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Abstract
Objective  Diabetes poses a significant threat to human health. There is a lack of large-scale cohort studies to explore 
the association between mortality risk and indicators beyond blood glucose monitoring in diabetic populations.

Methods  Multivariable Cox proportional hazards regression models were performed to investigate the association 
of 13 blood biomarkers with mortality risk in the National Health and Nutrition Examination Survey (NHANES) and 
biomarker levels were log-transformed and correlated with mortality.

Results  During a median follow-up of 7.42 years, 1783 diabetic patients were enrolled. Compared to traditional risk 
factors, the addition of hs-cTnT, hs-cTnI, NT-proBNP, creatinine, cystatin C, and β-2 microglobulin biomarkers increased 
the predictive ability for all-cause mortality by 56.4%, 29.5%, 38.1%, 18.8%, 35.7%, and 41.3%, respectively. However, 
the inclusion of blood glucose monitoring had no impact on the prediction of all-cause mortality. Compared with the 
1st quartiles of creatinine and Cystatin C, the risk of diabetes mortality were higher in the highest quartiles (HR: 5.16, 
95% CI: 1.87–14.22; HR: 10.06, 95% CI: 4.20-24.13).

Conclusions  In the diabetic population, elevated plasma levels of hs-cTnT, hs-cTnI, NT-proBNP, creatinine, cystatin 
C, and β-2 microglobulin serve as robust and straightforward predictors of long-term mortality compared to blood 
glucose levels and HbA1c values. Creatinine and cystatin C stand out as more precise markers for predicting diabetes 
mortality prior to blood glucose monitoring.

Key points
Question: Is blood glucose monitoring the most effective predictor of long-term survival in the diabetic 
population?
Findings: Among 1783 diabetic patients, the addition of hs-cTnT, hs-cTnI, NT-proBNP, creatinine, cystatin C, and 
β-2 microglobulin biomarkers increased the predictive ability for all-cause mortality by 56.4%, 29.5%, 38.1%, 18.8%, 
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Introduction
In recent years, diabetes has emerged as a major global 
public health issue. It is reported that in 2021, diabetes 
affected approximately 714  million adults, with a pro-
jected increase in prevalence in the future [1]. Among 
this population, cardiovascular disease (CVD) stands as 
the primary cause of mortality, accounting for over half 
of all deaths. Long-term diabetes can lead to diabetic car-
diomyopathy [2], which in turn leads to the occurrence 
of cardiovascular events [3, 4]. However, early interven-
tion and treatment are hampered by the high proportion 
of undiagnosed diabetes cases. To tackle this pressing 
public health concern, researchers are progressively con-
centrating on pinpointing the primary mortality risk 
factors in diabetes patients. The pivotal progress in the 
field revolves around the organization of these factors 
into a comprehensive risk prediction scoring system [5, 
6]. However, at least in the context of clinical practice, 
where our ability to predict 90% of future cardiovascular 
events remains challenging. The estimation of the “num-
ber needed to treat” to prevent a single cardiovascular 
event still frequently exceeds 100 individuals. This rela-
tively high number could be attributed to several factors, 
including limited treatment effectiveness and suboptimal 
risk stratification, especially among the diabetic popula-
tion, where this issue is particularly significant [7].

Recent advancements have highlighted the potential 
of biomarkers as valuable tools for assessing biologi-
cal processes, predicting disease risk, and monitoring 
treatment efficacy. Elevated levels of novel biomarkers, 
including NT-proBNP, high-sensitivity cardiac troponin 
T (hs-cTnT), and cystatin C, have emerged as indica-
tors of all-cause mortality [8], including coronary heart 
disease, heart failure, stroke, and sudden death. Other 
biomarkers, including propeptide of type II collagen, 
creatinine clearance rate, estimated glomerular filtration 
rate (eGFR), and blood urea, have also been explored for 
their ability to predict cardiovascular events in diabetic 
patients [9, 10]. However, the findings from these stud-
ies have been inconsistent, contributing to uncertainty 
in the field. We are earnestly pursuing a deeper explora-
tion of the substantial impact of biomarkers on individual 
health status, and the identification of these cardiac and 
renal biomarkers is of paramount importance to health-
care professionals. This identification process is poised 
to facilitate the high precision of healthcare, as it enables 
the accurate discernment of diabetic patients most in 

need of attention and intervention, thereby reducing the 
incidence of cardiovascular events. By delving into the 
intricate relationship between individual blood sugar 
control and cardiac-renal function, we hold the promise 
of offering optimized genetic and lifestyle recommenda-
tions for the next generation, thus mitigating the risk of 
cardiovascular diseases and diabetes. This intergenera-
tional health enhancement will have a positive impact on 
overall societal health and healthcare costs.

In this context, our research represents a significant 
and innovative investigation aimed at comprehensively 
exploring the relationship between various cardiovascu-
lar-renal biomarkers and mortality in diabetes patients. 
By conducting a comparative analysis of the relative 
prognostic value of these biomarkers, our objective is to 
elucidate the pivotal role that cardiovascular-renal bio-
markers can play in predicting mortality among diabetes 
patients, as opposed to traditional diabetes biomarkers. 
Through the identification of the most effective biomark-
ers for risk stratification, our study has the potential to 
drive the development of improved tools for mitigating 
the high mortality rates associated with diabetes.

Methods
Study population
The NHANES is a comprehensive cross-sectional sur-
vey administered by the National Center for Health Sta-
tistics. It is specifically designed to monitor the health 
and nutritional status of non-institutionalized civilians 
in the United States. Data collection for NHANES is an 
ongoing process, with information continuously gath-
ered and made available to the public in two-year incre-
ments. For this manuscript, we utilized data from the 
1999–2004 survey cycles. It is important to note that 
we combined data from these specific survey cycles to 
facilitate our research objectives. For a more comprehen-
sive understanding of NHANES, including its sampling 
methodology, data collection procedures, and interview 
processes, detailed information is readily accessible 
on the NHANES website (http://www.cdc.gov/nchs/
NHANES.htm). We enrolled a total of 31,179 individuals, 
and to ensure the control of diabetes severity, we estab-
lished inclusion criteria. These criteria included partici-
pants who were over 18 years old and diabetes mellitus 
is defined based on the 2022 guidelines of the American 
Diabetes Association. It is characterized by a serum gly-
cated hemoglobin level greater than 6.5%, serum fasting 

35.7%, and 41.3%, respectively. However, blood glucose monitoring had no impact on the prediction of all-cause 
mortality.
Meaning: Among individuals with diabetes, the utilization of plasma cardiac and renal biomarkers as primary 
predictors for overall mortality is recommended.
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glucose level of ≥ 126  mg/dL, and/or self-reported use 
of anti-diabetic medications in conjunction with a con-
firmed physician diagnosis of diabetes. We also estab-
lished exclusion criteria. Individuals who were under 18 
years old (N = 14,118), pregnant women (N = 715), and 
those with missing data (N = 205) were excluded from the 
current analyses. Adolescents, being legally incapable of 
providing independent informed consent, may also intro-
duce additional complexities in data interpretation and 
analysis due to their developmental stage and potential 
dependency on adults. The inclusion of pregnant women 
in the study could introduce additional complexity and 
confounding factors due to the physiological changes 
they undergo, including fluctuations in hormone levels 
and blood glucose levels, making the interpretation of 
research findings challenging. After applying these inclu-
sion and exclusion criteria, our final analytical cohort 
consisted of 1,783 individuals with diabetes who had 
completed measurements and provided available follow-
up data on mortality (Fig. 1).

Ethics statement
This study utilizes publicly available data from the Third 
National Health and Nutrition Examination Survey, 
conducted by the National Center for Health Statistics 
(NCHS). NHANES provides publicly demographic and 
laboratory data and written informed consent for data 
collection was obtained from all subjects. The NHANES 
protocol was approved by the NCHS Research Ethics 
Review Board. Deidentified participant data and corre-
sponding documentation can be accessed publicly online 
via the following link: https://www.cdc.gov/nchs/surveys.
htm.

Study variables
The following covariates were demonstrated in previ-
ous studies to be associated with mortality risk among 
diabetic patients for our analyses: gender (male and 
female), age (continuous), race (Mexican American, 
Non-Hispanic white, Non-Hispanic black and Other), 
body mass index (BMI, kg/m2), education level (less than 
high school, high school or equivalent, greater than high 
school), physical activity (never, moderate, vigorous), PIR 
index (≤ 1, 1.01–4.99, ≥ 5), drinking status (yes or no), 

Fig. 1  Flowchart of our study. Data were required from National Health and Nutrition Examination Survey (NHANES) data and NCHS mortality data with 
the linkage of 31,717 individuals obtained. Participants were included based on age, presence of diabetes, and availability of biomarker data, resulting in 
a final sample size of 1,783 individuals. Survey strata, and primary sample units were applied in our analysis procedure whenever feasible
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self-reported history of CVD (yes or no), and chronic 
kidney disease (CKD) (yes or no). Physical activity is 
assessed by the number of moderate to high intensity 
activities (such as walking, jogging, running, swimming, 
cycling, dancing, or yard work) per week, while lack of 
physical activity is defined as never performing moderate 
or high-intensity activities. Categories of cotinine levels 
were (1) cotinine > 10 ng/mL, (2) limit of detection (LOD) 
-10 ng/mL, and (3) cotinine < LOD. Drinkers were defined 
as participants who drank at least 12 alcohol drinks in 
any given year. History of CVD in the NHANES was 
based on the self-reported data of a previous diagnosis of 
congestive heart failure, coronary heart disease, angina 
pectoris, heart attack, or stroke. The CKD Epidemiology 
Collaboration (CKD-EPI) equation was utilized to esti-
mate the eGFR. CKD was defined as an estimated glo-
merular filtration rate (eGFR) < 60mL/min/1.73 m2. eGFR 
was calculated using the CKD-EPI equation: eGFR = 141 
× min(Scr/κ, 1)α × max(Scr/κ, 1) − 1.209 × 0.993age × 
1.018 [if female] × 1.159 [if Black], where Scr represents 
serum creatinine, κ is 0.7 for females and 0.9 for males, α 
is -0.329 for females and − 0.411 for males, min indicates 
the minimum of Scr/κ or 1, and max indicates the maxi-
mum of Scr/κ or 1 [11].

