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Introduction
Currently, type 2 of diabetes mellitus (DM2) affects more 
than 500 million people [1–3].

Among the well-known systemic manifestations of type 
2 diabetes mellitus (DM2), cardiovascular (CV) diseases 
represent the most relevant complications, account-
ing for the prevalent cause of morbidity and mortality 
[4–9]. Two classes of medications designed as novel ther-
apeutic strategies for DM2, namely Glucagon-Like Pep-
tide-1 receptor agonists (GLP-1Ra) and Sodium-glucose 
cotransporter-2 inhibitors (SGLT2i), have demonstrated 
to reduce CV mortality and the occurrence of heart 
failure (HF) in patients with DM2 [8–10]. Notably, this 
effect was observed with SGLT2i, regardless of the pres-
ence of DM2 [10–15]. Although the precise mechanisms 

Cardiovascular Diabetology

*Correspondence:
Daniele Torella
dtorella@unicz.it
Isabella Leo
isabella.leo@unicz.it
1Department of Experimental and Clinical Medicine, Magna Graecia 
University, Catanzaro, Italy
2Advanced Cardiovascular Imaging Unit, Ospedale Medico-Chirurgico 
Accreditato Villa dei Fiori, Naples, Italy
3Department of Neuroscience, Imaging and Clinical Sciences, Institute for 
Advanced Biomedical Technologies “G. d’Annunzio”, University of Chieti-
Pescara, Chieti, Italy
4Department of Medical and Surgical Sciences, Magna Graecia University, 
Catanzaro, Italy
5CMR Unit, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ 
NHS Foundation Trust, London, UK
6School of Biomedical Engineering and Imaging Sciences, Faculty of Life 
Sciences and Medicine, Kings College London, London, UK

Abstract
Originally designed as anti-hyperglycemic drugs, Glucagon-Like Peptide-1 receptor agonists (GLP-1Ra) and Sodium-
glucose cotransporter-2 inhibitors (SGLT2i) have demonstrated protective cardiovascular effects, with significant 
impact on cardiovascular morbidity and mortality. Despite several mechanisms have been proposed, the exact 
pathophysiology behind these effects is not yet fully understood. Cardiovascular imaging is key for the evaluation 
of diabetic patients, with an established role from the identification of early subclinical changes to long-term follow 
up and prognostic assessment.  Among the different imaging modalities, CMR may have a key-role being the gold 
standard for volumes and function assessment and having the unique ability to provide tissue characterization. 
Novel techniques are also implementing the possibility to evaluate cardiac metabolism through CMR and 
thereby further increasing the potential role of the modality in this context. Aim of this paper is to provide a 
comprehensive review of changes in CMR parameters and novel CMR techniques applied in both pre-clinical and 
clinical studies evaluating the effects of SGLT2i and GLP-1Ra, and their potential role in better understanding the 
underlying CV mechanisms of these drugs.
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underlying these cardioprotective effects remains not 
completely understood, several studies have proposed 
that they may act independently of glycemic control 
attributing their beneficial effects to direct as well as indi-
rect actions on the CV system [11, 12].

Cardiac remodeling, defined as changes in the cardiac 
geometry and/or function, often precedes the develop-
ment and progression of HF and is associated with poor 
clinical outcomes [16–18]. The evaluation of early, sub-
clinical, changes at CV level induced by GLP-1Ra and 
SGLT2i will be key to unravel their cardioprotective 
effects [19, 20]. Among the different imaging modalities, 
Cardiovascular Magnetic Resonance (CMR) may play a 
pivotal role in this regard, being not only the gold stan-
dard for volumetric and function assessment [21], but 
also providing tissue characterization with the possibility 
to image myocardial fibrosis/necrosis, oedema and, when 
applying a stress protocol, the presence of inducible myo-
cardial ischaemia [22]. Novel CMR sequences have also 
been recently developed to allow a non-invasive assess-
ment and quantification of microvascular ischaemia [23] 
and to image cardiac inflammation and energetics [24]. 
Evaluating changes in CMR parameters can therefore add 
meaningful piece to the puzzle describing the mecha-
nisms of action underlying the beneficial CV effects of 
GLP-1Ra and SGLT2i (Fig. 1).

The aim of this article is to provide a narrative review 
of the existing evidence in the literature regarding the 
established and potential role of CMR in assessing the 
cardiovascular effects of GLP-1Ra and SGLT2i.

