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Abstract 

Background Metabolic Syndrome (MetS) is characterized by risk factors such as abdominal obesity, hypertriglyceri‑
demia, low high‑density lipoprotein cholesterol (HDL‑C), hypertension, and hyperglycemia, which contribute to the 
development of cardiovascular disease and type 2 diabetes. Here, we aim to identify candidate metabolite biomarkers 
of MetS and its associated risk factors to better understand the complex interplay of underlying signaling pathways.

Methods We quantified serum samples of the KORA F4 study participants (N = 2815) and analyzed 121 metabolites. 
Multiple regression models adjusted for clinical and lifestyle covariates were used to identify metabolites that were 
Bonferroni significantly associated with MetS. These findings were replicated in the SHIP‑TREND‑0 study (N = 988) and 
further analyzed for the association of replicated metabolites with the five components of MetS. Database‑driven 
networks of the identified metabolites and their interacting enzymes were also constructed.

Results We identified and replicated 56 MetS‑specific metabolites: 13 were positively associated (e.g., Val, Leu/Ile, 
Phe, and Tyr), and 43 were negatively associated (e.g., Gly, Ser, and 40 lipids). Moreover, the majority (89%) and minor‑
ity (23%) of MetS‑specific metabolites were associated with low HDL‑C and hypertension, respectively. One lipid, 
lysoPC a C18:2, was negatively associated with MetS and all of its five components, indicating that individuals with 
MetS and each of the risk factors had lower concentrations of lysoPC a C18:2 compared to corresponding controls. 
Our metabolic networks elucidated these observations by revealing impaired catabolism of branched‑chain and 
aromatic amino acids, as well as accelerated Gly catabolism.

Conclusion Our identified candidate metabolite biomarkers are associated with the pathophysiology of MetS 
and its risk factors. They could facilitate the development of therapeutic strategies to prevent type 2 diabetes and 
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cardiovascular disease. For instance, elevated levels of lysoPC a C18:2 may protect MetS and its five risk components. 
More in‑depth studies are necessary to determine the mechanism of key metabolites in the MetS pathophysiology.

Keywords Metabolic syndrome, Obesity, Cardiovascular disease, Hypertension, Hyperglycemia, Metabolomics, 
Amino acids, BCAAs, Phosphatidylcholines, Lysophosphatidylcholines

Background
Metabolic Syndrome (MetS) is diagnosed by the presence 
of at least three out of five risk factors: abdominal obesity, 
hypertriglyceridemia, reduced high-density lipoprotein 
cholesterol (HDL-C), hypertension, and hyperglycemia 
[1]. This diagnosis carries a two-fold risk of developing 
cardiovascular disease (CVD) within 5–10  years and a 
five-fold greater risk of developing type 2 diabetes (T2D) 
[1]. Furthermore, individuals with MetS have a higher 
rate of developing serious complications from severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
infection [2]. Although global data on MetS is lacking, a 
study conducted in 2018 estimated that more than one 
billion people worldwide suffer from MetS [3], making 
it a significant public health issue due to its association 
with serious chronic complications such as CVD and 
T2D.

The etiology of MetS is attributed to multiple inter-
acting factors such as genetic susceptibility, epigenetic 
factors, and environmental influences, as well as the 
five metabolic components [4]. Obesity, for instance, is 
largely influenced by socioeconomic and dietary factors, 
with excessive caloric intake possibly leading to inflam-
matory conditions and impaired energy metabolism [5]. 
Dyslipidemia, characterized by the imbalance of lipids 
such as raised triglycerides and lower HDL–C, is consid-
ered to be a risk factor for the development of atheroscle-
rotic CVD [1]. Excessive food intake and abnormal lipid 
metabolism have been reported to be associated with the 
development of atherogenic dyslipidemia [6]. Hyperten-
sion, another significant component of MetS, arises from 
oxidative stress, endothelial dysfunction, and increased 
inflammatory mediators, posing a major risk for CVDs, 
including stroke [4]. In addition, hyperglycemia and 
insulin resistance exacerbate low-grade inflammation, 
enhancing the risk of CVDs [7]. Therefore, besides life-
style modifications and psychological management, 
understanding the pathophysiology of MetS is vital for 
developing pharmaceutical interventions for personal-
ized medicine [2].

Technological advancements enable the quantifica-
tion and analysis of multi-omics data such as genomic, 
proteomic, and metabolomic data in clinical studies and 
human cohorts [8]. The comprehensive analysis of mol-
ecules (genes, proteins, and metabolites) may contribute 
to a systematic understanding of biological processes 

and to the development of personalized therapies [9]. 
Metabolome refers to the complete set of small mol-
ecule metabolites, which are the intermediates or end 
products of metabolism, and reflect the metabolic status 
of an individual or a population. By applying advanced 
analytical and statistical methods, metabolomics has the 
potential to reveal novel biomarkers that can improve the 
diagnosis, prognosis, and risk assessment of MetS and its 
related disorders [10, 11].

In particular, the utilization of the targeted metabo-
lomics approach in previous studies provides a robust 
foundation for our current research, enabling compari-
sons and the identification of metabolites and potential 
biomarkers associated with the studied population. For 
instance, in the population-based KORA (Cooperative 
Health Research in the Region of Augsburg) study, tar-
geted metabolomics has been intensively used to explore 
the association between metabolites and age, gender, 
smoking, alcohol intake, pre-diabetes, and T2D, as well 
as chronic kidney disease [12–18]. Similarly, in the SHIP 
(Health Study of Pomerania)-TREND-0 study, targeted 
metabolomics has been used to investigate the metabo-
lites associated with the use of oral contraceptives [19].

Several metabolomic studies on MetS have employed 
various approaches, such as untargeted, targeted 
metabolomic, and lipidomic, revealing novel biomark-
ers and providing new insights into metabolic altera-
tions in MetS [20–23]. However, previous studies have 
often utilized relatively smaller sample sizes (e.g., 30 
individuals with MetS), or only 100 men [20, 22, 23]. To 
date, there remains a gap in research focusing on large 
population-based human cohorts. Therefore, to better 
understand the underlying mechanisms of MetS, it is 
necessary to conduct further research utilizing metabo-
lomic approaches in larger sample sizes.

