancy and the NAGS function is regarded as anaplerotic
to replenish Ac-GLU [57,58]. Moreover, another dis-
tinctive feature of this pathway is that NAGK reaction
instead of NAGS reaction is negatively regulated by
ARG [44,52,59,60].

In the newly discovered pathway (Figure 1C), AOTCase
from Xanthomonas campestris transfers carbamoyl group
from carbamoyl phosphate to Ac-ORN to form Ac-CIT
[38]. Here, the formation of ORN is bypassed and ArgE
deacetylates Ac-CIT to yield CIT. While the details of this
pathway, as with the linear and recycling pathways, have
not been fully explored, C. glutamicum and its related spe-
cies with the recycling pathway are recognized as the or-
ganisms to most efficiently produce ARG.

In terms of the chromosomal genetic organization, ARG
biosynthetic genes are diversely organized in different spe-
cies, and that from C. glutamicum has been studied the
most. In C. glutamicum, the argCJBDFRGH cluster is or-
ganized into two operons (argC/BDFR and argGH) [52]
and transcription of these operons are regulated by ARG
[61], ArgR [62] and FarR [63], while the putative argA
(cg3035, encoding C-NAGS) is separated from this cluster

[32,52,53]. FarR regulates transcription of the arg operon
by binding to the upstream of argC, argB, argF and argG
genes [63,64]. FarR additionally controls the ARG bio-
synthesis by binding to the upstream of the gdh gene
encoding glutamate dehydrogenase which converts a-
ketoglutarate (a-KG) into GLU [63]. Similarly, ArgR, a
global regulator, binds to argC and argG promoters to
control ARG biosynthesis [49] and the degree of down-
regulation is increased by ARG [61] but its binding affinity
decreases by L-proline (PRO), which can be considered as
a stimulator for ARG biosynthesis [65]. Additionally, other
strains have different chromosomal organization in the
ARG operon. For example, it is partially clustered in the
order of argC/BD in the chromosome for gram-positive
bacteria such as G. stearothermophilus and S. coelicolor
[46,66], while the bipolar organization of argECBH is
found in gram-negative bacteria such as E. coli [67-70].