SGLT2i effects on cardiovascular system
Originally considered solely as hypoglycemic drugs, 
SGLT2i operate by reducing glucose reabsorption 
through the blocking of the SGLT2 receptor in the proxi-
mal renal tubule, consequently inducing glycosuria [25–
27] (Fig.  2). This, in turn, reduces plasma insulin levels 
and promote glucagon secretion, responsible for lipolysis 
and lipid oxidation, with the effect of an overall reduc-
tion in visceral and subcutaneous fat and a weight loss 
of ~ 2-3 kg [28–34]. Additionally, the natriuretic effect of 
SGLT2i inhibits the renin-angiotensin-aldosterone sys-
tem (RAAS), resulting in a modest reduction in both sys-
tolic and diastolic blood pressure [28, 35]. The increased 
diuresis, coupled with a direct promotion of erythropoi-
esis, contributes to the observed rise in hematocrit levels 
in patients receiving these medications [36–39]. How-
ever, a similar effect has been observed with other drugs 
that do not impact mortality [40].

The “Empagliflozin, Cardiovascular Outcomes, and 
Mortality in Type 2 Diabetes” (EMPAREG-OUTCOME) 
[41], “Canagliflozin and Cardiovascular and Renal Events 
in Type 2 Diabetes” (CANVAS) [42], “Dapagliflozin 

Fig. 1  Examples of CMR sequences used to evaluate cardiovascular effects of SGLT2i or GLP-1Ra. ECV: extracellular volume; MRS: magnetic resonance 
spectroscopy; LGE: late gadolinium enhancement; STIR-T2: Short-TI Inversion Recovery
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and Cardiovascular Outcomes in Type 2 Diabetes” 
(DECLARE-TIMI 58) [43] studies have provided evi-
dence that SGLT2i reduces major renal and CV end-
points as hospitalizations and mortality due to HF in 
patients with DM2.

Subsequently, trials like “Dapagliflozin in Patients with 
Heart Failure and Reduced Ejection Fraction” (DAPA-
HF) [10] and “Dapagliflozin in Heart Failure with Mildly 
Reduced or Preserved Ejection Fraction” (DELIVER) 
[13] for dapaglifozin, as well as the “Cardiovascular and 
Renal Outcomes with Empagliflozin in Heart Failure” 
(EMPEROR-Reduced) [14] the “Empagliflozin in Heart 
Failure with a Preserved Ejection Fraction” (EMPEROR-
Preserved) [15] trials for empaglifozin, have demon-
strated a reduction in CV events regardless of LV ejection 
fraction (EF) and the presence of DM2.

Beneficial effects on reduced HF hospitalization and 
mortality have been described also in patients with his-
tory of prior myocardial infarction (MI), although safety 
and efficacy of these therapies early after acute MI remain 
uncertain. The Emmy trial [44] in fact demonstrated sig-
nificant reduction of NT-proBNP with early initiation 
of empagliflozin after MI, while treatment with dapa-
glifozin in the DAPA-MI had only limited impact on CV 
outcomes including HF hospitalization and CV death, 
with a benefit observed only in terms of cardiometa-
bolic outcomes [45]. Ongoing trials will provide more 
insights about the role of SGLT2i in this context [46]. 
Promising results in terms of MI and stroke risk reduc-
tion have been instead demonstrated with the SGLT1/2 

inhibitor sotaglifozin [47, 48], with a benefit similar to 
what observed with GLP1Ras but with the advantage of 
an additional proved reduction in HF-related hospitaliza-
tion. Reduction in visceral obesity, increased atheroscle-
rotic plaque stability, and gut microbiome modulation 
are all potential mechanisms that may contribute to this 
protective effect [49–51]. Consequently, these drugs are 
now recommended as a cornerstone of HF treatment 
by the European Society of Cardiology (ESC) guidelines 
[10–15]. While the improved glycemic control, lowered 
blood pressure levels and observed weight reduction 
after SGLT2i treatment all contribute to improved clini-
cal outcomes, none of these factors can fully explain the 
overall beneficial effect on the CV system. The improve-
ment of endothelial function and arterial wall stiffness, 
attributed to increased vasodilation and nitric oxide pro-
duction, as well as the inhibition of oxidative stress and 
inflammation [52–55] have been proposed as additional 
potential mechanisms and described in both animal and 
clinical models after SGLT2i treatment [56–58]. Modula-
tion of endothelial dysfunction may be also implicated in 
the amelioration of renal function observed even in the 
absence of diabetes [59]. Furthermore, SGLT2i reduce 
circulating catecholamine levels [60] and impact myo-
cardial remodeling and fibrosis, through modulation of 
several chemokine pathways (IL-6, TNF-α, monocyte 
chemoattractant protein-1), calcium homeostasis [61, 
62], authophagy [60, 63–68] and RAAS inhibition [69] in 
pre-clinical models. All these proposed mechanisms will 
be discussed in detail in the following paragraphs.