The present study, based on a targeted metabolomics 
approach, aims to identify MetS-associated metabo-
lites in a population-based human cohort, namely the 
KORA F4 study [24], and replicate the findings in the 
SHIP-TREND-0 study [25]. The secondary objective is 
to investigate the association between the replicated 
MetS-associated metabolites and the five components of 
MetS, as well as to construct interaction networks among 
identified metabolites, enzymes, and biochemical pro-
cesses to better understand the underlying mechanisms 
of MetS.
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Methods
Description of human cohorts: discovery and replication 
studies
Discovery study The discovery study utilized data from 
the KORA F4, a follow-up to the KORA baseline sur-
vey number 4 (KORA S4) [24, 26]. The KORA F4 study, 
conducted between 2006 and 2008, examined 3080 indi-
viduals (aged 32–81 years). The clinical variables, demo-
graphics, and laboratory measurements of KORA F4 have 
been described in detail in our previous reports [27, 28]. 
Only participants with metabolite measurements and 
clinical variables for MetS were included. We excluded: 
(1) missing data on phenotypes and metabolites (N = 51); 

(2) the presence of metabolites’ extreme outliers detected 
by data points outside of the mean ± 5 × standard devia-
tion range (N = 201); (3) non-fasting samples (N = 7); 
(4) and missing diagnosis of MetS (N = 6). In total, we 
included 2815 individuals in this discovery study (Fig. 1).

Replication study The replication study was based on 
the SHIP-TREND-0 study, a population-based study 
in northeastern Germany, which recruited 4,420 par-
ticipants between 2008 and 2012 [25, 29, 30]. Details of 
the measurements performed in the SHIP-TREND-0 
study were published [19, 25, 31]. The replication study 
included 988 individuals with data on MetS and metabo-
lite measurements (Fig. 1).

Fig. 1 Population description and study design. Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure
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KORA and SHIP studies were approved by the Eth-
ics Committees of the Bavarian Medical Association in 
Munich, and the Institutional Review Board of the Uni-
versity of Greifswald, Germany, respectively. All study 
participants provided written informed consent.

The definition of MetS
The definition of MetS in KORA F4 and SHIP-TREND-0 
studies was based on a joint scientific statement pub-
lished in 2009 [1, 9]. MetS is diagnosed by the pres-
ence of any three of the following five components: 
(1) abdominal obesity with waist circumferences that 
measure ≥ 94  cm for men, or ≥ 80  cm for women; 
(2) hypertriglycerides with fasting serum triglycer-
ides ≥ 150  mg/dL, or drug treatment for elevated tri-
glycerides (fibrates); (3) low serum HDL–C < 40  mg/dL 
in men, or < 50 mg/dL in women, or drug treatment for 
reduced HDL–C (fibrates); (4) hypertension with sys-
tolic blood pressure ≥ 130  mmHg, or diastolic blood 
pressure ≥ 85  mmHg, or antihypertensive medication 
treatment; (5) hyperglycemia with fasting serum glu-
cose level ≥ 100  mg/dL or antidiabetic drug treatment. 
According to the MetS diagnostic criteria, the KORA F4 
and SHIP-TREND-0 participants were divided into MetS 
and non-MetS groups (Fig. 1).

Metabolite quantification and normalization
Serum samples from the KORA F4 study were measured 
with the AbsoluteIDQ™ p150 kit (BIOCRATES Life Sci-
ences AG, Innsbruck, Austria) for the quantification 
of 163 metabolites [12]. Specifically, samples were ran-
domly distributed on 38 kit plates, each plate also includ-
ing three quality control (QC) samples provided by the 
manufacturer and one zero sample (PBS) in addition to 
the individual samples [18, 32]. Among the quantified 
metabolites, only those that met all of the following three 
criteria were used: (1) missing values < 10%; (2) median 
relative standard deviations (RSD, also called coefficient 
of variation (CV)) of three QC samples < 25%; (3) 50% 
of measured sample values equal or above the limits of 
detection (LOD). In total, 121 metabolites that met QC 
included 14 amino acids, 1 monosaccharide, 18 acylcar-
nitines, 67 phosphatidylcholines (PCs), 9 lysoPCs (LPCs), 
and 12 sphingomyelins (Additional file 1: Table S1).

To minimize the technical variations that metabo-
lomics data inevitably contain, metabolite concentra-
tions were adjusted by a non-parametric method TIGER, 
which is based on an adaptable ensemble learning archi-
tecture [32]. In addition, to ensure comparability between 
different metabolites, their values were natural-log trans-
formed and standardized to have a mean value of 0 and a 
standard deviation of 1.

In the SHIP-TREND-0 study, metabolic profiling 
was measured using the AbsoluteIDQ™ p180 kit (BIO-
CRATES Life Sciences AG, Innsbruck, Austria). Metabo-
lites from the SHIP-TREND-0 that passed quality control 
were used for replication. A detailed description of the 
metabolite measurements, as well as pre-processing, has 
been provided in published papers [19, 33]. The metab-
olomics measurements in the SHIP-TREND-0 study 
were performed for a subset of participants without self-
reported diabetes. Nonetheless, the study included par-
ticipants with prediabetes, along with a sufficient number 
of individuals making the analysis robust and generaliz-
able (Fig. 1).

Statistical analysis
We first used a multiple linear regression model to 
identify MetS-associated metabolites with the metabo-
lite concentration values as dependent variable and the 
grouping variable as independent variable. To include 
potential confounders, we adjusted for age, sex and 
smoking status, physical activity, and alcohol intake. In 
the KORA study, we used the multiple linear regression 
model: Y metabolite concentration ~ X grouping (non-MetS = 0, prevalent 

MetS = 1) + age (years) + sex (female = 0, male = 1) + smoking status 
(non-smoker = 0, former smoker = 1, and current smoker = 2) + physical 
activity (inactive = 0, active =1; regular exercise per week ≥ 1 h is consid-

ered active, irregular equal or less than 1 h is considered inactive) + alcohol 
intake (g/day). Each metabolite was analyzed separately. To 
account for multiple testing for the 121 utilized metabo-
lites, a Bonferroni cutoff was applied and only metabo-
lites with P-value < 0.05/121 = 4.13E-04 were considered 
to be statistically significantly associated with MetS in 
the KORA F4 study (Fig. 1).

To replicate MetS-associated metabolites, in the SHIP-
TREND-0 study, we used similar multiple linear regres-
sion model: Y metabolite concentration ~ X grouping (non-MetS = 0, 

prevalent MetS = 1) + age (years) + sex (female = 2, male = 1) + smok-
ing status (non-smoker = 0, former smoker = 1, and current smoker = 

2) + physical activity (inactive = 0, active =1) + alcohol intake (g/

day). Each metabolite was analyzed separately. A Bonfer-
roni cutoff was applied for multiple testing corrections 
and only metabolites with a P-value < 0.05/88 = 5.68E-04 
were considered significant in the SHIP-TREND-0 study.