Assessment of biochemistry indexes
Blood specimens were collected at the NHANES mobile 
examination centers (MECs). General information on 
specimen collection and quality control for labora-
tory data is available at http://www.cdc.gov/nchs/data/
NHANES/NHANES_03_04/lab_c_generaldoc.pdf. 
Dichromatic digital endpoint method was used to mea-
sure serum and urinary albumin, while serum creatinine 
was assayed with a Hitachi 917 multichannel analyzer 
during NHANES 1999–2000 and NHANES 2001–2004 
used the Jaffe rate method with the BeckmanSyn-
chronLX20 modular chemistry analyzer.

Ascertainment of death
The NDI provides a probabilistic score for each record 
that is matched by social security number, name, gender, 
race/nationality, date/state of birth, state of death, death 
certificate number, and date of death. The National Cen-
ter for Health Statistics maintains the death certificates 
of individuals who have passed away, and both partici-
pant deaths and the causes of death are routinely updated 
until December 31st, 2019. We used the International 
Classification of Diseases, Tenth Revision (ICD-10) to 
define the underlying causes of death. CVD mortality 
was categorized by the NCHS as deaths caused by heart 
disease (ICD-10 codes I00-I09, I11, I13, and I20-I51) or 
cerebrovascular disease (ICD-10 codes I60-I69), while 
cancer mortality was defined as deaths caused by malig-
nant neoplasms (ICD-10 codes C00-C97). This approach 

has been validated by the CDC and is commonly used in 
their reports. In our study, we considered all-cause mor-
tality as any type of death attributed to a specific cause.

Statistical analysis
In our analysis, conducted using R software version 4.0.4, 
we deemed statistical significance as a two-tailed p-value 
below 0.05. To address multiple testing, we applied false 
discovery rate (FDR) correction through the Fdr package. 
A corrected P value of less than 0.05 was considered sta-
tistically significant. In order to accommodate the com-
plex survey procedure and design of the NHANES, we 
utilized the survey package to estimate the variance.

Baseline characteristics: descriptive statistics were used 
to summarize the continuous variables, presented as 
means with standard deviations (SDs) or medians with 
quartiles (Qs). Categorical variables were presented as 
frequencies and percentages. ANOVA or Kruskal-Wallis 
tests were used to determine differences among groups 
for continuous variables, and chi-square tests were used 
for categorical variables.

Poisson distribution: poisson regression models were 
utilized to estimate mortality rates per 1000 person-years 
and the corresponding 95% confidence intervals (CIs) 
for each major cause of death within each layer of serum 
biomarkers.

Kaplan-meier survival analysis: in this study, we 
focused on specific causes of death, including all-cause 
mortality, CVD mortality and diabetes mortality. We 
chose the Kaplan-Meier (KM) method over the Fine-
Gray competing risks model as it was more suitable for 
this study. KM survival analysis was conducted to esti-
mate the survival rate across different serum biomarker 
groups, with differences compared using the log-rank 
test.

Cox proportional hazards regression analysis: cox 
proportional hazards regression models were used to 
calculate hazard ratios (HRs) and 95% CIs to evalu-
ate the association between serum biomarker levels and 
all-cause mortality, as well as CVD/all-cause/diabetes 
mortality, while controlling for potential confounders 
including gender, age, race, BMI, education, activity, PIR, 
cotinine, drinking, hypertension, hyperlipidemia, CVD, 
and CKD. We also employed cox proportional hazards 
models to compare two models based on akaike informa-
tion criterion (AIC) and bayesian information criterion 
(BIC) to evaluate the proportional hazards assumption.

Correlation heatmap: we used pearson’s correlation 
analysis to investigate the associations between potential 
biomarkers related to aging and constipation. Correlation 
coefficients (r) ranged from − 1.0 to 1.0, with 0 indicating 
no correlation. We presented the results using a cross-
correlation heatmap, where red indicated positive corre-
lations, and blue indicated negative correlations.

http://www.cdc.gov/nchs/data/NHANES/NHANES_03_04/lab_c_generaldoc.pdf
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Restricted cubic spline (RCS) analysis: RCS analysis 
was performed to examine the dose-response relation-
ship between biomarkers and possible mortality, adjust-
ing for potential confounders. The optimal knots were 
selected by AIC, BIC, Harrell’s C-index, categorical net 
reclassification improvement (NRI) for events, continu-
ous NRI for events and non-events, Smaller AIC and BIC 
values indicate a better the model fit. Harrell’s C-index 
measures the accuracy of the model’s prediction of the 
probability of event occurrence, with higher values indi-
cating higher predictive accuracy. The NRI measures 
the degree of improvement in patient classification pre-
diction by the model, including different types such as 
classification NRI, continuous NRI, event NRI, and non-
event NRI. When classification NRI and continuous 
NRI increased, indicating that additional indicators may 
better help the model classify patients. Integrated dis-
crimination improvement (IDI) is a metric for measuring 
the overall improvement of the model after adding new 
indicators, with larger values indicating greater overall 
improvement.

Results
Participant characteristics
This cohort study comprised 1,783 adults aged 18 years 
and older, including 929 males (52.10%), with a mean 
(SD) age of 62.49 (14.21) years; 499 participants (27.99%) 
were of Mexican American ethnicity, and 714 (40.04%) 
had non-Hispanic White ancestry (Table 1). The majority 
of the participants reported never engaging in physical 
activity (59.82%), with a slightly higher proportion of par-
ticipants reporting vigorous activity than moderate activ-
ity. The duration of diabetes was < 3 years for 41.44% of 
the participants, 3–10 years for 28.24%, and > 10 years for 
30.32%. The majority of participants used oral diabetes 
medication only (45.63%), with 18.58% using any insu-
lin. Most participants had hypertension (71.83%), and 
more than half had hypercholesterolemia (53.29%). CVD 
event was present in 27.89% of participants. The medi-
ans of eGFR, CRP and hs-cTnT level were 83.32 (IQR, 
63.08–97.41) mL/min per 1.73 m2, 3.60 (IQR, 1.60–7.60) 
mg/L and 9.92 (IQR, 6.12–16.62) ng/L, respectively, with 
no significant difference between the three time periods. 
Levels of cardiac biomarkers (hs-cTnT and hs-cTnI) and 
heart failure marker (NT-proBNP), which may indicate 
a higher risk of myocardial injury and heart failure in 
later stages. Levels of blood glucose and HbA1c gradually 
decreased during the study period, which may indicate 
an improvement in diabetes management, while the level 
of glycated albumin did not show significant changes. 
The levels of insulin and C-peptide and renal function 
marker (β-2 microglobulin) differed between groups in 
different years, but overall trends did not show obvious 
changes (P > 0.05).

Correlation analysis of serum biomarkers
Supplement Fig.  1 illustrates a heat map that depicts 
the intricate correlation patterns observed among hs-
cTnT, hs-cTnI, NT-proBNP, creatinine, cystatin C, and 
β-2 microglobulin in the diabetic population. The cor-
relation estimates ranged from near 0 to strong positive 
correlations (0.81). These correlations may be attributed 
to shared physiological pathways or underlying disease 
mechanisms related to diabetes. Moreover, common con-
founding factors such as age, gender, and co-morbidities 
could also contribute to these correlations. Overall, this 
heat map provides valuable insights into the interplay 
among various biomarkers in diabetic individuals.

All-cause and cause-specific mortality
Next, we investigated the association between higher lev-
els of cardiac and renal biomarkers and the risk of death 
during the 7.43 years follow-up among diabetes (Supple-
ment Table  1). For instance, when the hs-cTnT level is 
less than 6.11 ng/L, the CVD mortality rate is 0.5%, 1.8%, 
3.7%, and 7.1% at 5, 10, 15, and 20 years, respectively. 
However, when the hs-cTnT level is greater than 16.67 
ng/L, the CVD mortality rate sharply increases to 17.0%, 
31%, 48%, and 61.6% at the same time points. Similarly, 
the levels of other biomarkers are also positively corre-
lated with the mortality rate. For example, when the NT-
proBNP level is greater than 232.60 pg/mL, the all-cause 
mortality rate is 36.3%, 64.4%, 82.8%, and 95.5%.