Fig. 2  Summary of the effects of sodium-glucose cotransporter-2 inhibitors
 EPO: Erythropoietin. LV: left ventricular; RAAS: renin-angiotensin-aldosterone system;
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Cardioprotective effects of SGLT2i in preclinical 
models
The cardioprotective SGLT2i effects have been investi-
gated in animal models with and without DM2 [69–71]. 
SGLT2i proved to reduce myocardial hypertrophy, fibro-
sis and cardiomyocyte apoptosis and, in HF models, to 
improve systolic function, cardiac dilatation and reduce 
both atrial and ventricular fibrosis [72, 73].

These results were confirmed in non-diabetic, doxoru-
bicin-treated mice where the treatment with doxorubicin 
prevented the deterioration of early LV function param-
eters, such as geometrical deformation indices [74]. The 
study also showed for the first time expression of SGLT-1 
receptors in the heart, opening the way for clinical test-
ing of SGLT-1/2 antagonists, such as sotagliflozin with 
favorable results both in diabetic [48] and non-diabetic 
HF patients [47].

To further explore the mechanisms behind the effects 
of SGLT2i on cardiac remodeling, several studies have 
utilized the information arising from CMR imaging.

For instance, the effects of a two-month course of 
empaglifozin on diastolic function were evaluated in a 
porcine model of nondiabetic HF induced by occlusion 
of proximal left anterior descending artery [75]. Semi-
automatically generated LV filling profiles were used to 
derive values of peak filling rate and first filling volume to 
estimate the amount of ventricle filled during either LV 
active relaxation or suction [76]. Both parameters were 
found to be higher in SGLT2i-treated animals, reflect-
ing a beneficial effect on diastolic function in this group. 
Additionally, the reduction in left atrial volume com-
pared to controls suggested a decrease in left atrial pres-
sure after SGLT2i treatment. We know from previous 
work that two main mechanisms have been recognized in 
the development of diastolic disfunction: increased inter-
stitial fibrosis and augmented cardiomyocyte stiffness 
[77]. Interestingly, empaglifozin-treated pigs had reduced 
intramyocardial fibrosis demonstrated by lower collagen 
deposition and decreased extracellular volume measured 
at T1 mapping and ECV analysis [75]. Empaglifozin was 
also able to improve nitric oxide signaling and impact 
titin phosphorylation with beneficial effects on cardio-
myocyte stiffness [75].

Other potential mechanisms with a proved role in car-
diac remodeling are disturbances in ionic homeostasis 
[78]; elevated myocardial intracellular sodium ([Na+]
i) has been found in models of HF and diabetic cardio-
myopathy (DC), and linked to detrimental effects on 
mitochondrial function and myocardial energetics [79, 
80]. The ([Na+]i) overload activates in fact the Na+/Ca2+ 
exchanger, with increased efflux of calcium from the 
mitochondria to the cytosol and increased calcium influx 
from the extracellular environment. The result is an 
overall rise in intracellular calcium, disrupted calcium 

gradients, and subsequent disturbances in oxidative 
phosphorylation and ATP levels [81]. Moreover, as most 
cardiac contractile proteins are calcium-sensitive, cal-
cium plays a pivotal role in maintaining efficient excita-
tion-contraction processes [82]. Disturbances of calcium 
homeostasis may therefore explain, at least in part, the 
impairment of contractile function observed in Diabetic 
Cardiomyopathy (DC) [24, 77–80, 83].

Accordingly, magnetic resonance spectroscopy (MRS) 
is a new imaging technique providing in vivo meta-
bolic information of the examined tissue [24, 69, 84]. By 
exploiting the unique signal generated by different nuclei, 
MRS enables the detection of several metabolites and 
offers non-invasive assessment of myocardial energetics. 
For instance, phosphorus-31 Nuclear MRS (31P-MRS) 
can track myocardial PCr/ATP ratio (a marker of the 
myocardial energetic state), often compromised in DM2 
patients [24, 85, 86]. Using both 31P and 23Na MRS, Cro-
teau et al. [79] demonstrated decreased PCr/ATP ratio 
and elevated ([Na+]i) in a mice model of DC. A one-
month treatment with ertugliflozin corrected the ([Na+]
i) increase, improved the PCr/ATP ratio, and reversed 
myocardial hypertrophy, diastolic and systolic dysfunc-
tion [79, 80].