A multiple logistic regression analysis was further 
employed to evaluate the association between identified 
and replicated MetS-associated metabolites and each of 
the five MetS components in the KORA F4 study. In the 
multiple logistic regression model, the grouping vari-
able of each component of MetS was defined as outcome 
and metabolite concentration values as explanatory vari-
ables: Y grouping (non-component 1 = 0, prevalent component 1 = 1) ~ X 
metabolite concentration + age + sex + smoking status + physical 
activity + alcohol intake + other four components. For 
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each of the components of MetS, each metabolite was 
assessed individually. For multiple testing correction, a 
Bonferroni cutoff was applied and only metabolites with 
P-value < 0.05/56 = 8.93E-04 were considered to be sta-
tistically significantly associated with the component of 
MetS in the KORA F4 study (Fig. 1).

All analyses were carried out using R, version 4.1.2, and 
STATA/MP 17.

Construction of metabolic networks
CIDeR is a manually curated multifactorial database 
that integrates interactions between heterogeneous fac-
tors associated with human diseases [34]. Data in CIDeR 
has been sourced from research articles and reviews, the 
annotations for all interactions were manually annotated 
by experienced biocurators.

Based on the CIDeR database, in-depth literature 
research was conducted on the identified metabolites to 
examine the underlying mechanisms, linked biological 
processes, clinical phenotypes, and enzymes (protein and 
encoding gene) that are specifically associated with the 
five components of MetS.

Results
Characteristics of discovery and replication study 
participants
Table 1 shows the characteristics of the KORA F4 study 
participants (N = 2815), which included 959 participants 
with MetS and 1,856 individuals without MetS (Fig.  1). 
Significant differences in age and sex were observed 
between the two groups. Participants with MetS were 
notably older and included a higher proportion of males. 
Consistent with the diagnostic criteria, individuals with 
MetS had higher BMI and waist circumferences. Regard-
ing blood measurements, the levels of triglycerides, 
HDL–C, blood pressure, fasting glucose, and HbA1c 
were worse in the MetS group than in the non-MetS 
group. As can be seen from Table 1, smoking status dif-
fered significantly between the two groups, with a higher 
proportion of former smokers in the MetS group. Fur-
thermore, the non-MetS group had a larger proportion 
of physically active participants, while alcohol intake 
did not demonstrate statistical differences between the 
groups.

The SHIP-TREND-0 study included 988 participants, 
comprising 211 individuals diagnosed with MetS and 777 

Table 1 Characteristics of discovery and replication  studiesa

a Data were median [25th–75th percentile] for quantitative variables and number (percentage) for categorical variables. Wilcox–tests for non-normal distribution 
continues variables, and chi-square tests with continuity correction for categorical variables
b Lacking information in the study

Discovery KORA F4 Replication SHIP-TREND-0

MetS Non-MetS P-value MetS Non-MetS P-value

N 959 1856 211 777

Age (years) 63.00 [54.00, 71.00] 51.00 [42.00, 63.00] < 0.001 55.94 [51.70,60.19] 48.47 [34.52,62.42] < 0.001

Sex (% of male) 565 (58.9) 770 (41.5) < 0.001 118 (0.56) 316 (0.41) < 0.001

BMI (kg/m2) 29.87 [27.46, 32.77] 25.41 [23.16, 28.24] < 0.001 31.13 [26.88,35.37] 26.31 [22.20,30.41] < 0.001

Waist circumference (cm) 102.40 [95.90, 110.27] 88.40 [79.40, 95.90] < 0.001 99.53 [99.25,99.81] 84.87 [84.51,85.22] < 0.001

Triglyceride (mg/dL) 158.00 [111.50, 213.00] 87.00 [63.00, 115.00] < 0.001 177.19 [150.44, 242.11] 95.61 [71.05,125.44] < 0.001

HDL–C (mg/dL) 46.00 [39.00, 54.00] 59.00 [50.00, 69.00] < 0.001 45.00 [38.08, 51.35] 58.46 [50.00, 68.46] < 0.001

LDL–C (mg/dL) 140.00 [116.00, 163.00] 132.00 [110.50, 155.00] < 0.001 140.77 [119.62, 166.92] 126.15 [103.08, 150.00] < 0.001

Systolic BP (mmHg) 132.00 [119.50, 141.50] 115.50 [105.50, 126.00] < 0.001 135.46 [119.92,151.00] 121.39 [105.40,137.38] < 0.001

Diastolic BP (mmHg) 78.50 [71.12, 85.50] 72.50 [67.00, 79.00] < 0.001 83.19 [73.82,92.56] 74.87 [65.61,84.12] < 0.001

Fasting glucose (mg/dL) 104.00 [98.00, 115.00] 91.00 [86.00, 95.00] < 0.001 104.51 [95.50, 113.51] 93.69 [88.29, 99.10] < 0.001

HbA1c (%) 5.70 [5.40, 6.00] 5.40 [5.10, 5.60] < 0.001 5.40 [5.10,5.70] 5.10 [4.80,5.40] < 0.001

Alcohol intake (g/day) 5.71 [0.00, 21.94] 5.71 [0.00, 20.00] 0.723 4.23 [0.76,11.32] 3.97 [1.31,10.04] 0.838

Smoking (%) < 0.001 < 0.001

Nonsmoker 403 (42.1) 783 (42.2) 77 (36.5) 340 (43.8)

Former smoker 432 (45.1) 698 (37.6) 93 (44.1) 261 (33.6)

Current smoker 123 (12.8) 373 (20.1) 40 (19.0) 176 (22.7)

Physically active (%) 455 (47.5) 1089 (58.7) < 0.001 142 (67.3) 585 (75.3) 0.011

Intake of fibrates (%) 10 (1.0) 1 (0.1) < 0.001 bNA bNA

Antihypertensive (%) 545 (56.8) 300 (16.2) < 0.001 103 (48.8) 172 (22.1) < 0.001

Antidiabetes (%) 137 (14.3) 12 (0.6) < 0.001 bNA bNA
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non-MetS participants. Among the MetS individuals, just 
over half (56%) were male. Consistent with the KORA 
F4 study, a closer inspection of the table shows signifi-
cant differences between MetS and non-MetS groups in 
all included variables except for alcohol intake (Table 1, 
Fig. 1).