There is also a positive correlation between high lev-
els of creatinine, cystatin C, and β-2 microglobulin and 
higher rates of all-cause and cause-specific mortality. 
For diabetes individuals with a cystatin C level of less 
than 0.72  mg/L, the CVD mortality rate is 0.7% at 5 
years, 3.9% at 10 years, 5.9% at 15 years, and 9.9% at 20 
years. Furthermore, 108 participants with creatinine lev-
els ≥ 97.24 μmol/L died, while only 16.5 participants with 
creatinine levels < 66.72 μmol/L died. The group with the 
lowest level of β-2 microglobulin levels exhibited a CVD 
mortality rate of 1.8 per 1000 person-years, whereas the 
group with the highest β-2 microglobulin levels experi-
enced a significantly elevated mortality rate of 16.1 per 
1000 person-years.

Notably, the table shows that as the biomarker levels 
increase, the cumulative diabetic death rate and deaths 
per 1000 person-years also increase for hs-cTnI, NT-
proBNP, creatinine, cystatin C, and β-2 microglobulin. 
Additionally, for hs-cTnT levels less than 6.11 ng/L, the 
cumulative diabetes death rate is 0% at 5 years, 0.8% at 10 
years, 2.5% at 15 years, and 4.4% at 20 years, with diabetic 
deaths per 1000 person-years of 41.0 (31.4–49.2).
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Table 1  Baseline characteristics of subjects with diabetes among the study cohort (1999–2004)
Total 1999–2000 2001–2002 2003–2004

Participants, No 1783 543 613 627
Age, years 62.49 ± 14.21 62.89 ± 13.02 61.58 ± 14.93 63.02 ± 14.43
Male (%) 929 (52.10) 278 (51.20) 325 (53.02) 326 (51.99)
BMI, kg/m2 31.24 ± 6.81 31.12 ± 6.72 31.46 ± 6.99 31.14 ± 6.70
Race/ethnicity
Mexican American 499 (27.99) 174 (32.04) 152 (24.80) 173 (27.59)
Other 158 (8.86) 59 (10.87) 53 (8.65) 46 (7.34)
Non-Hispanic white 714 (40.04) 175 (32.23) 258 (42.09) 281 (44.82)
Non-Hispanic black 412 (23.11) 135 (24.86) 150 (24.47) 127 (20.26)
Education levels
Less than high school 867 (48.74) 326 (60.26) 275 (44.93) 266 (42.49)
High school or equivalent 362 (20.35) 101 (18.67) 127 (20.75) 134 (21.41)
Greater than high school 550 (30.92) 114 (21.07) 210 (34.31) 226 (36.10)
Physical activity
Never 1066 (59.82) 346 (63.72) 362 (59.05) 358 (57.19)
Moderate 356 (19.98) 94 (17.31) 112 (18.27) 150 (23.96)
Vigorous 360 (20.20) 103 (18.97) 139 (22.68) 118 (18.85)
Serum cotinine
> 10 ng/mL 378 (21.80) 106 (20.50) 127 (21.24) 145 (23.42)
LOD − 10 ng/mL 1116 (64.36) 411 (79.50) 345 (57.69) 360 (58.16)
< LOD 240 (13.84) 0 (0.00) 126 (21.07) 114 (18.42)
Drinking status 989 (59.22) 292 (57.37) 332 (57.84) 365 (62.18)
PIR
≤ 1 387 (23.99) 132 (28.57) 118 (20.96) 137 (23.30)
1.01–4.99 1046 (64.85) 297 (64.29) 371 (65.90) 378 (64.29)
≥ 5 180 (11.16) 33 (7.14) 74 (13.14) 73 (12.41)
Duration of diabetes, y
< 3 738 (41.44) 224 (41.40) 270 (44.05) 244 (38.92)
3–10 503 (28.24) 145 (26.80) 171 (27.90) 187 (29.82)
> 10 540 (30.32) 172 (31.79) 172 (28.06) 196 (31.26)
Diabetes medication
No 203 (11.53) 58 (10.68) 75 (12.23) 70 (11.59)
Oral medication only 803 (45.63) 246 (45.30) 260 (42.41) 297 (49.17)
Any insulin use 327 (18.58) 102 (18.78) 110 (17.94) 115 (19.04)
Others 427 (24.26) 137 (25.23) 168 (27.41) 122 (20.20)
Hypertension 1280 (71.83) 387 (71.27) 435 (70.96) 458 (73.16)
Hypercholesterolemia 947 (53.29) 269 (49.63) 306 (50.33) 372 (59.33)
CVD 488 (27.89) 143 (26.68) 149 (25.08) 196 (31.61)
eGFR, mL/min per 1.73 m2 83.32 (63.08–97.41) 83.47 (64.35–97.24) 84.95 (64.36–99.86) 82.60 (61.33–95.81)
CRP, mg/L 3.60 (1.60–7.60) 3.80 (1.80–8.50) 3.60 (1.60–7.40) 3.30 (1.50–7.30)
hs-cTnT, ng/L 9.92 (6.12–16.62) 9.12 (5.34–15.87) 9.39 (6.03–16.32) 11.05 (7.07–18.20)
hs-cTnI, ng/L 3.10 (1.80–6.10) 3.10 (1.80–6.70) 3.00 (1.70–5.90) 3.20 (1.90–5.90)
NT-proBNP, pg/ml 82.48 (35.82–232.50) 81.35 (38.35–214.50) 76.06 (29.71–223.60) 93.79 

(37.73–259.00)
Creatinine, umol/L 79.56 (66.72–97.24) 75.68 (66.72–93.59) 79.56 (61.88–97.24) 79.56 (70.72–97.24)
Cystatin C, mg/L 0.85 (0.72–1.05) 0.85 (0.73–1.03) 0.86 (0.72–1.06) 0.84 (0.72–1.06)
β-2 microglobulin, mg/L 2.23 (1.86–2.91) 2.17 (1.82–2.81) 2.25 (1.85–2.91) 2.28 (1.87–3.07)
Plasma glucose, mg/dL 144.30 (124.80-187.20) 152.30 (129.30-200.50) 137.90 (123.50-179.80) 143.50 

(121.20-186.90)
HbA1c, % 7.00 (6.20–8.20) 7.40 (6.40–8.80) 6.80 (6.10–8.10) 6.90 (6.10–7.90)
Glycated albumin, % 17.54 (15.10-22.03) 18.80 (15.58–23.05) 17.31 (15.00-21.28) 17.20 (14.95–21.24)
Insulin, uU/mL 16.63 (9.51–29.22) 19.96 (12.14–30.31) 17.57 (10.64–31.76) 14.00 (7.37–25.16)
C-peptide, nmol/L 1.10 (0.78–1.47) 1.17 (0.84–1.61) 1.04 (0.73–1.38) 1.11 (0.80–1.49)
BMI: body mass index; PIR: poverty-income ratio; CVD: cardiovascular disease; CRP: C-reactive protein; eGFR: estimated glomerular filtration rate; hs-cTnT: high-
sensitivity Troponin T; hs-cTnI: high-sensitivity Troponin I; NT-proBNP,:N-terminal pro-B-type natriuretic peptide
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Associations of biomarkers with mortality risk in diabetic 
patients
Specifically, hs-cTnT showed significant nonlinear asso-
ciations with all-cause mortality (P-nonlinearity = 0.02, 
Fig.  2A) and CVD mortality risk (P-nonlinearity = 0.03, 
Fig.  3A), while cystatin C, β-2 microglobulin dem-
onstrated significant nonlinear associations with all-
cause mortality (P-nonlinearity < 0.001, Fig.  2E&F) and 
CVD mortality risk (P-nonlinearity = 0.011, Fig.  3F), 
respectively. Plasma glucose also exhibited a significant 
nonlinear association with all-cause mortality (P-nonlin-
earity = 0.001, Fig. 2G) and CVD mortality risk (P-nonlin-
earity = 0.021, Fig. 3G).

Furthermore, hs-cTnT, creatinine, cystatin C, and β-2 
microglobulin showed significant nonlinear associations 

with diabetic mortality risk in the same cohort (P-non-
linearity = 0.017, Fig.  4A; P-nonlinearity = 0.019, Fig.  4D; 
P-nonlinearity = 0.001, Fig. 4E; and P-nonlinearity = 0.002, 
Fig.  4F, respectively). However, no significant nonlin-
ear association was observed between plasma glucose 
(P-nonlinearity = 0.112, Fig.  4G), HbA1c (P-nonlinear-
ity = 0.418, Fig.  4H), and glycated albumin (P-nonlinear-
ity = 0.35, Fig. 4I) and diabetic mortality risk in the same 
cohort.

Therefore, these findings indicate that the chosen bio-
markers, such as hs-cTnT, hs-cTnI, NT-proBNP, cre-
atinine, cystatin C, and β-2 microglobulin, may possess 
superior predictive value for mortality risk in diabetic 
patients when contrasted with glycemic control.

