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Abstract 

Background Microvascular dysfunction (MVD) is an important contributor to major clinical disease such as stroke, 
dementia, depression, retinopathy, and chronic kidney disease. Alcohol consumption may be a determinant of MVD.

Objective Main objectives were (1) to study whether alcohol consumption was associated with MVD as assessed 
in the brain, retina, skin, kidney and in the blood; and (2) to investigate whether associations differed by history of 
cardiovascular disease or sex.

Design We used cross-sectional data from The Maastricht Study (N = 3,120 participants, 50.9% men, mean age 
60 years, and 27.5% with type 2 diabetes [the latter oversampled by design]). We used regression analyses to study the 
association between total alcohol (per unit and in the categories, i.e. none, light, moderate, high) and MVD, where all 
measures of MVD were combined into a total MVD composite score (expressed in SD). We adjusted all associations for 
potential confounders; and tested for interaction by sex, and history of cardiovascular disease. Additionally we tested 
for interaction with glucose metabolism status.

Results The association between total alcohol consumption and MVD was non-linear, i.e. J-shaped. Moderate versus 
light total alcohol consumption was significantly associated with less MVD, after full adjustment (beta [95% confi-
dence interval], -0.10 [-0.19; -0.01]). The shape of the curve differed with sex  (Pinteraction = 0.03), history of cardiovascular 
disease  (Pinteraction < 0.001), and glucose metabolism status  (Pinteraction = 0.02).

Conclusions The present cross-sectional, population-based study found evidence that alcohol consumption may 
have an effect on MVD. Hence, although increasing alcohol consumption cannot be recommended as a policy, this 
study suggests that prevention of MVD may be possible through dietary interventions.
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Introduction
Major clinical diseases such as stroke [1], dementia [1], 
depression [1], retinopathy [2], and chronic kidney dis-
ease [3] are thought to be (in part) caused by microvascu-
lar dysfunction (MVD). Mechanistically, MVD is thought 
to hamper hemodynamic autoregulation, which can 
predispose capillaries to a detrimentally high pressure, 
leading to capillary dilation, leakage, rupture, nonperfu-
sion (i.e. ischemia), and, ultimately, clinical symptoms 
of stroke [1], dementia [1], depression [1], retinopathy 
[2], and chronic kidney disease [3]. Biologically, MVD 
is thought to be to an important extent caused by an 
impaired endothelial cell nitric oxide (NO) bioavailabil-
ity, a hall mark feature of endothelial cell dysfunction [2].

Subtle functional and structural changes of the micro-
vasculature, which reflect (more) MVD, can be non-
invasively assessed in various organs [2]. First, presence 
of features of cerebral small vessel disease (CSVD; i.e. 
greater white matter hyperintensity volume, more cer-
ebral microbleeds, and more lacunar infarcts) can be 
assessed in the brain [2]. These features are thought 
to reflect structural deterioration of the brain and are 
thought to be (in part) caused by MVD [2].Second, MVD 
in the retina can be inferred from wider or narrower reti-
nal arteriolar diameters, wider retinal venular diameters, 
or as lower flicker light-induced increase in retinal micro-
vascular diameters [2]. The interpretation of the retinal 
arteriolar diameter is thought to depend on the stage of 
MVD, with widening as an early-stage and narrowing as 
a later-stage feature of MVD [2, 4]. Third, MVD in skin, 
kidney, and blood can respectively be assessed as lower 
heat-induced skin hyperemia, higher urinary albumin 
excretion (UAE), and higher levels of plasma biomarkers 
of MVD (i.e. higher levels of soluble intercellular adhe-
sion molecule-1 [sICAM-1], soluble vascular adhesion 
molecule-1 [sVCAM-1], soluble E-selectin [sE-selectin] 
and Von Willebrand Factor [vWF]) [2].