Identified and replicated 56 MetS-associated metabolites
Of the 121 utilized metabolites, we identified 89 metabo-
lites that were significantly (P-value < 0.05/121 = 4.13E-
04) associated with MetS based on the multiple linear 
regression models when comparing 959 participants with 
MetS to 1856 individuals without MetS in the KORA F4 
study (Fig. 2a and Table 2). We further performed replica-
tions of the 89 MetS-associated metabolites in the SHIP-
TREND-0 study. Since metabolite C8:1 was not measured 
in the SHIP-TREND-0 study due to the different analyti-
cal measurement kits, we used the remaining 88 metabo-
lites for replication. Among these, 85 metabolites had the 
same effect direction in both studies, and 56 remained 
significant after correction for multiple testing, thus con-
sidered successfully replicated (P-value < 0.05/88 = 5.68E-
04, Table 2). For example, acyl-alkyl PC with 34 carbons 
and three double-bonds (PC ae C34:3) demonstrated a 
negative association with MetS in KORA F4 (ß = − 0.76, 
P = 4.06E-82) and SHIP-TREND-0 (ß = − 0.73, P = 1.08E-
20). Among the successfully replicated metabolites, 13 

metabolites (4 amino acids (Val, xLeu (Leu/Ile), Phe and 
Tyr), 1 monosaccharide (sum of hexoses, H1), 2 acylcar-
nitines, and 6 PCs) were positively associated with MetS, 
and 43 metabolites (3 amino acids (Gly, Ser, and Gln), 30 
PCs, 2 LPCs, 8 sphingomyelins) were negatively associ-
ated with MetS (Table 2).

Metabolites associated with the five components
We further investigated whether and how the identi-
fied and replicated 56 MetS-associated metabolites were 
associated with each of the five components of MetS. 
Using the multiple logistic regression analyses, we found 
that abdominal obesity, hypertriglyceridemia, reduced 
HDL–C, hypertension, and hyperglycemia were sig-
nificantly (P-value < 0.05/56 = 8.93E-04) associated with 
36, 37, 50, 13, 35 metabolites, respectively (Figs.  2b, 3a, 
Additional file  1: Table  S2). In addition, lysoPC a C18:2 
was the only metabolite significantly negatively associ-
ated with all five components: abdominal obesity (odds 
ratio, OR = 0.57, P = 3.96E-23), hypertriglyceridemia 
(OR = 0.69, P = 6.57E-10), low HDL–C (OR = 0.65, 
P = 1.34E-12), hypertension (OR = 0.82, P = 2.62E-04), 
and hyperglycemia (OR = 0.81, P = 1.24E-04) (Additional 
file 1: Table S2). The concentration of lysoPC a C18:2 was 
lower in individuals with MetS and in those with each 
of the five components compared to respective controls 
(Fig.  3b). Furthermore, BCAAs (Val, xLeu (Leu/Ile) and 

Fig. 2 The metabolites associated with MetS and its five components. a Volcano plot of regression results of 121 metabolites. The horizontal 
dashed lines represent the Bonferroni cut‑off value. Orange dots: positively associated, blue dots: negatively associated, gray dots: not significant. b 
Circle plot of the association between 56 replicated MetS‑associated metabolites and 5 components of MetS. Metabolites with bold font indicate 
significant association with three or more components
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Table 2 MetS‑associated metabolites identified in KORA F4, and replicated in SHIP‑TREND‑0

Metabolites KORA F4 SHIP-TREND-0

β (95% CI) P-value β (95% CI) P-value

C0 0.20 (0.12, 0.28) 6.95E-07 0.32 (0.18, 0.46) 1.22E-05
C10 − 0.18 (− 0.26, − 0.10) 1.43E-05 − 0.10 (− 0.26, 0.05) 1.96E‑01

C12 − 0.23 (− 0.31, − 0.14) 4.40E-08 − 0.16 (− 0.31, − 0.00) 4.47E‑02

C14:1 − 0.20 (− 0.28, − 0.12) 1.07E-06 − 0.20 (− 0.36, − 0.05) 9.85E‑03

C14:2 − 0.16 (− 0.24, − 0.08) 7.22E-05 − 0.23 (− 0.39, − 0.07) 3.89E‑03

C18 − 0.17 (− 0.25, − 0.09) 2.90E-05 − 0.19 (− 0.34, − 0.03) 1.75E‑02

C3 0.30 (0.22, 0.37) 7.20E-14 0.30 (0.15, 0.45) 8.91E-05
C5 0.26 (0.18, 0.33) 5.60E-11 0.14 (− 0.01, 0.29) 7.53E‑02

C8:1 0.19 (0.11, 0.27) 6.45E-06 NA NA

Gln − 0.34 (− 0.43, − 0.26) 3.36E-16 − 0.29 (− 0.45, − 0.14) 2.76E-04
Gly − 0.40 (− 0.48, − 0.32) 5.12E-23 − 0.35 (− 0.51, − 0.20) 9.06E-06
His − 0.20 (− 0.28, − 0.12) 7.69E-07 0.03 (− 0.13, 0.19) 7.04E‑01

Phe 0.29 (0.21, 0.37) 2.90E-12 0.32 (0.17, 0.48) 4.84E-05
Pro 0.29 (0.21, 0.37) 3.44E-13 0.17 (0.02, 0.32) 2.58E‑02

Ser − 0.26 (− 0.34, − 0.18) 4.93E-10 − 0.37 (− 0.53, − 0.21) 3.87E-06
Tyr 0.38 (0.30, 0.46) 1.66E-20 0.41 (0.26, 0.56) 9.45E-08
Val 0.31 (0.23, 0.39) 1.20E-14 0.45 (0.30, 0.60) 2.55E-09
xLeu 0.45 (0.38, 0.52) 2.33E-36 0.38 (0.24, 0.52) 5.90E-08
lysoPC a C17:0 − 0.29 (− 0.37, − 0.20) 1.34E-11 − 0.34 (− 0.49, − 0.18) 2.01E-05
lysoPC a C18:0 − 0.17 (− 0.26, − 0.09) 4.72E-05 0.26 (0.11, 0.42) 9.33E‑04

lysoPC a C18:1 − 0.47 (− 0.55, − 0.39) 3.91E-32 − 0.17 (− 0.32, − 0.01) 3.22E‑02

lysoPC a C18:2 − 0.60 (− 0.67, − 0.52) 1.42E-52 − 0.41 (− 0.56, − 0.27) 3.54E-08
lysoPC a C20:4 − 0.19 (− 0.27, − 0.11) 2.47E-06 0.23 (0.09, 0.38) 1.84E‑03

lysoPC a C28:1 − 0.20 (− 0.28, − 0.12) 1.84E-06 − 0.25 (− 0.41, − 0.10) 1.07E‑03

PC aa C28:1 − 0.15 (− 0.23, − 0.07) 1.88E-04 − 0.32 (− 0.47, − 0.18) 1.07E-05
PC aa C32:1 0.36 (0.29, 0.44) 4.47E-20 0.38 (0.23, 0.53) 8.58E-07
PC aa C32:3 − 0.20 (− 0.28, − 0.13) 2.07E-07 − 0.24 (− 0.38, − 0.09) 1.32E‑03