Fig. 2  The nonlinear associations between cardio-renal and plasma glucose biomarkers with all-cause mortality in a diabetic population. The restricted 
cubic spline for the association between serum ln(hs-cTNT) (A), ln(hs-cTNI) (B), ln(NT-proBNP) (C), ln(Creatine) (D), ln(Cystatin C) (E), ln(β-2 microglobulin) 
(F), ln(plasma glucose) (G), ln(HbA1c) (H), ln(Glycated albumin) (I) and risk of all-cause mortality among adults with diabetes. Knots were placed at the 
5th, 25th, 50th, and 75th percentiles of the serum biomarkers distribution. Adjustment factors were age, gender, education, marital status, race, the ratio 
of family income to poverty, BMI, drinking, smoking, physical activity. HR, hazard ratio; LL, lower limit; UL, upper limit
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Cox regression analysis on mortality
Table 2 presents the results of cox analysis to determine 
the relationship between serum biomarker levels and 
mortality rate, categorized by quartiles. For diabetes 
mortality, the probability of hs-cTnT, creatinine, and cys-
tain C in the highest quartiles compared to the reference 
group were 6.32 times (95% CI: 3.09–17.35), 4.16 times 
(95% CI: 1.87–14.22), and 9.06 times (95% CI: 4.20-24.13) 
higher, respectively. However, for diabetes mortality, 
the conventional blood glucose monitoring indicators 
such as blood glucose levels, HbA1c, or glycated albu-
min showed only a modest increase in probability in the 
highest quartiles compared to the reference group, with 
a respective increase of 1.54 times (95% CI: 0.99–6.53), 
2.19 times (95% CI: 1.65–6.19), and 5.36 times (95% CI: 
2.62–15.47). This suggests that cardiac-renal biomarkers 

may be more sensitive in predicting mortality, particu-
larly diabetes-related mortality.

AIC, BIC, NRI and IDI for the combined assessment of 
biomarkers in predicting all-cause mortality
In Model 2, the incorporation of hs-cTnT, creatinine, 
cystatin C, and β-2 microglobulin yielded continuous 
NRI values of 0.564 (95% CI: 0.400-0.669), 0.188 (95% 
CI: 0.028–0.320), 0.357 (95% CI: 0.209–0.529), and 0.413 
(95% CI: 0.261–0.559), respectively. The IDI values for 
these additions were 0.043 (95% CI: 0.024–0.058), 0.010 
(95% CI: -0.001-0.021), 0.026 (95% CI: 0.006–0.038), and 
0.031 (95% CI: 0.007–0.046), respectively. Conversely, 
when including blood glucose monitoring indicators in 
Model 2, the continuous NRI values were 0.107 (-0.057-
0.330), 0.028 (-0.008-0.085), and 0.207 (-0.003-0.335), 

Fig. 3  The nonlinear associations between cardio-renal and plasma glucose biomarkers with CVD mortality in a diabetic population. The restricted cubic 
spline for the association between serum ln(hs-cTNT) (A), ln(hs-cTNI) (B), ln(NT-proBNP) (C), ln(Creatine) (D), ln(Cystatin C) (E), ln(β-2 microglobulin) (F), 
ln(plasma glucose) (G), ln(HbA1c) (H), ln(Glycated albumin) (I) and risk of CVD mortality among adults with diabetes. Knots were placed at the 5th, 25th, 
50th, and 75th percentiles of the serum biomarkers distribution. Adjustment factors were age, gender, education, marital status, race, the ratio of family 
income to poverty, BMI, drinking, smoking, physical activity. HR, hazard ratio; LL, lower limit; UL, upper limit
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with corresponding IDI values of 0.002 (-0.006-0.017), 
0.004 (-0.003-0.012), and 0.007 (-0.001-0.016).These 
results suggest that augmenting the model with cardio-
vascular and renal biomarkers from blood outperforms 
blood glucose monitoring indicators in predictive perfor-
mance (Table 3). Similar results were observed for event 
NRI and non-event NRI. Importantly, when simultane-
ously introducing plasma hs-cTnT, NT-proBNP, creati-
nine, β-2 microglobulin, and glycated hemoglobin into 
Model 2, the IDI increased to 0.066. Compared to Model 
1, Model 2 exhibited reduced AIC and BIC values, indi-
cating that the inclusion of plasma hs-cTnT, NT-proBNP, 
creatinine, β-2 microglobulin, and glycated hemoglobin 
contributed to a better-fitting model.

Discussion
The prevalence of type 2 diabetes and the burden of its 
complications are progressively escalating. Early diagno-
sis and management of diabetes are crucial to prevent 
the development of long-term complications such as 
cardiovascular disease, kidney failure, and nerve dam-
age [12]. Diabetic patients are at a higher and earlier risk 
of developing CVD, with a 2–4 times increased risk of 
mortality compared to non-diabetic patients [13]. Blood 
glucose, HbA1c, and glycated albumin are commonly 
used indicators for diagnosing diabetes or monitoring 
blood glucose control [14]. However, each indicator has 
limitations [15]. Blood glucose levels can be influenced 
by many factors, making a single measurement of blood 
glucose inaccurate. Additionally, some individuals may 

Fig. 4  The nonlinear associations between cardio-renal and plasma glucose biomarkers with diabetic mortality in a diabetic population. The nonlinear 
associations between cardio-renal and plasma glucose biomarkers with diabetic mortality in a diabetic population. The restricted cubic spline for the 
association between serum ln(hs-cTNT) (A), ln(hs-cTNI) (B), ln(NT-proBNP) (C), ln(Creatine) (D), ln(Cystatin C) (E), ln(β-2 microglobulin) (F), ln(plasma glu-
cose) (G), ln(HbA1c) (H), ln(Glycated albumin) (I) and risk of diabetic mortality among adults with diabetes. Knots were placed at the 5th, 25th, 50th, and 
75th percentiles of the serum biomarkers distribution. Adjustment factors were age, gender, education, marital status, race, the ratio of family income to 
poverty, BMI, drinking, smoking, physical activity. HR, hazard ratio; LL, lower limit; UL, upper limit
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All-cause mortality CVD mortality Diabetes mortality
Unadjusted Model 1 Model 2 Unadjusted Model 1 Model 2 Unadjusted Model 1 Model 2

Variable HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% 
CI)

hs-cTnT, ng/L
< 6.11 1 1 1 1 1 1 1 1 1
6.11-< 9.92 2.40 

(1.88–3.07)
1.43 
(1.10–1.86)

1.33 
(1.00-1.76)

2.65 
(1.56–4.50)

1.57 
(0.91–2.73)

1.42 
(0.79–2.58)

2.05 
(0.98–4.32)

1.78 
(0.82–3.88)

1.74 
(0.76–3.97)

9.92-< 16.67 4.77 
(3.77–6.03)

2.20 
(1.69–2.86)

2.00 
(1.50–2.65)

6.13 
(3.74–10.06)

2.65 
(1.54–4.56)

2.26 
(1.26–4.03)

4.71 
(2.37–9.35)

3.95 
(1.85–8.44)

3.11 
(1.35–7.14)

≥ 16.67 9.44 
(7.50-11.88)

3.68 
(2.80–4.84)

3.40 
(2.52–4.60)

16.44 
(10.21–26.48)

6.24 
(3.61–10.81)

5.59 
(3.08–10.15)

11.28 
(5.82–21.86)

8.70 
(4.00-18.91)

7.32 
(3.09–17.35)

P trend < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
ln(hs-cTnT), ng/L 2.29 

(2.14–2.45)
1.86 
(1.69–2.04)

1.81 
(1.62–2.03)

2.55 
(2.27–2.87)

2.17 
(1.85–2.56)

2.07 
(1.69–2.54)

2.48 
(2.06–2.99)

2.33 
(1.84–2.94)

2.31 
(1.71–3.12)

hs-cTnI, ng/L
< 1.80 1 1 1 1 1 1 1 1 1
1.80-< 3.10 2.06 

(1.64–2.58)
1.25 
(0.99–1.58)

1.15 
(0.90–1.48)

2.87 
(1.72–4.77)

1.69 
(1.01–2.84)

1.42 
(0.83–2.43)

2.58 
(1.37–4.88)

1.88 
(0.98–3.62)

1.94 
(0.94–3.99)

3.10-< 6.10 3.59 
(2.90–4.46)

1.76 
(1.39–2.23)

1.62 
(1.25–2.10)

5.75 
(3.55–9.32)

2.60 
(1.56–4.34)

2.07 
(1.20–3.55)

3.59 
(1.91–6.75)

2.33 
(1.19–4.55)

2.20 
(1.02–4.76)

≥ 6.10 5.81 
(4.70–7.18)

2.41 
(1.89–3.06)

1.96 
(1.50–2.56)

12.06 
(7.57–19.22)

4.57 
(2.74–7.61)

2.81 
(1.63–4.86)

5.34 
(2.86–9.97)

2.97 
(1.48–5.96)

2.53 
(1.14–5.61)

P trend < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.002 0.036
ln(hs-cTnI), ng/L 1.74 

(1.65–1.84)
1.41 
(1.31–1.52)

1.34 
(1.23–1.46)

1.99 
(1.82–2.19)

1.67 
(1.48–1.89)

1.52 
(1.30–1.77)

1.73 
(1.47–2.03)

1.47 
(1.20–1.80)

1.35 
(1.06–1.72)

NT-proBNP, pg/
ml
< 35.77 1 1 1 1 1 1 1 1 1
35.77-< 82.82 1.75 

(1.38–2.21)
1.28 
(1.00-1.63)

1.20 
(0.93–1.57)

2.24 
(1.37–3.66)

1.71 
(1.03–2.82)

1.54 
(0.90–2.63)

1.72 
(0.85–3.45)

1.33 
(0.65–2.73)

1.23 
(0.55–2.73)

82.82-< 232.60 3.44 
(2.76–4.27)

1.88 
(1.48–2.40)