Alcohol consumption may be a potentially modifiable 
determinant of MVD and many studies suggest that the 
association between alcohol consumption and MVD may 
be J-shaped [2, 5, 6]. Mechanistically, at certain lower lev-
els of alcohol consumption, ethanol and polyphenols, the 
main bioactive constituents in alcoholic beverages, may 
be able to reduce MVD via increasing endothelial cell NO 
bioavailability. First, ethanol can increase NO bioavaila-
bility via stimulating NO synthesis by the endothelial cell 
NO synthase enzyme (eNOS) [7, 8]. Second, polyphenols 
are thought to increase NO bioavailability via reducing 
oxidative stress (oxidative stress is a potent reductor of 
NO bioavailability) [2, 9, 10]. Additionally, as wine and 
beer contain more polyphenols than spirits, wine and 
beer may be stronger stimulators of NO bioavailability 
than spirits [5]. In contrast, at certain higher levels of 

alcohol consumption, ethanol can induce oxidative stress 
[5]. Therefore, there may be a threshold where NO bio-
availability is more impaired by ethanol than increased 
by polyphenols and ethanol, resulting in more instead 
of less MVD [5]. In addition, at which levels of alcohol 
consumption this threshold occurs and how strong the 
effects of alcohol consumption on MVD are may differ 
by background levels of oxidative stress (which are pre-
sumably higher in e.g. individuals with, versus without, a 
history of cardiovascular disease) [10–12] and by sex [13, 
14].

Indeed, there is some evidence that alcohol consump-
tion may be a determinant of MVD, and that the associa-
tion of alcohol consumption with MVD may be J-shaped, 
however, this evidence has important limitations [15–53]. 
First, many population-based studies did not quantify the 
amount of alcohol consumption [15, 18, 21, 27, 28, 32, 33, 
37, 40, 44, 47, 50, 52]; did not take potential cardiovascu-
lar [16–20, 22, 25, 26, 29, 34, 35, 38, 39, 41, 45, 46, 48, 49, 
51, 53] and/or lifestyle [23, 24, 31, 32, 42, 43] confound-
ers in to account; and/or did not account for sick quitters 
[19, 22, 30, 34, 36, 42, 43] (i.e. individuals who quit drink-
ing and are thought to have an increased cardiovascular 
risk) [54, 55]. Second, only few studies investigated the 
associations of wine, beer, and spirits consumption with 
MVD [23, 26, 27, 42, 43, 45]. Third, no population-based 
studies have yet reported the association between alcohol 
consumption and MVD in individuals with and without a 
history of cardiovascular disease.

In view of the above, we investigated, using a large, 
well-characterized population-based cohort study, 
whether total alcohol, wine, beer, and spirits consump-
tion were associated with MVD, estimated from features 
of CSVD, retinal microvascular diameters, flicker light-
induced increase in retinal microvascular diameters, 
heat-induced skin hyperemia, UAE, and plasma biomark-
ers of MVD. In addition, we tested whether associations 
were modified by history of cardiovascular disease or sex.

Methods
Study population and design
The present study used data from The Maastricht Study, 
an observational population-based cohort study. The 
rationale and methodology have been described previ-
ously [56]. In brief, the study focuses on the etiology, 
pathophysiology, complications and comorbidities of dia-
betes mellitus type 2 and is characterized by an extensive 
phenotyping approach. Eligible for participation were all 
individuals aged between 40 and 75  years and living in 
the southern part of the Netherlands. Participants were 
recruited through mass media campaigns, the municipal 
registries and the regional Diabetes Patient Registry via 
mailings. Recruitment was stratified according to known 
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type 2 diabetes status, with an oversampling of individu-
als with type 2 diabetes for reasons of efficiency. The 
present report includes cross-sectional data from 3,451 
participants who completed the baseline survey between 
November 2010 and September 2013.

Magnetic resonance imaging (MRI) measurements 
were implemented from December 2013 onwards until 
February 2017 and were available in 2,318 out of 3,451 
participants [57]. The examinations of each participant 
were performed within a time window of three months. 
The study has been approved by the institutional medi-
cal ethical committee (NL31329.068.10) and the Minister 
of Health, Welfare, and Sports of the Netherlands (Per-
mit 131088–105234-PG). All participants gave written 
informed consent.

Alcohol consumption
Habitual alcohol consumption over the past 12  months 
was assessed via a self-administered validated food fre-
quency questionnaire (FFQ) [58]. Total alcohol consump-
tion was calculated from the questionnaire-assessed 
average consumption of individual types of wine (i.e. red 
wine, white wine, strong wine [such as sherry]), indi-
vidual types of beer (i.e. pilsner, light alcoholic beer, high 
alcoholic beer) and spirits [58]. The intraclass correla-
tion coefficient for alcohol consumption assessed by FFQ 
versus (up to 5) 24-h recalls was 0.78 (95% confidence 
interval, 0.70–0.83; n = 135) [58]. We categorized alco-
hol consumption into none (< 1 unit per week [for both 
men and women]), light (≥ 1 unit/week to 1 unit/day for 
men, ≥ 1 unit/week to 0.5 unit/day for women), mod-
erate (> 1 to 2 units/day for men, > 0.5 to 1 unit/day for 
women), and high (> 2 units/day for men, > 1 units/day 
for women) where 1 unit was defined as 10  g/day (g/d) 
of total alcohol (i.e. ethanol) consumption, 100 g/d of red 
or white wine consumption, 50 g/day of strong wine con-
sumption, 225 g/d of pilsner, 320 g/d light alcoholic beer 
consumption, 160  g/d of high alcoholic beer consump-
tion, or 35 g/d of spirits consumption [59].