PC aa C34:1 0.17 (0.09, 0.25) 1.98E-05 0.11 (− 0.05, 0.26) 1.76E‑01

PC aa C34:4 0.24 (0.16, 0.32) 4.20E-09 0.29 (0.13, 0.44) 2.80E-04
PC aa C36:0 − 0.33 (− 0.41, − 0.25) 3.02E-15 − 0.28 (− 0.44, − 0.13) 2.46E-04
PC aa C36:1 0.16 (0.08, 0.24) 1.23E-04 0.09 (− 0.07, 0.24) 2.74E‑01

PC aa C36:3 0.22 (0.14, 0.30) 1.20E-07 0.20 (0.05, 0.35) 1.09E‑02

PC aa C36:4 0.23 (0.15, 0.31) 2.83E-08 0.22 (0.06, 0.37) 5.82E‑03

PC aa C38:0 − 0.36 (− 0.44, − 0.27) 2.95E-17 − 0.30 (− 0.45, − 0.15) 1.05E-04
PC aa C38:1 − 0.29 (− 0.37, − 0.21) 7.49E-12 − 0.24 (− 0.40, − 0.08) 3.54E‑03

PC aa C38:3 0.52 (0.44, 0.60) 1.22E-35 0.42 (0.27, 0.58) 4.78E-08
PC aa C38:4 0.35 (0.27, 0.43) 7.48E-17 0.30 (0.15, 0.46) 1.11E-04
PC aa C40:2 − 0.22 (− 0.31, − 0.14) 1.10E-07 − 0.17 (− 0.33, − 0.02) 3.10E‑02

PC aa C40:3 − 0.18 (− 0.27, − 0.10) 1.19E-05 − 0.17 (− 0.32, − 0.01) 3.62E‑02

PC aa C40:4 0.36 (0.28, 0.44) 1.23E-17 0.37 (0.21, 0.52) 4.80E-06
PC aa C40:5 0.34 (0.25, 0.42) 1.52E-15 0.39 (0.24, 0.55) 7.36E-07
PC aa C42:0 − 0.56 (− 0.64, − 0.48) 4.89E-43 − 0.34 (− 0.50, − 0.19) 1.61E-05
PC aa C42:1 − 0.51 (− 0.59, − 0.42) 3.86E-34 − 0.31 (− 0.47, − 0.16) 9.35E-05
PC aa C42:2 − 0.40 (− 0.48, − 0.32) 2.47E-21 − 0.18 (− 0.34, − 0.02) 2.42E‑02

PC aa C42:4 − 0.19 (− 0.27, − 0.11) 5.78E-06 − 0.05 (− 0.21, 0.11) 5.46E‑01

PC ae C30:2 − 0.17 (− 0.25, − 0.09) 2.37E-05 − 0.44 (− 0.58, − 0.30) 8.61E-10
PC ae C32:1 − 0.52 (− 0.60, − 0.44) 2.95E-37 − 0.62 (− 0.77, − 0.47) 1.55E-15
PC ae C32:2 − 0.50 (− 0.57, − 0.42) 1.40E-38 − 0.50 (− 0.65, − 0.35) 8.30E-11
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aromatic amino acids (Phe and Tyr) were positively asso-
ciated with at least three of the five components (Fig. 2b). 
The concentrations of Val, xLeu, Phe and Tyr were higher 

in participants with abdominal obesity, hypertriglyceri-
demia, reduced HDL–C (except for Tyr), hypertension 
(except for BCAAs and Tyr), and hyperglycemia (except 

Coefficients with 95% confidence interval (CI) and P-values of multiple linear regression adjusted for age, sex, smoking, physical activity, and alcohol intake. Bold P 
values indicate statistical significance at levels of P-value < 0.05/121 = 4.13E-04 for the KORA F4 study and P-value < 0.05/88 = 5.68E-04 for the SHIP-TREND-0 study, 
respectively

Table 2 (continued)

Metabolites KORA F4 SHIP-TREND-0

β (95% CI) P-value β (95% CI) P-value

PC ae C34:0 − 0.27 (− 0.35, − 0.19) 2.35E-11 − 0.43 (− 0.58, − 0.29) 1.37E-08
PC ae C34:1 − 0.37 (− 0.45, − 0.29) 4.86E-20 − 0.53 (− 0.68, − 0.39) 1.44E-12
PC ae C34:2 − 0.64 (− 0.71, − 0.56) 5.85E-57 − 0.57 (− 0.72, − 0.42) 1.80E-13
PC ae C34:3 − 0.76 (− 0.84, − 0.69) 4.06E-82 − 0.73 (− 0.88, − 0.58) 1.08E-20
PC ae C36:1 − 0.30 (− 0.38, − 0.22) 1.19E-13 − 0.52 (− 0.67, − 0.37) 4.68E-12
PC ae C36:2 − 0.57 (− 0.64, − 0.49) 1.49E-48 − 0.64 (− 0.78, − 0.49) 1.05E-17
PC ae C36:3 − 0.51 (− 0.58, − 0.43) 4.17E-35 − 0.42 (− 0.57, − 0.26) 1.08E-07
PC ae C36:5 − 0.29 (− 0.37, − 0.20) 1.43E-11 − 0.22 (− 0.38, − 0.07) 5.15E‑03

PC ae C38:0 − 0.19 (− 0.27, − 0.10) 6.68E-06 − 0.12 (− 0.27, 0.03) 1.11E‑01

PC ae C38:1 − 0.19 (− 0.28, − 0.11) 4.87E-06 − 0.31 (− 0.47, − 0.16) 1.04E-04
PC ae C38:2 − 0.43 (− 0.51, − 0.35) 1.15E-25 − 0.35 (− 0.50, − 0.19) 9.26E-06
PC ae C38:3 − 0.20 (− 0.28, − 0.12) 7.25E-07 − 0.30 (− 0.45, − 0.15) 6.23E-05
PC ae C38:4 − 0.31 (− 0.39, − 0.23) 1.25E-13 − 0.33 (− 0.49, − 0.18) 3.18E-05
PC ae C38:5 − 0.29 (− 0.38, − 0.21) 6.77E-12 − 0.20 (− 0.36, − 0.05) 1.18E‑02