1.73 
(1.34–2.25)

3.96 
(2.48–6.32)

2.37 
(1.43–3.93)

2.15 
(1.27–3.66)

3.85 
(2.03–7.29)

2.38 
(1.19–4.77)

2.39 
(1.11–5.12)

≥ 232.60 7.18 
(5.80–8.88)

2.98 
(2.33–3.82)

2.46 
(1.87–3.23)

12.87 
(8.29–19.98)

5.89 
(3.59–9.66)

3.93 
(2.29–6.75)

7.96 
(4.26–14.88)

4.09 
(2.01–8.32)

3.67 
(1.64–8.22)

P trend < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
ln(NT-proBNP), 
pg/ml

1.62 
(1.56–1.69)

1.37 
(1.30–1.44)

1.31 
(1.23–1.39)

1.79 
(1.67–1.91)

1.57 
(1.43–1.71)

1.42 
(1.28–1.59)

1.63 
(1.45–1.83)

1.41 
(1.22–1.63)

1.36 
(1.15–1.63)

Creatinine, 
umol/L
< 66.72 1 1 1 1 1 1 1 1 1
66.72-< 79.56 1.35 

(1.11–1.63)
0.97 
(0.79–1.19)

0.99 
(0.79–1.24)

1.59 
(1.11–2.28)

0.96 
(0.65–1.42)

1.01 
(0.66–1.54)

1.74 
(0.96–3.15)

1.83 
(0.98–3.43)

1.87 
(0.94–3.74)

79.56-< 97.24 1.90 
(1.59–2.28)

1.14 
(0.93–1.41)

1.18 
(0.92–1.51)

2.29 
(1.63–3.23)

1.06 
(0.71–1.57)

1.03 
(0.65–1.63)

2.54 
(1.44–4.46)

2.79 
(1.49–5.24)

3.00 
(1.41–6.40)

≥ 97.24 3.45 
(2.89–4.12)

1.55 
(1.25–1.94)

1.47 
(1.04–2.09)

3.69 
(2.62–5.21)

1.31 
(0.86-2.00)

1.05 
(0.55–2.03)

5.27 
(3.06–9.08)

4.59 
(2.40–8.77)

5.16 
(1.87–14.22)

P trend < 0.001 < 0.001 0.038 < 0.001 0.132 0.870 < 0.001 < 0.001 0.001
ln(Creatinine), 
umol/L

2.76 
(2.45–3.10)

1.95 
(1.65–2.30)

1.76 
(1.38–2.24)

2.83 
(2.29–3.50)

1.90 
(1.37–2.62)

1.49 
(0.92–2.41)

3.59 
(2.69–4.80)

3.40 
(2.41–4.80)

3.43 
(2.04–5.79)

Cystatin C, mg/L
< 0.72 1 1 1 1 1 1 1 1 1
0.72-< 0.85 2.33 

(1.84–2.97)
1.62 
(1.26–2.08)

1.68 
(1.28–2.21)

2.23 
(1.42–3.48)

1.43 
(0.90–2.28)

1.56 
(0.94–2.59)

2.32 
(1.13–4.79)

2.20 
(1.02–4.71)

1.90 
(0.83–4.36)

0.85-< 1.05 3.65 
(2.90–4.59)

1.81 
(1.41–2.33)

1.92 
(1.46–2.53)

3.48 
(2.26–5.34)

1.47 
(0.92–2.36)

1.68 
(1.00-2.81)

3.22 
(1.59–6.53)

2.55 
(1.17–5.55)

2.61 
(1.13-6.00)

Table 2  Association of Bio-markers Levels With All-Cause and Cause-Specific Mortality
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All-cause mortality CVD mortality Diabetes mortality
Unadjusted Model 1 Model 2 Unadjusted Model 1 Model 2 Unadjusted Model 1 Model 2

Variable HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% 
CI)

≥ 1.05 8.45 
(6.75–10.58)

3.36 
(2.59–4.36)

3.54 
(2.59–4.84)

9.02 
(5.96–13.64)

3.25 
(2.01–5.25)

3.26 
(1.83–5.82)

11.82 
(6.13–22.79)

8.15 
(3.80-17.51)

10.06 
(4.20-24.13)

P trend < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
ln(Cystatin C), 
mg/L

4.04 
(3.59–4.55)

2.66 
(2.26–3.14)

2.64 
(2.11–3.31)

4.24 
(3.43–5.25)

2.99 
(2.22–4.02)

2.67 
(1.74–4.08)

4.97 
(3.65–6.77)

3.98 
(2.72–5.82)

4.03 
(2.33–6.97)

β-2 microglobu-
lin, mg/L
< 1.86 1 1 1 1 1 1 1 1 1
1.86-< 2.23 2.09 

(1.65–2.65)
1.36 
(1.06–1.74)

1.45 
(1.10–1.90)

1.85 
(1.19–2.86)

1.17 
(0.74–1.86)

1.41 
(0.85–2.35)

2.94 
(1.35–6.38)

2.73 
(1.20–6.23)

2.53 
(1.03–6.21)

2.23-< 2.92 3.69 
(2.95–4.61)

1.97 
(1.55–2.51)

2.13 
(1.63–2.77)

3.39 
(2.25–5.09)

1.72 
(1.10–2.68)

2.20 
(1.35–3.59)

4.65 
(2.20–9.84)

3.90 
(1.72–8.87)

3.98 
(1.64–9.64)

≥ 2.92 7.75 
(6.23–9.64)

3.18 
(2.48–4.07)

3.63 
(2.69–4.89)

7.65 
(5.16–11.36)

3.09 
(1.97–4.86)

3.42 
(1.97–5.93)

14.01 
(6.86–28.61)

9.68 
(4.27–21.92)

12.84 
(5.04–32.70)

P trend < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
ln(β-2 microglob-
ulin), mg/L

3.37 
(3.04–3.73)

2.40 
(2.09–2.75)

2.43 
(2.01–2.94)

3.33 
(2.76–4.03)

2.51 
(1.94–3.23)

2.14 
(1.48–3.10)

4.12 
(3.18–5.36)

3.33 
(2.41–4.62)

3.60 
(2.26–5.72)

Plasma glucose, 
mg/dL
< 124.70 1 1 1 1 1 1 1 1 1
124.70-< 144.30 0.93 

(0.72–1.21)
0.94 
(0.72–1.23)

0.99 
(0.73–1.35)

0.98 
(0.59–1.64)

1.01 
(0.60–1.73)

1.33 
(0.73–2.46)

0.67 
(0.27–1.66)

0.65 
(0.25–1.70)

0.63 
(0.19–2.06)

144.30-< 188.00 1.13 
(0.88–1.46)

1.15 
(0.88–1.49)

1.18 
(0.88–1.57)

1.57 
(0.98–2.52)

1.60 
(0.98–2.62)

1.93 
(1.12–3.33)

1.64 
(0.77–3.47)

1.93 
(0.89–4.22)

1.66 
(0.64–4.29)

≥ 188.00 1.24 
(0.97–1.59)

1.56 
(1.20–2.02)

1.67 
(1.25–2.25)

1.86 
(1.17–2.95)

2.45 
(1.51–3.98)

3.33 
(1.91–5.81)

1.63 
(0.76–3.47)

2.12 
(0.96–4.67)

2.54 
(0.99–6.53)

P trend 0.033 < 0.001 < 0.001 0.001 < 0.001 < 0.001 0.056 0.009 0.011
ln(Plasma glu-
cose), mmol/L

1.15 
(0.91–1.46)

1.58 
(1.21–2.05)

1.55 
(1.15–2.08)

1.73 
(1.15–2.60)

2.55 
(1.61–4.05)

3.01 
(1.80–5.03)

1.91 
(0.97–3.75)

2.88 
(1.37–6.07)

4.51 
(1.84–11.08)

HbA1c, %
< 6.20 1 1 1 1 1 1 1 1 1
6.20-< 7.00 0.92 

(0.78–1.09)
0.89 
(0.75–1.06)

0.93 
(0.76–1.12)

1.10 
(0.81–1.50)

1.11 
(0.80–1.54)

1.09 
(0.76–1.57)

1.29 
(0.73–2.29)

1.22 
(0.67–2.21)

1.41 
(0.72–2.78)

7.00-< 8.20 0.93 
(0.78–1.11)

1.08 
(0.90–1.30)

1.05 
(0.86–1.28)

1.02 
(0.74–1.41)

1.29 
(0.91–1.81)

1.21 
(0.83–1.77)

1.94 
(1.12–3.34)

2.19 
(1.25–3.85)

2.29 
(1.19–4.40)

≥ 8.20 0.83 
(0.69–0.99)

1.28 
(1.06–1.55)

1.35 
(1.10–1.67)

0.93 
(0.67–1.29)

1.51 
(1.05–2.16)

1.47 
(0.98–2.20)

1.89 
(1.10–3.24)

2.90 
(1.65–5.12)

3.19 
(1.65–6.19)

P trend 0.047 0.003 0.004 0.557 0.017 0.056 0.007 < 0.001 < 0.001
ln(HbA1c), % 0.73 

(0.56–0.97)
1.79 
(1.31–2.44)

1.97 
(1.39–2.79)

0.93 
(0.56–1.53)

2.52 
(1.43–4.44)

2.49 
(1.31–4.73)

2.55 
(1.25–5.19)