Metabolic engineering for L-arginine production

Initial approach to produce ARG at industrial scale began
with random mutagenesis of microorganisms (Table 1).
Mutants selected based on their resistance to anti-
metabolites and other analogues such as canavanine
(CVN) [40,71], homoarginine [72], arginine hydroxamate
(AHX) [18,73], 6-azauracil (6 AU) [74], 2-thiazolealanine
(TA) [75], and sulfaguanine (SG) [75] have been used in
early attempts to overproduce ARG. Mutations were in-
duced by radiation [75,76] or treatment with mutagen
such as N-methyl-N'-nitro-N-nitrosoguanidine (NTQG)
[18,75]. The rational for this is to confer higher tolerance
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Table 1 ARG, ORN, putrescine and cyanophycin producing strains
Product Year Strain (vector if any) Remark Titer Reference
(g/liter)
ARG 1971 AHr-5 AHX resistant B. subtilis; test tube culture 4.5 [18]
1973 AJ 3351 B. ketoglutamicum ATCC 15587 mutant; el 2.1 [75]
AJ 3352 A. paraffineus ATCC 19065 mutant; TAR, 12
AJ 3353 M. ammoniaphilum ATCC 15354 mutant; TAR, 29
No. 348 C lilium NRRL B-2243 mutant; TA® 18
No. 352 B. flavum ATCC 14067 mutant; guanine auxotroph; TAR 348
1977 AAr-9 B. subtilis OUT 8103 mutant; 6AUR 280 [74]
1981 KY7690 B. subtilis ATCC 15244 mutant; AHX®, SHUR®, TRAR 6FTPR, 6AUFR, 2TUR. 5 liter 140 [73]
bioreactor
S. marcescens IFO 3046 mutant; AHX®, NIM® test tube culture 06
M. ammoniaphilum ATCC 15354 mutant; AHX; test tube culture 0.5
M. sodonensis ATCC 11880 mutant; AHX™: test tube culture 40
N. corynebacteroides ATCC 14898 mutant; CVN®: test tube culture 25
N. rubra NRRL 11094 mutant; AHX™ test tube culture 80
2009 RBid C. glutamicum ATCC 13032, dargR, A26V/M31V in ArgB; 5 liter bioreactor 520 [47]
2009 SYPA 5-5 C. crenatum mutant; optimization of two-stage oxygen supply strategy; 36.6 [76]
5 liter bioreactor
2011 SYPA 5-5 (pJC-tac- C. crenatum mutant, vector-based overexpression of vgb from Vitreoscilla 359 771
vgb)
2011 SYPA 5-5 (pJCtac- C. crenatum mutant, vector-based overexpression of argJ; 5 liter bioreactor 424 [34]
arg))
2012 SYPA-9039 (pJC-9039)  C. crenatum SYPAS5-5 harboring with vector-based overexpression of 453 [78]
argCJBDFRGH; 5 liter bioreactor
2014 AR6 C. glutamicum ATCC 21831; AHX® CVNF, dargR, AfarR, pgi (A1G), Psod:tkt, 925 [9]
tal, zwf, opcA, pgl, ANCgl1221, Psod:carAB, Petfu::argGH; 5 liter bioreactor
Same as above except 1,500 liter bioreactor 81.2
ORN 1996 BK533 B. ketoglutamicum ATCC 21092 derived mutant; UV and NTG treatment; 57 [79]
2 liter bioreactor
2008 SJ8074 (pEK-CJBD) C. glutamicum ATCC 13032 AargF, AargR, AproB, vector-based overexpression 0.179 [80]
of argCJBD
2010 SJB074 (PEK-Py:1469)  C. glutamicum ATCC 13032 AargF, AargR, AproB, vector-based overexpression 0320 [54]
of NCgl1469
2010 C. glutamicum ATCC 13032; proline supplement 3.295 [62]
2011 ORNT (pVWEX1- C. glutamicum ATCC 13032 AargF, AargR, vector-based overexpression of 25.77 [81]
araBAD) araBAD; optimal ARG supplement, arabinose supplement
2012 C glutamicum ATCC 13032 dargF, AproB, Akgd 4.78 [82]
2012 SJC8399 C. glutamicum ATCC Aargf, AargR, ANcgl2399, ANcgl2905 13.16 [83]
2013 AAPRE:rocG C. glutamicum ATCC 13032 AargF, AproB, AargR, AspeE:P e procG 14.84 [84]
2013 AAPE6937R42 C. glutamicum ATCC 13032 Aargf, AproB, Aspek, AargR; 70 passages of adaptive — 24.1 [85]
evolution
2014 YW6 (pSY233) C. glutamicum ATCC 13032 AproB, AargF, AargR, pgi®'®, zwf*"®, Ptkt:Psod, 515 86]
vector-based overexpression of argCJBD from C. glutamicum ATCC 21831;
5 liter bioreactor
Putrescine 2009 XQ52 (p15SpeC) E. coli W3110 dlacl, Aspek, AspeG, Aargl, ApuuPA, PargECBH:Ptrc, Pspef-potE:Ptrc, — 24.2 [28]
PargD:Ptrc, PspeC:Ptrc, ArpoS, vector-based overexpression of speC; 5 liter
bioreactor
2010 ORNT (pVWEx1-speC) 6.0 [50]
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Table 1 ARG, ORN, putrescine and cyanophycin producing strains (Continued)
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C. glutamicum ATCC 13032 AargF, AargR, vector-based overexpression of speC
from E. coli MG1655; ARG supplement,