PC ae C38:6 − 0.32 (− 0.40, − 0.23) 7.49E-14 − 0.21 (− 0.37, − 0.06) 5.92E‑03

PC ae C40:1 − 0.27 (− 0.35, − 0.19) 1.45E-10 − 0.21 (− 0.36, − 0.05) 1.06E‑02

PC ae C40:2 − 0.39 (− 0.47, − 0.31) 6.04E-22 − 0.40 (− 0.55, − 0.25) 1.02E-07
PC ae C40:3 − 0.48 (− 0.56, − 0.41) 1.47E-34 − 0.31 (− 0.46, − 0.15) 1.04E-04
PC ae C40:4 − 0.47 (− 0.55, − 0.39) 9.84E-30 − 0.38 (− 0.53, − 0.22) 1.86E-06
PC ae C40:5 − 0.56 (− 0.64, − 0.48) 4.55E-41 − 0.35 (− 0.51, − 0.20) 9.60E-06
PC ae C40:6 − 0.48 (− 0.56, − 0.40) 1.06E-31 − 0.43 (− 0.57, − 0.28) 1.75E-08
PC ae C42:2 − 0.39 (− 0.47, − 0.31) 2.04E-20 − 0.29 (− 0.45, − 0.14) 1.82E-04
PC ae C42:3 − 0.55 (− 0.62, − 0.47) 8.88E-41 − 0.22 (− 0.37, − 0.06) 6.60E‑03

PC ae C42:4 − 0.63 (− 0.70, − 0.55) 6.67E-54 − 0.47 (− 0.62, − 0.31) 6.23E-09
PC ae C42:5 − 0.58 (− 0.66, − 0.51) 1.32E-46 − 0.58 (− 0.73, − 0.43) 2.33E-13
PC ae C44:3 − 0.40 (− 0.49, − 0.32) 8.71E-22 − 0.01 (− 0.17, 0.15) 8.83E‑01

PC ae C44:4 − 0.54 (− 0.62, − 0.46) 3.36E-40 − 0.28 (− 0.44, − 0.12) 4.88E-04
PC ae C44:5 − 0.56 (− 0.64, − 0.48) 1.58E-41 − 0.57 (− 0.73, − 0.42) 5.19E-13
PC ae C44:6 − 0.62 (− 0.70, − 0.54) 1.55E-51 − 0.59 (− 0.74, − 0.43) 1.83E-13
H1 0.75 (0.68, 0.83) 2.18E-81 0.39 (0.24, 0.55) 7.73E-07
SM (OH) C14:1 − 0.52 (− 0.59, − 0.45) 9.32E-43 − 0.64 (− 0.77, − 0.50) 3.10E-19
SM (OH) C16:1 − 0.49 (− 0.56, − 0.41) 4.16E-38 − 0.59 (− 0.73, − 0.45) 1.51E-16
SM (OH) C22:1 − 0.36 (− 0.44, − 0.28) 4.29E-19 − 0.37 (− 0.52, − 0.22) 1.15E-06
SM (OH) C22:2 − 0.57 (− 0.64, − 0.50) 5.45E-56 − 0.57 (− 0.70, − 0.43) 1.72E-15
SM (OH) C24:1 − 0.38 (− 0.46, − 0.30) 3.12E-20 − 0.26 (− 0.41, − 0.10) 1.24E‑03

SM C16:0 − 0.63 (− 0.71, − 0.55) 1.38E-54 − 0.61 (− 0.76, − 0.46) 1.23E-15
SM C16:1 − 0.33 (− 0.40, − 0.25) 3.01E-18 − 0.35 (− 0.48, − 0.21) 8.45E-07
SM C18:1 − 0.16 (− 0.23, − 0.08) 2.79E-05 − 0.26 (− 0.41, − 0.12) 3.82E-04
SM C20:2 − 0.41 (− 0.49, − 0.34) 1.90E-27 − 0.22 (− 0.37, − 0.08) 3.20E‑03

SM C24:0 − 0.24 (− 0.32, − 0.15) 2.86E-08 − 0.16 (− 0.32, − 0.00) 4.49E‑02

SM C24:1 − 0.47 (− 0.55, − 0.39) 6.15E-29 − 0.47 (− 0.62, − 0.31) 4.20E-09
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for Val and Phe), when compared to corresponding con-
trols, respectively (Additional file 1: Table S2). Moreover, 
two acylcarnitines (C0 and C3) showed positive associa-
tions with abdominal obesity, hypertriglyceridemia, and 
reduced HDL–C (Fig. 2b).

Three created metabolic networks
We constructed three networks by systematically inves-
tigating the identified and replicated MetS-associated 
metabolites with MetS and its five components based 
on the CIDeR database. We found that the conver-
sions between PCs and LPCs are mediated by multiple 
enzymes (e.g., LCAT, lecithin cholesterol acyltransferase; 
LIPG, endothelial lipase; LPCAT3, lysophosphatidyl-
choline acyltransferase—3) (Fig.  4 and Additional file  1: 
Table  S3). All of these three enzymes are functionally 
interacting with at least one of the five components. For 
example, hypertension regulates LIPG’s activity which 
can hydrolyze the fatty acid from both PCs and LPCs 
(Fig. 4). Additionally, LIPG’s concentration was reported 
positively associated with increased abdominal obesity 
(waist circumference), hypertriglyceridemia, hyperglyce-
mia, and decreased HDL–C (Fig.  4). To further explore 
underlying molecular mechanisms, we created two net-
works of amino acids and acylcarnitines (Figs.  5, 6, see 
"Discussion").

Discussion
MetS is a complex syndrome derived to capture the inter-
play of risk factors for cardiometabolic diseases. To bet-
ter understand the underlying molecular mechanisms, 
we analyzed more than 3800 study participants in two 
population-based human cohorts (KORA F4 and SHIP-
TREND-0). Of 121 metabolites, 56 were identified and 
replicated as MetS-associated metabolites and further 
evaluated with each of the five components representing 
a criterion for the MetS. The creation of three metabolic 
networks facilitated the understanding of the interplay 
between metabolites, proteins, biomedical processes, 
phenotypes, and MetS components.

Our findings highlight H1 as the metabolite with the 
most positive association with MetS (Fig.  2a, Table  2), 
and exclusively associated with the component of hyper-
glycemia (Fig. 2b, and Additional file 1: Table S2). Based 
on the targeted metabolomics technology, we were una-
ble to distinguish between different hexoses. Therefore, 
it is likely that the level of H1 is mainly represented by 
glucose and thereby directly linked to the definition of 
hyperglycemia, as expected [16].