6.55 
(2.99–14.38)

8.50 
(3.43–21.06)

Glycated albu-
min, %
< 15.09 1 1 1 1 1 1 1 1 1
15.09-< 17.54 1.27 

(1.05–1.53)
0.94 
(0.77–1.14)

0.91 
(0.73–1.13)

1.41 
(1.00-1.99)

0.97 
(0.68–1.39)

0.95 
(0.64–1.39)

3.78 
(1.63–8.74)

3.56 
(1.45–8.72)

2.78 
(1.11–6.99)

17.54-< 22.10 1.34 
(1.11–1.61)

1.13 
(0.93–1.38)

1.06 
(0.85–1.31)

1.29 
(0.91–1.84)

1.03 
(0.71–1.49)

0.85 
(0.57–1.28)

5.98 
(2.67–13.40)

6.44 
(2.70-15.37)

4.97 
(2.05–12.04)

≥ 22.10 1.28 
(1.06–1.55)

1.41 
(1.15–1.73)

1.43 
(1.15–1.79)

1.38 
(0.97–1.95)

1.50 
(1.03–2.19)

1.44 
(0.96–2.16)

6.67 
(3.00-14.86)

8.76 
(3.67–20.94)

6.36 
(2.62–15.47)

Table 2  (continued) 
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Table 3  Comparison of Model Performance in Predicting All-Cause Mortality
Model AIC BIC Harrell’s 

C-index
Categorical NRI Continuous NRI event NRI nonevent NRI IDI

Model 1 12620.09 12652.7 0.726 
(0.71,0.742)

- - - - -

Model 1 + hs-cTnT 11107.78 11145.1 0.757 
(0.741,0.773)

0.135 
(0.072–0.205)

0.490 
(0.338–0.616)

0.123 
(0.032–0.198)

0.368 
(0.282–0.456)

0.050 
(0.030–0.064)

Model 1 + hs-cTnI 11163.33 11200.68 0.747 
(0.731,0.763)

0.069 
(0.016–0.133)

0.355 
(0.271–0.488)

0.092 
(0.019–0.170)

0.263 
(0.198–0.353)

0.028 
(0.014–0.044)

Model 
1 + NT-proBNP

11165.26 11202.59 0.754 
(0.738,0.771)

0.135 
(0.082–0.194)

0.377 
(0.265–0.519)

0.150 
(0.053–0.232)

0.227 
(0.172–0.317)

0.050 
(0.025–0.071)

Model 
1 + Creatinine

12193.66 12231.53 0.737 
(0.721,0.753)

0.050 
(-0.007-0.083)

0.191 
(0.037–0.324)

-0.053 
(-0.126-0.016)

0.243 
(0.145–0.342)

0.020 
(0.005–0.032)

Model 1 + Cys-
tatin C

11209.89 11247.27 0.751 
(0.735,0.767)

0.086 
(0.010–0.146)

0.356 
(0.194–0.519)

0.050 
(-0.053-0.122)

0.306 
(0.202–0.445)

0.040 
(0.021–0.054)

Model 1 + β-2 
microglobulin

11165.04 11202.4 0.754 
(0.737,0.77)

0.106 
(0.052–0.190)

0.425 
(0.295–0.549)

0.052 
(-0.026-0.140)

0.373 
(0.268–0.477)

0.045 
(0.021–0.061)

Model 1 + Plasma 
glucose

5651.761 5684.978 0.728 
(0.706,0.75)

0.061 
(-0.044-0.088)

0.110 
(-0.038-0.282)

-0.103 
(-0.221-0.000)

0.213 
(0.129–0.303)

0.001 
(-0.007-0.013)

Model 1 + HbA1c 12609.06 12647.11 0.729 
(0.713,0.744)

0.053 
(-0.028-0.066)

0.123 
(0.010–0.277)

-0.087 
(-0.165-0.010)

0.210 
(0.156–0.288)

0.003 
(-0.002-0.009)

Model 1 + Glycated 
albumin

8747.793 8850.299 0.734 
(0.718,0.751)

0.026 
(-0.004-0.072)

0.214 
(0.094–0.324)

0.000 
(-0.084-0.067)

0.214 
(0.140–0.292)

0.006 
(-0.001-0.014)

Model 2 10125.14 10224.76 - - - - -
Model 2 + hs-cTnT 9249.943 9353.346 0.746 

(0.729,0.763)
0.106 
(0.059–0.190)

0.564 
(0.400-0.669)

0.175 
(0.063–0.225)

0.390 
(0.298–0.474)

0.043 
(0.024–0.058)

Model 2 + hs-cTnI 9302.74 9406.189 0.765 
(0.748,0.782)

0.046 
(-0.005-0.096)

0.295 
(0.148–0.437)

0.039 
(-0.061-0.112)

0.256 
(0.162–0.383)

0.019 
(0.008–0.031)

Model 
2 + NT-proBNP

9307.591 9411.009 0.757 
(0.74,0.775)

0.086 
(0.031–0.145)

0.381 
(0.236–0.513)

0.158 
(0.072–0.242)

0.222 
(0.141–0.313)

0.032 
(0.014–0.050)

Model 
2 + Creatinine

10108.76 10213.63 0.76 
(0.743,0.777)

0.032 
(-0.012-0.070)

0.188 
(0.028–0.320)

-0.005 
(-0.086-0.065)

0.192 
(0.089–0.285)

0.010 
(-0.001-0.021)

Model 2 + Cys-
tatin C

9347.044 9450.569 0.75 
(0.732,0.767)

0.073 
(0.013–0.149)

0.357 
(0.209–0.529)

0.022 
(-0.060-0.132)

0.335 
(0.197–0.436)

0.026 
(0.006–0.038)

Model 2 + β-2 
microglobulin

9307.106 9410.585 0.76 
(0.743,0.777)

0.107 
(0.023–0.143)

0.413 
(0.261–0.559)

0.053 
(-0.034-0.149)

0.360 
(0.271–0.485)

0.031 
(0.007–0.046)

Model 2 + Plasma 
glucose

4574.251 4665.387 0.762 
(0.745,0.78)

0.009 
(-0.034-0.084)

0.107 
(-0.057-0.330)

-0.080 
(-0.163-0.079)

0.188 
(0.054-0.300)

0.002 
(-0.006-0.017)

Model 2 + HbA1c 10113.25 10218.12 0.758 
(0.740–0.775)

0.014 
(-0.014-0.062)

0.028 
(-0.008-0.085)

0.021 
(-0.022-0.063)

0.007 
(-0.006-0.027)

0.004 
(-0.003-0.012)

Model 2 + Glycated 
albumin

8697.23 8799.687 0.760 
(0.742–0.777)

0.231 
(0.088–0.346)

0.207 
(-0.003-0.335)

0.000 
(-0.140-0.071)

0.207 
(0.118–0.303)

0.007 
(-0.001-0.016)

Hs-cTnT: high-sensitivity Troponin T; hs-cTnI: high-sensitivity Troponin I; NT-proBNP: N-terminal pro-B-type natriuretic peptid

Model 1: gender, age, race, BMI.

Model 2: gender, age, race, BMI, education, activity, PIR, cotinine, drinking, hypertension, hyperlipidemia, CVD, CKD.

All-cause mortality CVD mortality Diabetes mortality
Unadjusted Model 1 Model 2 Unadjusted Model 1 Model 2 Unadjusted Model 1 Model 2

Variable HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% 
CI)

P trend 0.008 < 0.001 0.001 0.130 0.038 0.173 < 0.001 < 0.001 < 0.001
ln(Glycated albu-
min), %

0.73 
(0.56–0.97)

1.79 
(1.31–2.44)

1.97 
(1.39–2.79)

0.93 
(0.56–1.53)

2.52 
(1.43–4.44)

2.49 
(1.31–4.73)

2.55 
(1.25–5.19)

6.55 
(2.99–14.38)

8.50 
(3.43–21.06)

Hs-cTnT: high-sensitivity Troponin T; hs-cTnI: high-sensitivity Troponin I; NT-proBNP: N-terminal pro-B-type natriuretic peptide

Model 1: gender, age, race, BMI.

Model 2: gender, age, race, BMI, education, activity, PIR, cotinine, drinking, hypertension, hyperlipidemia, CVD, CKD.

Table 2  (continued) 
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show pre-diabetes in an oral glucose tolerance test but 
have normal blood glucose levels in daily life, making it 
challenging to diagnose diabetes accurately. HbA1c mea-
surement reflects the average blood glucose level over 
the past 2–3 months but cannot provide information on 
blood glucose fluctuations over a shorter period. Fur-
thermore, some factors, such as iron-deficiency anemia, 
liver disease, and severe anemia, may affect the accu-
racy of HbA1c measurement [16]. Previous research has 
unequivocally demonstrated the significance of kidney 
function and albumin uria as major cardiovascular risk 
factors. In tandem with the rise of personalized medi-
cine, we find ourselves at the threshold of a more refined 
and bespoke era in healthcare management. Our fervent 
pursuit centers on a comprehensive exploration of the 
profound influence wielded by biomarkers on individual 
health profiles, with a particular emphasis on the iden-
tification of cardiac and renal biomarkers-a task of par-
amount significance for healthcare professionals. This 
process of identification is poised to facilitate the pin-
nacle of precision in healthcare, as it empowers us to 
precisely pinpoint those diabetic patients most in need 
of vigilance and intervention, thereby precipitating a 
reduction in the incidence of cardiovascular eventss [17]. 
As shown in Supplement Table 1, the adjusted Model 2 
demonstrates a significant association of cardiac-renal 
biomarkers with all-cause, CVD and diabetes mortal-
ity (P trend < 0.05). However, HbA1C and glycated albu-
min did not exhibit a significant association with CVD 
mortality(P trend > 0.05).