2012 ORNT (pVWEX1- C. glutamicum ATCC 13032 Adargf, AargR, vector-based overexpression of 19.0 [51]
speC-5'5,-argf) speC from E. coli MG1655; ARG auxotrophy rescue by fine-tuned argf
expression via plasmid-addiction system
2013 ORNT (pVWEX1- C. glutamicum ATCC 13032 AargF, AargR, vector-based overexpression of speC 0.855 [87]
speC-5'5,-argF) from E. coli MG1655; glycerol and glucose as carbon source; ARG supplement
Cyanophycin 2001 C. glutamicum ATCC 13032, vector-based overexpression of cphA from Synechocystis sp. 36 [88]
(PEKO::cphA) Strain PCC6308
H16-PHB 4 R. eutropha DSM 541 (DSM 428 derivative), PHA synthesis defect, vector-based 87
(pBBR1:cphA) overexpression of cphA from Synechocystis sp. Strain PCC6308
E. coli (pSK:cphA) TOP 10, vector-based overexpression of cphA from Synechocystis sp. Strain 26.0
PCC6308
P. putida (pBBR1:cphA)  KT2440, vector-based overexpression of cphA from Synechocystis sp. Strain 11.0
PCC6308
2002 E coli (pMa/ DH1 strain, vector-based overexpression of cphA from Synechocystis sp. PCC6803; 24.0 [89]
c5-914:cphA) 30 liter bioreactor
Same as above except 500 liter bioreactor 210
2004 E. coli (pSK:cphAT,120)  TOP 10, vector-based overexpression of cphAT from Anabaena sp. strain 21.0 [90]
PCC7120
GPp104 (pBBRTMCS-2::  P. putida KT2440 mutant, vector-based overexpression of ¢cphAT from 240
cphAT7120) Anabaena sp. strain PCC7120
H16-PHB 4 R. eutropha DSM 541 (DSM 428 derivative), PHA synthesis defect, vector-based 220
(pBBRTMCS-2:: overexpression of cphA1 from Anabaena sp. strain PCC7120
€PhA17120)
2005 A. calcoaceticus ATCC 33305, flask cultivation; ARG supplement 46.0 [91]
2006 R eutropha (0BBRIMCS- DSM 541 derivative, H16-PHB™4 Aeda, vector-based overexpression of ¢phA from  40.0 [92]
2:cphA/eda) Synechocystis sp. Strain PCC6308; eda-dependent plasmid-addiction system;
flask cultivation
Same as above except 30 liter bioreactor 358
Same as above except 500 liter bioreactor 320
2011 E coli (pCOLADuet-1:  HMS174(DE3) Adapk, plasmid-addiction system using dapL from Synechocystis sp. 42.0 [93]
cphAC595S:dapls) Strain PCC6308, C595S mutant ¢phA from Synechocystis sp. Strain PCC6308;
flask cultivation
Same as above except 25 liter bioreactor 14.1
Same as above except 400 liter bioreactor 18.0
2012 R eutropha DSM 428 mutant, H16-PHB™4 Aeda, vector-based overexpression of cphA from 475 [94]
(pBBRTMCS-2:: Synechocystis sp. Strain PCC6308, eda-dependent plasmid-addiction system;

phAs308/€dari16)

30 liter bioreactor

Strains that have been reported to produce ARG, ORN, putrescine and cyanophycin are listed in the order of year for each compound. The relevant genetic
information and production titers are shown. All cyanophycin production titers are given in a different unit scale (w/w %) than the rest which are given in g/liter.
5HUR, 5-hydroxyuridine; TRA, triazolealanine; 6FTP, 6-fluorotryptophan; 2TU, 2-thiouracil; 5FU, 5-fluorouracil; NIM, polyoxyethylene stearylamine.

of ARG to microorganisms and to remove feedback in-
hibition by ARG [9]. Historically, the random mutation
approach had been used in various prokaryotic and
eukaryotic strains including B. subtilis [18,73,74], Serratia
marcescens 73], Micrococcus sodonensis [73], Norcadia
corynebacteroides (73], N. rubra [73], Saccharomyces cere-
visiae [73], Candida tropicalis [73)], C. glutamicum [72], C.
crenatum [76], Brevibacterium flavum [75], B. ketogluta-
micum [75], C. lilium [75], Arthrobacter paraffineus [75]
and Microbacterium ammoniaphilum [73,75] to produce
ARG. The trend later shifted toward using GLU overpro-
ducing C. glutamicum strain and its related species C.

crenatum as base strains, which led to industrial level
ARG titers. More importantly, the random mutation
method is now used in synergistic combination with
high-throughput molecular tools which enables systems
metabolic engineering for industrial microbial strain
development.