Ongoing research employing a novel imaging tech-
nique, manganese-enhanced magnetic resonance 
imaging, may soon provide insights into the effects of 
SGLT2i on the homeostasis of another ion, calcium 
(NCT04591639). The technique exploits the ability of 
manganese, a calcium analogue, to significantly impact 
the T1 relaxation time, allowing for the identification of 
myocardial areas with normal calcium handling.

Chronic glucose overload and ectopic lipid accumula-
tion have both been observed in DM2 and linked to HF 
development [82]. However, their exact contribution to 
myocardial dysfunction remains unclear. Joubert et al 
[87] sought to address this question by using a lipodys-
trophic mouse model, devoid of lipotoxic features, to 
demonstrate that glucotoxicity itself can trigger cardio-
myopathic changes including LV hypertrophy and dia-
stolic dysfunction. CMR images showed increased wall 
thickness, mildly reduced EF and impaired longitudinal 
strain in these mice, alterations that were corrected by 
subsequent administration of glucose-lowering drugs. 
Interestingly, in this model, the effects of dapagliflozin 
on cardiac remodeling were superior to those induced 
by pioglitazone. Despite both drugs counteract gluco-
toxicity and reduce the amount of advanced glycation 
end-products, these results suggest that other metabolic 
pathways may be implied in the benefits observed with 
SGLT2i. One postulated hypothesis revolves around a 
shift in cardiac metabolism from fatty acid and glucose 
oxidation (the primary sources of fuel under physiologi-
cal conditions but impaired in DM2 and HF) towards 
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the more efficient utilization of ketone bodies [84]. At 
this regard, Hyperpolarized [3–13 C]acetoacetate, a novel 
ketone probe applied to MRS to track the conversion of 
[3-13C]acetoacetate into its metabolic products, was used 
to test the effects of empaglifozin in diabetic rats with 
HF. Despite an increase in the overall amount of circu-
lating ketone bodies, their use at the cardiac level after 
empagliflozin administration remained surprisingly sta-
ble. Nevertheless, the drug once again confirmed a sig-
nificant impact on afterload (reduced EDV and stroke 
volume at CMR analysis) [88]. However, another study 
using 31P-MRS to measure cardiac PCr/ATP levels as 
a marker of myocardial energetics [89], demonstrated a 
45% increase in cardiac PCr/ATP in diabetic mice treated 
with a single dose of empaglifozin, correlating with 
the increase of circulating ketones but not with plasma 
glucose levels [85]. The results underscore the role that 
changes in myocardial energetics towards more efficient 
pathways may have in the cardioprotective effects of 
SGLT2i.

As previously mentioned, CMR is an invaluable imag-
ing modality due to its ability to characterize tissue. In the 
ischemic setting this unique property allows for the iden-
tification of myocardial oedema in T2-weighted (T2w) 
sequences (area at risk) and myocardial scar (infarcted 
area) in late gadolinium enhancement (LGE) sequences. 
One of the potential protective mechanisms implicated 
in the reduction of cardiovascular events observed after 
SGLT2i treatment may involve the impact of these drugs 
on reducing post-ischemic damage. Pre-treatment with 
empaglifozin for one week in mice with acute myocardial 
infarction (MI) resulted in a significantly larger myocar-
dial salvage area (identified by the difference between 
the area at risk -hyperintense in T2w- and the infarcted 
area measured at LGE), smaller infarct size, and overall 
improved cardiac function [90].