Table  2 provides a comprehensive evaluation of two 
models in predicting death events based on various bio-
markers. As expected, both all-cause and cause-specific 
mortality significantly increased over time and with 
increasing values of hs-cTnT and hs-cTnI within their 
highest quartile, suggesting that these markers may be 
used to assess the risk of cardiovascular disease and dia-
betes, leading to more serious health consequences [18]. 
Hs-cTnT and hs-cTnI are markers of myocardial injury, 
and their elevation in diabetic patients is closely associ-
ated with an increased risk of cardiovascular disease 
and death [18, 19]. NT-proBNP is a marker of heart fail-
ure and increases when myocardial cells are damaged 
or when the heart is under increased load, making it a 
predictive marker for cardiovascular death. Within the 
range of NT-proBNP values, the mortality rate for CVD 
is higher than that for diabetes, further indicating a more 
significant impact of cardiovascular disease on patient 
health [20, 21]. In Model 2, the incorporation of car-
diac and renal biomarkers, namely hs-cTnT, creatinine, 
cystatin C, and β-2 microglobulin, resulted in a notable 
enhancement in predictive performance. This improve-
ment was evident in both continuous NRI and IDI, sig-
nifying a significant boost in the model’s predictive 

accuracy. Importantly, our findings highlight the superi-
ority of cardiac and renal biomarkers over blood glucose 
monitoring indicators. Additionally, the simultaneous 
inclusion of plasma biomarkers, specifically hs-cTnT, 
NT-proBNP, creatinine, β-2 microglobulin, and glycated 
hemoglobin, further elevated the IDI, indicating a sub-
stantial enhancement in the model’s predictive capac-
ity. In summary, our study provides essential insights 
for leveraging these biomarkers in the contemporary era 
of more precise diagnostics and broader availability of 
anti-diabetic medications, facilitating improved assess-
ment of long-term mortality risk associated with diabetes 
(Table 3).

Creatinine is a product of muscle metabolism and an 
indicator of kidney function that is more commonly 
used. Changes in creatinine concentration can indicate 
changes in kidney filtration function [22]. Beta-2 micro-
globulin is an indicator of renal tubular function that is 
frequently used to assess kidney disease and the effec-
tiveness of kidney transplants [23]. In the case of renal 
tubular injury, the concentration of beta-2 microglobulin 
increases, making it a useful marker for kidney disease. 
Compared to creatinine and cystatin C, beta-2 micro-
globulin is more sensitive in detecting early damage to 
renal tubular function [24]. To minimize the influence 
of confounding diseases such as heart failure and renal 
failure on these cardio-renal biomarkers, we employed a 
multivariate regression model that incorporated poten-
tial influencing factors. We evaluated the accuracy and 
predictive capacity of the model by measuring AIC, BIC, 
IDI, and other indicators. The inclusion of these variables 
significantly increased the reliability of the results. The 
newer Risk Equations for Complications Of Type 2 Dia-
betes (RECODe) model, designed for predicting 10-year 
risks, was derived from clinical trials conducted in the 
United States and Canada and subsequently validated 
in North American trial settings and cohort studies. In 
our investigation, we juxtaposed our Model 2 against 
the established RECODe model. Overall, we observed 
negligible discrepancies in the alterations of key indica-
tors, including AIC, BIC, and IDI, which implies that our 
Model 2 exhibits a commendable level of reliability (Sup-
plement Table 2).

It is noteworthy that clinical guidelines concerning 
hypertension and cardiovascular disease only provide 
limited mention of kidney markers. Additionally, cru-
cial risk factors, such as microalbuminuria, cystatin C, 
and cTNI/cTNT have not been incorporated into com-
monly employed risk equations for evaluating cardio-
vascular complications in individuals with diabetes. 
Consequently, we strongly advocate for intensified col-
laboration between nephrologists and cardiologists in 
research, guideline development, and clinical practice to 
integrate the optimal cutoff values we have identified for 
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predicting mortality risk in patients with diabetes. For 
example, elevated creatinine levels in patients indicate 
a need for strengthening renal function monitoring and 
interventions, along with controlling blood pressure and 
glucose levels, to prevent further progression to renal 
failure. Similarly, elevated NT-proBNP levels in patients 
indicate a need for strengthening cardiovascular moni-
toring and effective treatments to prevent heart failure. 
Given the high prevalence of diabetes and its associated 
complications, identifying patients at risk of adverse out-
comes is critical for preventing the progression of disease 
and reducing the risk of mortality. The investigation of 
alternative blood markers related to cardiovascular and 
renal function could provide more insights into the long-
term prognosis of diabetes patients beyond traditional 
glycemic markers such as HbA1c and fasting blood glu-
cose levels.

Overall, this study underscores the significance of bio-
marker monitoring in clinical practice and emphasizes 
the importance of personalized interventions for improv-
ing patient outcomes. By leveraging these biomarkers, 
physicians can identify high-risk patients, tailor their 
treatments accordingly, and ultimately improve the qual-
ity of care provided to patients.

Limitations
Although the NHANES study has a large sample size, 
it may be affected by selection bias and limitations in 
sample distribution and sampling methods, which could 
impact result validity. Laboratory errors could also influ-
ence blood biomarker measurements, reducing predic-
tion model accuracy. The selected biomarkers may not 
fully capture underlying biological mechanisms, espe-
cially for long-term mortality prediction. Additional 
biomarkers may be necessary to improve the model’s 
accuracy. Other health risk factors, such as genetics, 
lifestyle, and disease history, may also affect biomarker 
interpretation. Despite these limitations, our study offers 
a breakthrough in predicting 20-year mortality risk by 
exploring new blood biomarkers beyond traditional 
glucose biomarkers. Further research is needed to fully 
understand their clinical value.

Conclusions
Cardiovascular and renal biomarkers offer a promis-
ing approach to improve the prediction of outcomes in 
diabetic patients. These biomarkers, with their ability to 
reflect early disease activity, high sensitivity, and specific-
ity, show potential in enhancing our ability to predict dia-
betes patients prognosis.

Abbreviations
AIC	� Akaike information criterion
BIC	� Bayesian information criterion
CIs	� Confidence intervals

CKD	� Chronic kidney disease
CVD	� Cardiovascular disease
eGFR	� Estimated glomerular filtration rate
HRs	� Hazard ratios
hs-cTnT	� High-sensitivity cardiac troponin T
IDI	� Integrated discrimination improvement
KM	� Kaplan-meier
NDI	� National death index
NRI	� Net reclassification improvement
RCS	� Restricted cubic spline
SDs	� Standard deviations

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12933-023-01986-2.

Supplementary Material 1: Supplement Table 1. All-cause and 
Cause-Specific Mortality rates per 1000 person years [95% Confidence 
Interval (CI)]. Supplement Table 2. Comparison of Model Performance in 
Predicting All-Cause Mortality. Supplement Figure 1. A heat map shows 
the correlations among different biomarkers including hs-cTnT, hs-cTnI, 
NT-proBNP, creatinine, cystatin C, and β-2 microglobulin in a population 
of diabetic patients. The strength of the correlations ranged from near 0 
to 0.81, indicating complex interrelationships that may arise from shared 
physiological pathways, underlying disease mechanisms related to diabe-
tes, or common confounding factors such as age, gender, and co-morbidi-
ties. These findings highlight the need for a comprehensive understanding 
of the relationships among biomarkers in diabetic individuals for effective 
management and care.

Acknowledgements
The authors would like to thank Professor Bo Yu for his fruitful discussions and 
technical assistance. Special thanks to Professor Zhang Yao and our colleagues 
at Harbin Medical University who were keen and dedicated to this work.

Authors’ contributions
FY, MSW and YLL played a key role in developing the research questions 
and conducting the data analysis. They served as the principal author of this 
manuscript. JJW and YZC supervised and directed the analysis of the NHANES 
samples. Additionally, they contributed to the study design, collaborated on 
formulating the research questions, and edited the manuscript. FY and YLL 
contributed to the conception, delineation of hypotheses, and design of this 
aspect of the NHANES study. All authors contributed to the statistical analysis 
and interpretation of the data, and provided valuable edits and comments on 
the manuscript. YLL is the guarantor of this work and, as such, had full access 
to all the data in the study and takes responsibility for the integrity of the data 
and the accuracy of the data analysis.

Funding
Our study was supported by National Natural Science Foundation of China 
(grant number: 82000381 to YLL, 81901853 to FY), the Natural Science 
Foundation of Heilongjiang Province (grant number: YQ2022H007 to YLL).

Data Availability
The datasets generated and/or analyzed during the current study are 
publicly available from the website (https://wwwn.cdc.gov/nchs/nhanes/
continuousnhanes/default.aspx?BeginYear=1999).