The strategies for rationally designing ARG overprodu-
cer typically consist of (1) removal of feedback inhibition,
(2) overexpression of the biosynthetic genes (e.g., the arg
operon) and/or removal of the repressors (e.g., argR and
farR), (3) increasing NADPH pool required for ARG bio-
synthesis, (4) increasing carbamoyl phosphate pool by
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overexpression of carAB operon and (5) deletion of ex-
porter for GLU encoded by NCgli221. For example, re-
verse engineering approach was taken to the wild-type C.
glutamicum ATCC 13032 strain for deleting argR and
introducing A26V and M31V mutations in ArgB in order
to alleviate feedback inhibition [47]. This is an important
study because it presented the first genetically defined and
not randomly mutated strain for ARG production and the
engineered strain produced 52 g/liter of ARG [47].
Plasmid-based engineering system has also been ex-
plored. Overexpression of a bacterial hemoglobin from
Vitreoscilla in C. crenatum SYPA 5-5 for increased dis-
solved oxygen availability led to the production of
35.9 g/liter ARG [77]. Plasmid-based overexpression of
the argCJBDFRGH cluster or arg/ alone in C. crenatum
SYPA 5-5 also led to enhanced ARG production, reach-
ing 45.3 g/liter or 42.4 g/liter, respectively [34,78]. A
possible explanation for little difference in ARG titer
here despite the different number of gene overexpres-
sion is probably because different cultivation conditions
were used (e.g., different temperatures).

Along the same line, a recent systems metabolic engin-
eering study led to a very successful production of ARG
at the industrial-scale [9]. C. glutamicum ATCC 21831
was initially treated with CVN and AHX in order to in-
crease its ARG tolerance and subjected to stepwise
strain development. The argR and farR genes were de-
leted in order to relieve negative regulation on ARG bio-
synthesis. Next, in order to improve the NADPH pool,
the pentose phosphate pathway (PPP) flux was enhanced
by reducing the pgi expression through replacing ATG
start codon with GTG, and overexpressing the major
PPP operon consisting the tkz, tal, zwf, opcA and pgl by
replacing the native promoter with the strong sod pro-
moter. Finally the promoters for carAB and argGH op-
erons were also changed in order to optimize fluxes
toward the ARG biosynthesis and the Ncgl1221 gene, en-
coding the GLU exporter, was deleted. As a result, the
final constructed strain produced 92.5 g/liter and 81.2 g/
liter of ARG at the laboratory-scale and at the industrial-
scale fermentations, respectively [9]. This work is a good
example of systems metabolic engineering for develo-
ping a microbial strain capable of overproducing ARG
to the level and performance suitable for industrial-
scale production.

Metabolic engineering for L-ornithine production

The ARG-derivative, ORN, has also been produced by
microbial fermentation. Both the strategies of random
mutagenesis [79] and systems metabolic engineering
have been employed for developing strains (Figure 2).
In rationally designing an ORN producer, knocking
out the competing branches to redirect carbon flux to
ORN pathway is an important and common strategy.
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Specifically, the strategies of PRO supplement [62],
ARG supplement [81], vector-based overexpression of
argCJBD [80], NCgli469 overexpression [54], over-
expression of rocG from B. subtilis [84], AargF [80-85],
AproB [82,84,85], AspeE [84,85], AargR [81,83-85],
ANCgl2399 [83], ANCgi2905 [83], and Akgd [82] have
been employed for developing strains for ORN overpro-
duction (Table 1).