We also found that 36 PCs were associated with MetS. 
Biological membranes are composed primarily of phos-
pholipids, and phospholipids additionally serve as sub-
strates to produce bioactive compounds, and the most 
abundant phospholipids in mammalian cell membranes 

Fig. 3 The number of overlapped metabolites among the five components and comparison of the overlapped metabolite. a The Venn diagram 
displays the number of metabolites that were Bonferroni significantly associated with each component. b Box plots shows the log‑transformed and 
scaled concentrations of lysoPC a C18:2 in the MetS group, the five components of MetS groups, and the corresponding non‑case groups
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are PCs [35]. PCs play an important role in lipoprotein 
metabolism by regulating the expression of key factors in 
lipoprotein production [36]. Consistent with our obser-
vations, four long-chain acyl-alkyl PCs (PC ae C42:5, PC 
ae C44:5, PC ae C40:4, and PC ae C44:4) were inversely 
associated with MetS in a study of the Health Survey 
of Sao Paulo, which analyzed plasma samples from 130 
participants [37]. Another study analyzed morning urine 
samples and observed a higher concentration of metab-
olite PC (34:2) in individuals with MetS (N = 30) when 
compared to controls (N = 20) [22]. However, no sig-
nificant association between PC aa C34:2 and MetS was 
found in the serum samples of the KORA F4 study. This 
discrepancy could be attributed to a multitude of factors, 
including the limited sample size utilized in the analysis 
and the potential impact of using urine samples on the 
specificity of the results.

We observed that two LPCs were negatively associated 
with MetS, and especially, lysoPC a C18:2 was signifi-
cantly associated with all five MetS components. There is 
an increasing awareness of the connection between LPCs 
and cardiovascular and neurodegenerative disorders 
[38]. Prior studies have shown that LPC was important 
for the mechanism connecting saturated fatty acids to 
insulin resistance [39]. Using the targeted metabolomics 

approaches, it is shown that lower levels of lysoPC a 
C18:2 are not only found in adults with impaired glu-
cose tolerance [16], but also in obese children [40], and 
this lipid is independently associated with decreased risk 
of T2D [17] as well as myocardial infarction [41]. These 
findings exhibit consistency with our results. Besides, 
LIPG has the ability to hydrolyze fatty acids from both 
PCs and LPCs, and LIPG has a significant association 
with features of MetS, it may potentially serve as a pro-
atherogenic factor in individuals with MetS (Fig. 4) [42]. 
Furthermore, LIPG has been shown to produce LPC18:2 
from PCs [43]. This implies that LIPG has an important 
role in the pathogenesis of MetS, as it is not only asso-
ciated with the five MetS components (Fig. 4 and Addi-
tional file  1: Table  S3), but also with lysoPC a C18:2, 
which is also associated with all five components in our 
study. In addition, lysoPC a C18:2 may also be involved 
in the regulation of lipid metabolism, inflammation, and 
glucose homeostasis, which are key factors in the devel-
opment and progression of MetS [16, 17, 41]. However, 
we are just beginning to understand how PCs and LPCs 
are metabolically regulated in health and disease. To 
understand the mechanisms that underlie PC’s and LPC’s 
potential roles in metabolic diseases, future functional 
studies will be necessary.

Fig. 4 Metabolic network of PCs and LPCs. LCAT  lecithin cholesterol acyltransferase, APOA1 apolipoprotein A1, LIPG endothelial lipase, LPCAT3 
lysophosphatidylcholine acyltransferase‑3, PEMT phosphatidylethanolamine N‑methyltransferase, ENPP2 ectonucleotide pyrophosphatase/
phosphodiesterase 2, SLC2A4 solute carrier family 2, facilitated glucose transporter member 4
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Among the 14 amino acids, we found seven (Val, xLeu, 
Phe, Tyr, Ser, Gly, and Gln) were significantly associ-
ated with MetS. Consistent with previous studies, Ser 
was reported to be inversely associated with MetS in 
the Health Survey of Sao Paulo study [37]. Additionally, 
a previous study of 56 MetS participants found a posi-
tive association between MetS and BCAAs and aromatic 
amino acids, which is in line with our findings [23]. Given 
that meats and meat products are rich sources of BCAAs 
and aromatic amino acids, these observations could be a 
sign of meat consumption [44].

Recently, an untargeted metabolomics approach based 
on nuclear magnetic resonance technology was used to 
analyze about 1000 plasma samples of a community-
based study in a Chinese population [20]. Of 85 used 
metabolites, 13 (e.g., d-maltose, d-fucose, and l-orni-
thine) were selected as candidate biomarkers for MetS 
and it was concluded that arginine metabolism may play 
a role in the pathophysiological mechanism of MetS 
[20]. The observations of d-maltose and d-fucose are 
consistent with our H1 hexoses observations, however, 
both arginine (ß = −  0.11, P = 1.26E-02) and ornithine 

Fig. 5 Metabolic network of BCAAs. BCKDK branched chain ketoacid dehydrogenase kinase, BCAT2 Branched Chain Amino Acid Transaminase 2, 
SLC7A5 Solute Carrier Family 7 Member 5, PPM1K Protein phosphatase 1 K, SLC2A4 solute carrier family 2, facilitated glucose transporter member 4, 
CRAT  carnitine acetyltransferase
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(ß = 0.01, P = 9.04E-01) were not significantly associated 
with MetS in the KORA F4 study. 

We observed a positive association of BCAAs not only 
with MetS, but also with abdominal obesity, hypertri-
glyceridemia, and reduced HDL–C. The expression of 
SLC7A5 (solute carrier family 7 member 5, also known 
as LAT1, the transporter of BCAAs) was reported to be 
reduced in obese individuals, in addition, several enzymes 
associated with BCAA catabolism, such as propionyl-coA 
carboxylase (PCC), branched-chain ketoacid dehydroge-
nase (BCKD) complex and branched-chain amino acid 
transaminase 2 (BCAT2) were reported down-regulated 
(Fig. 5 and Additional file 1: Table S4). Specifically, mito-
chondrial branched-chain amino acid aminotransferase 
(BCATm) and BCKD E1α were found reduced in adipose 
tissues, but not in skeletal muscles [45, 46]. Down-regu-
lated enzymes observed in obese individuals and adipose 
tissues impair BCAA catabolism, consequently leading 
to raised BCAA levels in the circulation, as we found in 

serum samples (Fig.  5 and Additional file  1: Table  S4). 
Moreover, we observed that both carnitines (C0 and C3) 
were positively associated with MetS, abdominal obesity, 
hypertriglyceridemia, and reduced HDL–C, respectively. 
C3 is a product of BCAA catabolism, which is impaired 
in MetS, thus C3 produced from BCAA should have been 
reduced in individuals with MetS. Our observation of 
raised C3 levels may be attributable to alternative causes 
(e.g. ß-oxidation of fatty acids with odd chain length, or 
the tricarboxylic acid cycle) (Fig. 5 and Additional file 1: 
Table S4). Raised BCAA and raised C3 levels have been 
found in individuals with insulin resistance, and the 
authors suggested that the BCAA catabolism might be 
impaired in adipose tissue but increased in other tissues 
such as skeletal muscle [47]. It remains an area of ongo-
ing controversy and research whether BCAAs are a con-
tributor or the result of insulin resistance [48]. The causal 
relationship between elevated levels of BCAAs, C0, and 
C3, and metabolic disturbances remains unclear. The 

Fig. 6 Metabolic network of Ser, Gly, Phe, and Tyr. TH tyrosine hydroxylase, PAH phenylalanine hydroxylase, TAT  tyrosine aminotransferase, BH4 
tetrahydrobiopterin, THF tetrahydrofolate, GLDC glycine decarboxylase, AMT aminomethyltransferase, SHMT serine hydroxymethyltransferase
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regulation of BCAAs seems to be tissue-dependent and 
influenced by nutrition and health status, highlighting 
their potential role in obesity, diabetes, and multifactorial 
diseases such as MetS [49].