Cardioprotective effects of SGLT2i in clinical 
models
One of the key findings in CMR studies involving 
patients treated with SGLT2i is the beneficial effect on 
cardiac remodeling [32, 91]. A recently published meta-
nalysis [92] of 9 randomized clinical trials and 1385 
patients reported that SGLT2i treatment significantly 
reduced both LV end-diastolic volume (LVEDV) and LV 
end-systolic volume (LVESV) as well as LVM and LVM 
index. Patients treated with SGLT2i also had a signifi-
cant improvement on LVEF, irrespective of the time to 
follow-up used or of the HF phenotype. In DM2 patients, 
the effect on LVMi is also independent from the diabetes 
duration [93]. SGLT2i had instead no effect on LVM and 
LVMi in a cohort of non-diabetic patients, with LVH but 
no HF [94]. If these changes result from primarily altera-
tions in cardiomyocyte size, extracellular volume, or a 

combination of both is still matter of debate [95–98]. The 
use of CMR imaging that with T1 mapping analysis has 
the potential to estimate ECV, may be the appropriate 
tool to non-invasively provide answers to this question. In 
a pre-specified analysis of the EMPA-HEART [99] both 
ECV and indexed ECV were significantly reduced in dia-
betic patients treated with empaglifozin compared to pla-
cebo. Intracellular volume (ICV), calculated as (1-ECV) 
x (LVMi/1.05), did not differ significantly between the 
two groups [99]. This 1.4%, reduction in ECV in a rela-
tively short time frame (6 months) is particularly relevant 
when read in the light of the data published by Wong et 
al [100], where a 3% increase in ECV in diabetic patients 
was associated with a 52% increase in the risk of death or 
HF hospitalization. The reduction of ECV was confirmed 
by another study in non-diabetic patients, where the 
authors also demonstrated a reduction in cardiomyocyte 
volume after empaglifozin treatment [32, 101]. Ongoing 
trials (NCT03782259, NCT04490681) will provide fur-
ther evidence about the impact of SGLT2i on ECV.

Preclinical models have highlighted the role that a 
shift towards more efficient energetic pathway can have 
in the benefit observed with SGLT2i therapy. However, 
similar studies using 31P-MRS to measure cardiac PCr/
ATP levels at rest and during dobutamine stress failed 
to prove significant changes in cardiac energetics in both 
HFrEF and HFpEF [101]. Interestingly, what is signifi-
cantly reduced after SGLT2i treatment is the amount of 
epicardial and subcutaneous adipose tissue, associated 
with a concomitant reduction in circulating inflamma-
tory biomarkers [32]. Epicardial adipose tissue (EAT) 
serves as a lipid storage and its reduction may represent 
an indirect proof of the switch of myocardial fuel trig-
gered by SGLT2i [102]. Notably, excess or abnormalities 
of EAT are linked to increased CV risk [103]. The EMPA-
CEF study [104] however did not confirm the impact 
of empaglifozin on myocardial or epicardial fat. These 
conflicting results may be explained by the shorter treat-
ment received in the EMPACEF study (12 weeks) [104], 
compared to the 6 months used in the EMPA-TROPISM 
study [32]. The reduction in aortic stiffness demonstrated 
after SGLT2i, with consequent reduced afterload and 
improved cardiac efficiency, may represent an additional 
mechanism involved in the overall beneficial effects 
in terms of CV risk [32]. Despite the undeniable ben-
efits demonstrated in HF patients, there are mixed data 
regarding the effect of SGLT2i on LVEF [32, 65, 105–
107]. The reasons behind these conflicting results may be 
the heterogeneity of patients’ selection in published stud-
ies, often with small sample size used, no stratification 
by EF subgroup, NYHA class distribution and degree of 
LV dilatation. Further studies are certainly needed to bet-
ter highlight the impact of these features on efficacy of 
SGLT2i in the clinical setting.



Page 6 of 13Cersosimo et al. Cardiovascular Diabetology           (2024) 23:94 

Table  1 summarizes the major findings of the studies 
discussed in this section.

GLP-1Ra effects on cardiovascular system
In 2005 GLP-1Ra have been approved to treat DM2 [108]. 
Although with different structure, duration of action, 
mode of administration and clinical effectiveness, these 
drugs overall act similarly by inducing a glucose-depen-
dent insulin release and glucagon suppression [108–113].

In addition, they slow gastric emptying and, by their 
influence on central nervous system, reduce body 
weight [114]. GLP-1 receptors have been found in both 
the glomerulus and renal tubule and use of GLP-1Ra 
has been associated with increased natriuresis, diure-
sis, reduced albuminuria and suppression of the RAAS 
[115–119].

Beyond the metabolic effect, a significant reduction 
of major adverse CV events (MACE) was observed in 
patients treated with some of these drugs estimated at 
14% when using as outcome a compositum of CV death, 
nonfatal MI and nonfatal stroke [115].