The strategies for the development of ORN producers
are similar to those employed for ARG producers except
auxotrophy rescue by supplements is additionally used.
Here, AargF and AproB are often included in order to
disrupt OTCase and gamma-glutamyl kinase, respect-
ively [80-85]. Although this strategy leads to higher
ORN titer, it makes the strain auxotrophic for ARG and
PRO since their biosynthesis is disrupted [62,81]. An-
other common strategies are deletion of the repressor
(AargR) [81,83-85] as in ARG strain cases, and overex-
pression of the biosynthetic genes (e.g., argC/BD) using
plasmids [80]. Overexpression of putative biosynthetic
genes can also be a strategy for ORN production. It has
been reported that overexpression of putative NAGS
encoded by NCgl1469 leads to increased ORN produc-
tion [54] while others claim Ncg/1469 as diaminopentane
acetyltransferase [95]. It is possible that Ncgl1469 poten-
tially encodes a broad-substrate acetyltransferase that
has not been characterized in detail. The TCA cycle flux
can also be reduced by deleting 2-oxoglutarate dehydro-
genase complex (ODHC) for the enhanced production
of ORN [82].

Increasing the NADPH pool also improves ORN pro-
duction. The use of B. subtilis rocG which encodes
NAD-dependent glutamate dehydrogenase allows con-
version of a-KG to GLU in an NADPH-independent
manner and leaves more NADPH for ORN biosynthesis
[84]. Increasing the NADPH level can also be achieved
by inactivating two putative gluconate kinases (gntK)
encoded by NCgl2399 and NCgl2905 [83]. Overexpres-
sion of the ATP-dependent NAD kinase encoded by
ppnK also leads to enhanced ORN production, while
overexpression of glucose-6-phosphate dehydrogenase
encoded by zwf and 6-phosphogluconate dehydrogenase
encoded by gnd does not do the same [85]. A possible
explanation is that plasmid-based overexpression of zwf
and gnd causes cellular burdens because chromosomal-
level overexpression has shown improvement in ORN
titer [86]. An indirectly associated pathway for spermi-
dine biosynthesis can also be deleted for enhanced ORN
production, yet the reason behind it has not been ex-
plained [85]. Combining the aforementioned strategies, a
recently developed strain was reported to produce
51.5 g/L of ORN [86]. In this strain, the PPP flux was
enhanced by changing the ¢kt promoter and the start co-
dons of pgi and zwf. The argCJBD cluster from C.
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glutamicum ATCC 21831 was overexpressed and argF,
proB and argR were deleted.

Metabolic engineering for putrescine production

Putrescine (1,4-diaminobutane) can be produced by
metabolic engineering of ARG related pathways. The
major chassis organisms that have been employed are E.
coli [28] and C. glutamicum [50]. While the putrescine
biosynthesis pathway is not well known in C. glutami-
cum, it is a desirable host as it produces ORN effi-
ciently and tolerates putrescine better than E. coli
[28,50]. Although putrescine biosynthesis can be alter-
natively achieved via agmatine pathway (Figure 2), the
ODC pathway was shown to be more efficient than the
agmatine pathway [50]. In addition to the strategies
employed for developing ARG and ORN producers de-
scribed in prior sections, engineering the transporters

are the additional strategies for designing cell-factories
for putrescine production.

Putrescine can be synthesized from ORN by a single
reaction carried out by ornithine decarboxylase (ODC)
encoded by speC (Figure 2). The ODC from E. coli is
often used since the metabolic pathway in C. glutami-
cum for putrescine has not been identified [50]. To de-
velop a putrescine producing C. glutamicum strain, the
arginine repressor encoded by argR should be inacti-
vated as in the ARG and ORN overproducing strains
[50,51]. While disruption of OTCase is also a strategy
for improving ORN pool, this makes the strain to be-
come an ARG auxotroph [50]. Here, the ARG auxotro-
phy caused by AargF can be overcome by introducing a
plasmid expressing argF which is also fine-tuned [51].
The use of this strategy is an example of plasmid-
addiction system and it circumvents the undesirable use
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of antibiotic as well because cell viability becomes
plasmid-dependent [96]. While engineering of the putres-
cine transport system in C. glutamicum would further en-
hance its production, this strategy has yet been applied
only in E. coli [28]. Along with the overexpression of pu-
trescine/ornithine antiporter (encoded by potE) and dele-
tion of putrescine importer (encoded by puuP), the
competitive and degradation routes were deleted in the
putrescine producing E. coli XQ52 strain [28]. Chromo-
somal deletion of puuA encoding glutamate-putrescine
ligase, speE encoding spermidine synthase, speG encoding
spermidine acetyltransferase, and argl encoding one of the
monomers for OTCase improved putrescine production.
The native promoters of the key biosynthetic genes
(argECBH operon, argD and speC) were changed to stron-
ger promoters and the repressor argR was deleted. The
rpoS gene encoding the stress-responsive RNA polymerase
sigma factor was also deleted, which led to the develop-
ment of the final strain capable of producing 24.2 g/liter of
putrescine [28]. While the highest putrescine producing
strain reported is so far E. coli, further engineering of
ORN overproducing C. glutamicum strain will likely led to
the development of a more efficient putrescine producer
due to its high-tolerance to putrescine [86].