We observed that aromatic amino acids (Phe and Tyr) 
were positively associated with MetS. Phe is one of the 
essential amino acids in the human body, while Tyr is a 
semi-essential amino acid that can be synthesized from 
Phe. Three enzymes (PAH, phenylalanine hydroxylase, 
TH, tyrosine hydroxylase, and TAT, tyrosine aminotrans-
ferase) are reported to be responsible for the catabolism 
of these aromatic amino acids (Fig.  6 and Additional 
file 1: Table S5). PAH catalyzes the hydroxylation of Phe 
to Tyr [50]. Tyr can be further catabolized by TH to 
dopamine or by TAT to 4-hydroxyphenylpyruvate [51, 
52]. Reduced expression of PAH was found in pigs with 
MetS [53], TH expression was found lower in individuals 
with central obesity [54], and lowered expression of TAT 
in the liver was reported in insulin-resistant mice [51].

We also found that Gly and Ser showed significant 
negative associations with MetS and its associated condi-
tions, including increased waist circumference, hypertri-
glyceridemia, hypertension, and hyperglycemia (not for 
Ser). Gly is the simplest stable proteinogenic amino acid 
and can be biosynthesized from Ser in the body. Intake 
of Gly and Ser was reported to boost the rate of fatty 
acid oxidation and reduce triglyceride production [55, 
56]. (Fig.  6). Human serine hydroxymethyltransferases 
(SHMTs) catalyze the conversion of Ser and Gly and vice 
versa, a process that is linked to the folate cycle [57, 58]. 
Additionally, the breakdown of Gly by the glycine cleav-
age system (GCS) is also associated with the folate cycle 
[59] (Fig. 6). Interestingly, the expression of two enzymes 
in the GCS, glycine decarboxylase (GLDC), and amino-
methyltransferase (AMT), were found to be increased 
in obese rats [60] (shown with red arrows in Fig.  6). 
Folate treatment in clinical trials has shown a potential 
to improve insulin resistance and endothelial dysfunction 
in MetS patients [61]. Therefore, the increased catabo-
lism of Gly may contribute to the reduction in Gly levels. 
Both Ser and Gly play important roles in maintaining cel-
lular oxidative homeostasis [62]. Studies have shown that 
oral supplementation with Gly protects against oxidative 
damage in individuals with MetS [63]. On the other hand, 
reductions in Gly and Ser may lead to increased levels of 
reactive oxygen species (ROS) [64, 65], which could fur-
ther inhibit the catabolism of Tyr and Phe by limiting 
the availability of the cofactor tetrahydrobiopterin (BH4) 
required by TH and PAH [66]. Moreover, TAT activity 
can be inhibited under oxidative stress conditions [67]. 
Consequently, the catabolism of Tyr and Phe could also 
be further reduced by higher ROS concentrations due to 
low Gly and Ser levels. In light of these findings, it seems 

that the raised concentrations of Tyr and Phe, and low-
ered levels of Gly and Ser observed in our study, are a 
consequence of the down-regulated expression and activ-
ity of PAH, TH, and TAT, and up-regulated GLDC and 
AMT expression (Fig. 6 and Additional file 1: Table S5). 
Moreover, raised levels of Gly and Ser decreased hyper-
tension, abdominal obesity, and hypertriglyceridemia. 
This may indicate a protective effect of these two metab-
olites against MetS (Fig. 6 and Additional file 1: Table S5).

A limitation of our study is that one metabolite iden-
tified in the discovery study could not be replicated in 
SHIP-TREND-0 due to the use of different analytical kits. 
In addition, contrary to the KORA F4 study, the metabo-
lomics quantification in the SHIP-TREND-0 study was 
performed only on a subgroup of participants who did 
not report having diabetes. Thus, the study was designed 
to include a relatively healthy cohort of participants, with 
non-diabetic individuals and, consequently, no diabetes-
related diseases. Despite these structural differences in 
the study design, the study included participants with 
prediabetes, along with a sufficient number of metabo-
lites. Moreover, the successful replication of the majority 
of the results indicated that these results are very robust 
and generalizable. An additional limitation of the study is 
that metabolites such as PCs and LPCs represent a group 
of possible metabolites rather than a single molecule. For 
instance, the metabolite lysoPC a C18:2 is known for its 
carbon chain length of the fatty acid and number of dou-
ble bonds, but the position of the double bonds remains 
undefined. Therefore, the fatty acid in this LPC might be 
linoleic acid (C18:2 9Z, 12Z) or conjugated linoleic acid 
(C18:2 9E, 11E or C18:2 10E, 12Z) with different posi-
tions of the double bonds. For the PCs, the range of pos-
sible molecules is even wider, since we know the sum of 
the chain lengths and the sum of the double bonds of the 
two fatty acids in PC, but not which fatty acid is found 
at the sn1 or sn2 position. The level of the PCs or LPCs 
is determined by biosynthesis or catabolism, and the 
enzymes involved in these processes often exhibit a pref-
erence for specific fatty acids at specific positions. How-
ever, the substrate spectrum for all the enzymes is not yet 
fully known. Consequently, we were unable to construct 
networks for specific PCs or LPCs in our metabolic net-
work analysis.

Conclusion
MetS is a complex and multifaceted syndrome, char-
acterized by overlapping and interacting mechanisms 
that are not identical across individual phenotypes. A 
notable finding from our study is the identification of 
lysoPC a C18:2, a metabolite negatively associated 
not only with MetS but also with its five components. 
This metabolite might have the potential to be a key 
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molecule in the prevention and treatment of MetS. 
Consequently, a greater and deeper comprehension of 
the lysoPC a C18:2 metabolic process, and its effect on 
the development of MetS is required. Additionally, the 
biological processes and enzymes involved in the net-
work analysis of specific replicated MetS-associated 
metabolites can also be explored for preventive and 
therapeutic purposes.
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