Declarations

Ethics approval and consent to participate
The NHANES database study received authorization and approval from the 
National Center for Health Statistics Ethics Review Board. The necessary 
documents pertaining to the ethical approval of the NHANES study can be 
accessed online at (https://www.cdc.gov/nchs/NHANES/irba98.htm).

https://doi.org/10.1186/s12933-023-01986-2
https://doi.org/10.1186/s12933-023-01986-2
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=1999
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=1999
https://www.cdc.gov/nchs/NHANES/irba98.htm


Page 15 of 15Yang et al. Cardiovascular Diabetology          (2023) 22:265 

Consent for publication
Informed Consent from participants was not required for the performance 
of this study and was obtained during the conduct of NHANES III by the US 
National Center for Health Statistics (NCHS).

Competing interests
The authors declare no competing interests.

Author details
1Department of Cardiology, the Second Affiliated Hospital of Harbin 
Medical University, Harbin 150086, China
2Key Laboratory of Myocardial Ischemia, Ministry of Education,  
Harbin 150086, China
3College of Health Management of Harbin Medical University,  
Harbin 150076, China
4The Second Affiliated Hospital of Harbin Medical University,  
Harbin 150086, China

Received: 26 July 2023 / Accepted: 7 September 2023

References
1.	 Patel K, Saha A, Ayers C et al. Exercise Training, Cardiac biomarkers, and 

Cardiorespiratory Fitness in Type 2 diabetes. JACC Adv 2023 Jan, 2 (1). https://
doi.org/10.1016/j.jacadv.2022.100174

2.	 Wu J, Zhou Y, Hu H, Yang D, Yang F. Effects of β-carotene on glucose metabolism 
dysfunction in humans and type 2 diabetic rats. Acta Materia Medica. 1(1): p. 
138–53.

3.	 Luo Y. Effects of adjuvant chinese patent medicine therapy on major adverse 
cardiovascular events in patients with coronary heart disease angina pec-
toris: a population-based retrospective cohort study. Acupunct Herb Med. 
2022;2(2):109–17.

4.	 Pang XZYZZL. Campanumoea javanica bl. Activates the PI3K/AKT/mTOR 
signaling pathway and reduces sarcopenia in a T2DM rat model. Acupunct 
Herb Med. 2022;2(2):99–108.

5.	 Ko TY, Lin TT, Hsu JC, Yang YY, Chuang SL, Lin LY, Kao HL, Ho YL. Incidence, risk 
factors and predictors of cardiovascular mortality for aortic stenosis among 
patients with diabetes mellitus. Diabetes Res Clin Pract. 2022;191:110050.

6.	 Li Y, Gao R, Zhao B, Zhang Y. Low serum bicarbonate levels increase the risk of 
All-Cause, Cardiovascular Disease, and Cancer Mortality in Type 2 diabetes. J 
Clin Endocrinol Metab. 2022;107(11):3055–65.

7.	 Tanriverdi O, Askin L. Associations between Vaspin levels and coronary artery 
disease. Cardiovasc Innovations Appl. 2020;000(001):211–6.

8.	 Ciardullo S, Rea F, Cannistraci R, Muraca E, Perra S, Zerbini F, Mortara A, Per-
seghin G. NT-ProBNP and mortality across the spectrum of glucose tolerance 
in the general US population. Cardiovasc Diabetol. 2022;21(1):236.

9.	 Stopic B, Medic-Brkic B, Savic-Vujovic K, Davidovic Z, Todorovic J, 
Dimkovic N. Biomarkers and predictors of adverse Cardiovascular 
events in different stages of chronic kidney disease. Dose Response. 
2022;20(3):15593258221127568.

10.	 Vasquez-Rios G, Moledina DG, Jia Y, McArthur E, Mansour SG, Thiessen-Phil-
brook H, Shlipak MG, Koyner JL, Garg AX, Parikh CR, Coca SG. Pre-operative 
kidney biomarkers and risks for death, cardiovascular and chronic kidney 
disease events after cardiac surgery: the TRIBE-AKI study. J Cardiothorac Surg. 
2022;17(1):338.

11.	 Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek 
JW, Eggers P, Van Lente F, Greene T, Coresh J. A new equation to estimate 
glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.

12.	 Zucatti KP, Teixeira PP, Wayerbacher LF, Piccoli GF, Correia PE, Fonseca NKO, 
Moresco KS, Guerra BA, Madure MG, Farenzena LP, Frankenberg AD, Brietzke 
E, Halpern B, Franco O, Colpani V, Gerchman F. Long-term effect of Lifestyle 
Interventions on the Cardiovascular and all-cause mortality of subjects with 
Prediabetes and Type 2 diabetes: a systematic review and Meta-analysis. 
Diabetes Care. 2022;45(11):2787–95.

13.	 Zhang Y, Yang R, Hou Y, Chen Y, Li S, Wang Y, Yang H. Association of cardio-
vascular health with diabetic complications, all-cause mortality, and life 
expectancy among people with type 2 diabetes. Diabetol Metab Syndr. 
2022;14(1):158.

14.	 Song Y, Cui K, Yang M, et al. High triglyceride-glucose index and stress 
hyperglycemia ratio as predictors of adverse cardiac events in patients with 
coronary chronic total occlusion: a large-scale prospective cohort study. Car-
diovasc Diabetol. 2023;22:180. https://doi.org/10.1186/s12933-023-01883-8

15.	 Diem P. [Control of diabetes management: daily profile of blood glucose? 
Self-monitoring of blood glucose? HbA1/HbA1c?]. Schweiz Med Wochen-
schr. 1987;117(31–32):1191–5.

16.	 Cohen RM, Smith EP. Frequency of HbA1c discordance in estimating blood 
glucose control. Curr Opin Clin Nutr Metab Care. 2008;11(4):512–7.

17.	 Liang X, Miao Z, Lu S, Ye M, Wang J, Zhao H, Xiao C, Shuai M, Gou W, Liang 
Y, Xu F, Shi M-Q, Wu Y-Y, Wang X-H, Cai F-C, Xu M-Y, Fu Y, Hu W-S, Zheng J-S. 
Integration of multiomics with precision nutrition for gestational diabetes: 
study protocol for the Westlake Precision Birth Cohort. iMeta. 2023;2(2):e96.

18.	 Minhas A, Rooney M, Fang M et al. Prevalence and correlates of elevated NT-
proBNP in pregnant women in the General U.S. Population. JACC Adv 2023 
Mar, 2 (2). https://doi.org/10.1016/j.jacadv.2023.100265

19.	 Perrone MA, Storti S, Salvadori S, Pecori A, Bernardini S, Romeo F, Guccione 
P, Clerico A. Cardiac troponins: are there any differences between T and I? J 
Cardiovasc Med (Hagerstown). 2021;22(11):797–805.

20.	 Bayes-Genis A. Diabetes and NT-proBNP: partners in crime. Diabetes Res Clin 
Pract. 2022;194:110165.

21.	 Wijkman MO, Claggett BL, Malachias MVB, Vaduganathan M, Ballantyne CM, 
Kitzman DW, Mosley T, Matsushita K, Solomon SD, Pfeffer MA. Importance 
of NT-proBNP and conventional risk factors for prediction of death in older 
adults with and without diabetes mellitus- A report from the atherosclerosis 
risk in Communities (ARIC) study. Diabetes Res Clin Pract. 2022;194:110164.

22.	 Murkamilov IT, Aitbaev KA, Murkamilova ZA, Fomin VV, Yusupov FA, Kudai-
bergenova IO, Maanaev TI, Gassanov KA, Batirbekov IZ. Modern biomarkers 
of renal dysfunction in the elderly and senile age: clinical and prognostic 
significance]. Adv Gerontol. 2022;35(6):862–8.

23.	 Hamada R, Kikunaga K, Kaneko T, Okamoto S, Tomotsune M, Uemura O, 
Kamei K, Wada N, Matsuyama T, Ishikura K, Oka A, Honda M. Urine alpha 
1-microglobulin-to-creatinine ratio and beta 2-microglobulin-to-creatinine 
ratio for detecting CAKUT with kidney dysfunction in children. Pediatr 
Nephrol. 2023;38(2):479–87.

24.	 Hansson E, Wegman DH, Wesseling C, Glaser J, Schlader ZJ, Wijkstrom J, Jako-
bsson K. Markers of kidney tubular and interstitial injury and function among 
sugarcane workers with cross-harvest serum creatinine elevation. Occup 
Environ Med. 2022;79(6):396–402.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 

https://doi.org/10.1016/j.jacadv.2022.100174
https://doi.org/10.1016/j.jacadv.2022.100174
https://doi.org/10.1186/s12933-023-01883-8
https://doi.org/10.1016/j.jacadv.2023.100265

	﻿Association of cardio-renal biomarkers and mortality in the U.S.: a prospective cohort study
	﻿Abstract
	﻿Key points
	﻿Introduction
	﻿Methods
	﻿Study population
	﻿Ethics statement
	﻿Study variables
	﻿Assessment of biochemistry indexes
	﻿Ascertainment of death
	﻿Statistical analysis

	﻿Results
	﻿Participant characteristics
	﻿Correlation analysis of serum biomarkers
	﻿All-cause and cause-specific mortality
	﻿Associations of biomarkers with mortality risk in diabetic patients
	﻿Cox regression analysis on mortality
	﻿AIC, BIC, NRI and IDI for the combined assessment of biomarkers in predicting all-cause mortality

	﻿Discussion
	﻿Limitations

	﻿Conclusions
	﻿References