Metabolic engineering for cyanophycin production
Cyanophycin was first discovered more than a century ago
in cyanobacteria as a carbon and nitrogen storage com-
pound [97]. Cyanophycin has been recently attracting at-
tention because it can be chemically reduced to make
polyaspartate. Polyaspartate is a completely biodegradable
polymer [88], which can be used as a polyacrylate substi-
tute, an additive polymer in the oil field [98], and as a
polymer suitable for water treatments and medical appli-
cations [99]. Additionally, cyanophycin can also be used to
produce isotope-labeled ARG [100].

Cyanophycin is composed of equimolar amount of ARG
and L-aspartate (ASP). Cyanophycin synthetase encoded
by cphA carries out the reaction of polymerizing ASP and
ARG (Figure 2). Various strains including P. putida
[88,90], R. eutropha [88,92,94], C. glutamicum [88] and
E. coli [88,89,93] have been employed for the produc-
tion of cyanophycin through the heterologous expression
of cphA from Synechocystis sp. PCC6803 [89] or Ana-
baena sp. strain PCC7120 [90]. Acinetobacter calcoaceti-
cus [91,101] has also been used to produce cyanophycin
using the endogenous cphA gene [91,101]. The metabolic
engineering strategies employed include the use of mu-
tants incapable of accumulating polyhydroxyalkanoates
[88,92,94], plasmid-addiction system using eda [92,94] or
dapE [93] deleted strains, and the use of CphA variant
having C595S mutation [102]. There was an interesting re-
port on the use of 2-keto-3-deoxy-6-phosphogluconate al-
dolase encoded by eda, which is required in gluconate and
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fructose metabolism. The use of this gene for plasmid-
addiction system in Aeda strain circumvents the need to
use antibiotics in large-scale cultivation. The 30, 400 and
500 liter-scale bioreactors have been used for the large-
scale production of cyanophycin, which was followed by
successful purification; at the end, the titer corresponding
to 750 g of cyanophycin with 75% extraction yield have
been reported [89].

Conclusions

With increasing volumes of biological information and
availability of high-throughput molecular tools, systems
metabolic engineering has become an essential strategy
for developing microbial strains overproducing ARG,
ORN, putrescine and cyanophycin. Systems metabolic
engineering obviously requires thorough understanding
of the metabolism and gene regulatory circuits towards
the production of desired products. The strategies of
knocking out the negative regulatory mechanisms, amp-
lifying the fluxes of pathways towards the product for-
mation, deleting the byproducts forming pathways, and
increasing the exporters while reducing the importers
have been combined to develop microbial strains capable
of producing ARG and related products. Such engineer-
ing strategies have been successfully applied to rationally
construct a high-performance strain which works effi-
ciently not only at the laboratory-scale but also at the
semi industrial-scale fermentation. New tools of systems
metabolic engineering are continuously emerging. For
example, further metabolic engineering of the strain
based on the sSRNA technology can be envisioned to rap-
idly develop high-level producers. The strategies de-
scribed here will be useful for developing microbial
strains capable of more efficiently producing ARG and
related products, including not only those mentioned in
this paper but also other derivatives including sarcosine,
creatine, agmatine and creatinine.
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