The underlying mechanisms are still object of current 
research. Surely multifactorial, they encompass physi-
ological changes of multiple organs involved in central 
metabolism, systemic regulation of energy expenditure 
and inflammation and multiple hemodynamic factors, 
including modulation of blood pressure, heart rate, myo-
cardial geometry and function, endothelial function, vas-
cular tone and regulation of blood volumes [120].

However, not all the GLP-1 Ra are equal when looking 
at cardioprotection. Lixisenatide, a short acting GLP1Ra 
failed to demonstrate CV benefits, while liraglutide, 
semaglutide, dulaglutide and efpeglenatide demonstrated 
to lower CV events [116]. Reduced mortality was also 
noted with liraglutide, semaglutide and exenatide [117]. 
Protective effects in HF patients are controversial, with 
limited and non-homogenous evidence among the dif-
ferent molecules. The results of the FIGHT and LIVE 
trial in fact failed to demonstrate a protective effect of 
liraglutide in patients with both acute and chronic HF, 
respectively [121, 122]. Moreover, in a post-hoc analy-
sis of the REWIND trial, dulaglutide administration did 
not reduce HF-related events [123]. Nevertheless, treat-
ment with semaglutide demonstrated to improve HF 
related symptoms in non-diabetic patients with HFpEF, 
and a recent meta-analysis encompassing eight trials and 
60,080 patients demonstrated an overall reduction of HF-
related hospital admission by 11% [115, 124]. The exact 
reasons of these heterogeneous results are still unknown 
although may be partially explained by a dose-response 
effect, with greater CV protection being detectable only 
when using higher doses of the drug [125].

Following this evidence, the 2019 European Society of 
Cardiology (ESC) Guidelines on diabetes, pre-diabetes, 
and cardiovascular diseases, advise the use of GLP1-RAs 
in class I DM2 patients at high CV risk to reduce CV 
[126]. The indication was later confirmed by the 2021 
ESC Guidelines on cardiovascular disease prevention (i.e. 

Table 1  Studies assessing clinical cardioprotective effects of SGLT2i by Cardiac Magnetic Resonance
Study HF Diabetes SGLT2i Duration of Therapy Imaging 

Findings
Santos-Gallego et 
al. [32]

HFrEF No Empaglifozin 6 months Improvement of LV volumes, LV mass, LV systolic function, func-
tional capacity

Brown et al. [91] No Yes Dapaglifozin 12 
months

LVM Reduction

Connelly et al. [94] No No Empaglifozin 6 months No change in LV volumes and function
Mason et al. [95] No Yes Empaglifozin 6 months LVMi and ECV reduction
Cohen et al. [96] No Yes Empaglifozin 6 months Reduced EDV; No changes in ESV, EF, LVM or markers of cardiac 

fibrosis
Hsu et al. [97] No Yes Empaglifozin 6 months No improvement in LV function, structure, adiposity, and diffuse 

fibrosis
Oldgren et al. [98] No Yes Dapaglifozin 6 weeks Reduced LA volume. Decreased Peak global radial strain. No 

changes in peak global longitudinal and circumferential strains. 
Unchanged cardiac fatty acid uptake

Verma et al. [99] No Yes Empaglifozin 6 months LVMi Reduction
Hundertmark et al. 
[101]

HFrEF/HFpEF No Empaglifozin 12 weeks No improvement in cardiac energetics (PCr/ATP) at rest and dur-
ing stress

Gaborit et al. [104] No Yes Empaglifozin 12 weeks No change in LVM, LVEF, epicardial fat, diastolic function.
Lee et al. [106] HFrEF Yes Empaglifozin 36 weeks LV volumes reduction
Singh et al. [107] HFrEF/HFpEF Yes Dapaglifozin 12 

months
No effect on LV remodeling

Legend to Table  1: CMR: cardiac magnetic resonance; EDV: end diastolic volume; ESV: End systolic volume; ECV: extracellular volume; HFpEF: heart failure with 
preserved ejection fraction; HFrEF: heart failure with reduced ejection fraction; LA: left atrial; LGE: late gadolinium enhancement; LVEF: left ventricle ejection fraction; 
LVM left ventricular mass; LVMi: left ventricular mass index; PCr/ATP: phosphocreatine/ATP ratio
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class I indication for GLP1-R in patients with DM2 and 
atherosclerotic cardiovascular disease to reduce CV and 
cardiorenal outcomes) [127]. Data published so far sug-
gests that the overall benefit observed is mediated by a 
decrease of atherosclerosis-related event [128–130]. 
Again, the mechanism behind these effects seems to be 
various and not yet fully understood (Fig. 3). They have a 
beneficial effect on systolic blood pressure, although the 
reduction is only modest (2–6 mmHg) and insufficient to 
explain by itself the overall effects on CV mortality [119]. 
GLP-1Ra also lower total and LDL cholesterol and tri-
glycerides [125, 131]. However, it seems the reduction in 
atherosclerosis development and progression with plaque 
stabilization and reduced inflammation the most critical 
factor in terms of CV risk reduction [129, 130].

Cardioprotective effects of GLP-1Ra in preclinical 
models
One of the postulated hypothesis about the protective 
cardiovascular effects of GLP-1Ra look at the potential 
detrimental effects of lipotoxicity on cardiac function. It 
is in fact proved that ectopic fat accumulation and the 
subsequent imbalance of fatty metabolism is linked with 
organ damage [119, 132]. In addition, ectopic cardiac fat 
build-up is strictly related to the development of cardiac 
dysfunction [131]. The dysregulation of β-oxidation with 
an excess of availability of its metabolic by-products, is 
known to cause an increase in reactive oxygen species, 
contributing to oxidative stress [133]. This pro-inflamma-
tory milieu eventually impacts calcium homeostasis with 
a direct effect on cardiac function. In addition, cardiac 

steatosis increases the amount of intramyocardial colla-
gen resulting in reduced relaxation and diastolic dysfunc-
tion [134]. However, the exact role of lipotoxicity in the 
development and progression of DC remain not com-
pletely understood, underscoring the need of advanced 
techniques able to fill this gap in evidence. CMR imag-
ing provides a promising no-invasive approach. Beyond 
the accurate heart function assessment, proton magnetic 
resonance spectroscopy (1H-MRS) is effective in detect-
ing triglycerides within the myocardium, with good accu-
racy when compared to biochemical assays [135, 136]. 
In addition, microvascular disease is a well-known hall-
mark of DC that can impact the CV prognosis of patients 
affected by DM2 [84, 137, 138]. CMR is also helpful to 
non-invasively assess myocardial blood flow and micro-
vascular ischemia [23]. In detail, arterial spin labeling 
(ASL) CMR has been used in animal models to assess 
myocardial blood flow without the use of any contrast 
agent [139]. Applying this multiparametric CMR proto-
col (1H-MRS and ASL) Abdesselam et al [140] demon-
strated that cardiac abnormalities induced in mice after 
a 4-weeks course of a high-fat high-sucrose diet (i.e. 
cardiac hypertrophy, lower cardiac output and decrease 
myocardial blood flow), were reversed by a 14-day course 
of the GLP1-Ra Exendin-4. The drug reduced both the 
myocardial triglyceride content and the myocardial wall 
thickness [140]. At the same time, GLP1-Ra treatment 
was able to restore cardiac index and myocardial perfu-
sion [140]. It has been also postulated that GLP1-Ra may 
exert CV beneficial effects by impacting post-MI cardiac 
remodeling and ischemia-reperfusion (IR) injury [141, 

Fig. 3  Summary of the effects of Glucagon-Like Peptide-1 receptor agonists
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142]. Ischemic remodeling involves complex interactions 
at the cellular and molecular levels that lead to oxida-
tive stress, inflammation, and drastic changes in pH and 
calcium levels, all contributing to cardiomyocyte death 
and excessive fibrosis [143–146]. Exenatide was found 
to enhance antioxidant enzyme activity, reduce oxida-
tive stress, and decrease cell death in pigs shortly after 
IR injury, with similar findings in rats [141–147]. This 
protection against IR injury seems however to be lost in 
more severe models, when prolonged provoked ischemia 
results in irreversible damage [148, 149]. During induced 
ischemia in experimental models, GLP-1 was in fact able 
to prompt an increase in anaerobic glycolysis in the isch-
emic regions, to counteract the lack of oxygen supply as 
demonstrated using a 1-13C glucose clamp combined 
with MRS-based isotope analysis [150]. In areas with 
no ischemia and better oxygenation, a metabolic shift 
toward carbohydrate oxidation was also observed; the 
more energy-efficient process may help in sustaining car-
diac muscle contraction in these specific circumstances.

Cardioprotective effects of GLP-1Ra in clinical 
models
There are currently few and conflicting CMR data about 
cardioprotective effects in vivo of GLP-1Ra.

Exenatide (alone or combined with a remote ischemic 
conditioning approach) failed to demonstrate a beneficial 
effect in terms of infarct size measured by LGE, myocar-
dial salvage index, transmurality index, LVEF and MVO 
volume in patients with ST-segment elevation MI receiv-
ing primary percutaneous coronary intervention (pPCI) 
[151]. However, in another study enrolling 172 STEMI-
patients using as endpoint CMR salvage index derived 
from myocardial area at risk in the acute phase, and 
infarct size by LGE at follow-up (90 ± 21 days after pPCI) 
exenatide treatment resulted in a significantly larger sal-
vage index and a smaller infarct size (when related to the 

myocardial area at risk), despite no differences in LVEF 
or significant changes in the absolute infarct size [147]. 
Exenatide treatment did not changed significantly LVEF, 
myocardial perfusion or oxidative metabolism in T2DM 
patients with LV systolic dysfunction, having an over-
all similar effect of glargine insulin [152]. Patients with 
acute MI treated with liraglutide demonstrated instead 
smaller LVMi suggesting a role in reverse remodel-
ing [153]. A significant effect on diastolic function was 
instead noted on a study using liraglutide [154] that 
demonstrated at a CMR analysis using a 4D flow data-
set with retrospective valve tracking, improved early (E) 
and late (A) trans-mitral peak flow rate, E/A ratio values, 
along with improved early deceleration peak, early peak 
mitral annular septal tissue velocity (Ea) and estimated 
LV filling pressure (E/Ea). The LVEF values were slightly 
reduced, although remaining within normal range.

Finally, one of the postulated hypotheses was that, 
given the observed reduction in body weight, GLP1-RA 
could induce concomitant reduction in epicardial adi-
pose tissue (EAT). This was proven in a cohort of T2DM 
obese patients, where at CMR analysis EAT thickness was 
significantly reduced by both exenatide [155] and liraglu-
tide [116, 156] treatment. This result was not confirmed 
in another study evaluating the effects of liraglutide ver-
sus placebo on DM2 patients that showed no significant 
change in EAT or in myocardial triacylglycerol content (a 
marker of myocardial steatosis) at proton MR spectros-
copy [154]. Further larger studies are therefore needed to 
assess the impact of GLPR1a on EAT and their impact on 
LV function.

Table  2 summarizes the major findings of the studies 
discussed in this section.

Table 2  Studies assessing clinical cardioprotective effects of GLP1Ra by Cardiac Magnetic Resonance
Study Heart 

Failure
Diabetes GLP-1Ra Duration of therapy Results

Del Blanco et al. [151] No No Exenatide Premedication before 
revascularization

No changes in infarct size measured by LGE, myocardial 
salvage index, transmurality index, LVEF and MVO

Lønborg et al. [157] No No Exenatide 15 min before inter-
vention-6 h after the 
procedure

Increased myocardial salvage index and reduced 
infarcted size

Chen et al. [152] HFrEF Yes Exenatide 26 weeks No improvement in LV function, structure, adiposity, 
and diffuse fibrosis

Nozue et al. [153] No No Liraglutide 6 months Prevention of the progression of LV remodeling
Bizino et al. [158] No Yes Liraglutide 26 weeks Reduction of diastolic and systolic function
Dutour et al. [155] No Yes Exenatide 26 weeks EAT reduction
Zhao et al. [116] No Yes Liraglutide 3 months EAT reduction
Bizino et al. [154] No Yes Liraglutide 26 weeks No changes in EAT and myocardial triacylglycerol 

content
Legend to Table 2: CMR: cardiac magnetic resonance; EAT: epicardial adipose tissue; LV: left ventricular; MVO: microvascular obstruction
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Conclusion
The exact mechanisms underlying the beneficial CV 
effects of SGLT2i and GLP1-RA are not yet completely 
understood. Several hypotheses have been formulated 
and tested in preclinical and clinical studies with the aid 
of CMR imaging, increasingly used in this setting due 
to its unique ability to provide accurate volumetric and 
function assessment complemented with tissue charac-
terization. Beyond visualization and quantification of 
myocardial fibrosis and oedema, the most recent CMR 
techniques developed to assess myocardial energetics 
exploiting the specific relaxation properties of different 
molecules add promising and radiation-free strings to 
the bow of the modality. Given the unmatched amount of 
information that can be obtained from a single scan, with 
increasingly faster and versatile protocols, CMR imag-
ing will certainly add in the following years meaningful 
pieces to this complex puzzle.
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