Features of CSVD, microvascular retinal diameters, 
and measures of MVD
Here, we briefly describe the methods used; a detailed 
description is provided in the Extended Methods (Addi-
tional file 1).

Features of CSVD
We evaluated three CSVD features, i.e. white matter 
hyperintensity volume, cerebral microbleeds, and lacu-
nar infarcts with a 3 T brain MRI scanner (Siemens Mag-
netom Prisma-fit Syngo MR D13D, Erlangen, Germany).

Retinal microvascular diameters
We measured retinal microvascular diameters with static 
retinal vessel analysis from an optic disk-centered fundus 
photograph with the retinal health information and noti-
fication system (RHINO) software, as described previ-
ously [60]. In brief, we measured the diameter (expressed 
in measurement units [MU]) of the six largest retinal 
vessels at 0.5–1.0-disc diameter away from the optic disc 
margin. Diameters of arteriolar or venular vessels were 
combined into an average arteriolar retinal diameter (i.e. 
central retinal arteriolar equivalent [CRAE]) or venular 
retinal diameter (i.e. central retinal venular equivalent 
[CRVE]).

Flicker light‑induced increase in retinal arteriolar and venular 
diameter
We assessed the flicker light-induced increase in reti-
nal arteriolar and venular diameters (in MU) with the 
Dynamic Vessel Analyzer (Imedos, Jena, Germany), as 
previously described [61–63]. Briefly, a 50  s-baseline 
recording was consecutively followed by a 40-s flicker 
light exposure and a 60-s recovery period. Baseline diam-
eter was calculated as the average diameter between 20 
and 50 s of the baseline recording. The diameter during 
flicker light exposure was calculated as the mean of the 
diameters assessed at time points 10 and 40  s of flicker 
light stimulation exposure. Flicker light-induced increase 
in retinal diameter was calculated as the diameter during 
flicker light exposure minus the baseline diameter.

Heat‑induced skin hyperemia
We measured heat-induced skin hyperemia by laser Dop-
pler flowmetry (Perimed, Järfälla, Sweden), as previously 
described [61, 63]. Briefly, at the wrist skin blood flow, 
expressed in arbitrary perfusion units (PU), was recorded 
unheated for 2  min to serve as a baseline. After 2  min, 
the temperature of the laser Doppler probe was rapidly 
and locally increased to 44 °C and was kept constant until 
the end of the registration. Heat-induced increase in skin 
blood flow was expressed as the increase in skin blood 
flow during the 23  min heating phase. We calculated 
heat-induced increase in skin blood flow as the average 
skin blood flow during the 23 min heating phase minus 
the baseline skin blood flow (i.e. average skin blood flow 
during the first 2 min).

Urinary albumin excretion
Urinary albumin excretion (UAE) was calculated as the 
average UAE of two 24-h urine collections (two collec-
tions were available for 91.3% of participants). We used 
an automatic analyzer to measure urinary albumin con-
centration with a standard immunoturbidimetric assay. 
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We multiplied urinary albumin concentration by collec-
tion volume to obtain 24-h UAE. The detection limit for 
assessment of urinary albumin concentration was set at 
1.5 mg/L.

Plasma biomarkers of microvascular dysfunction
We evaluated four plasma biomarkers of microvascular 
dysfunction (MVD) i.e. soluble intercellular adhesion 
molecule-1 [sICAM-1], soluble vascular adhesion mol-
ecule-1 [sVCAM-1], soluble E-selectin [sE-selectin], and 
Von Willebrand Factor [vWF] [64]. sICAM-1, sVCAM-1, 
and sE-selectin were measured in EDTA plasma samples 
with commercially available 4-plex sandwich immuno-
assay kits with different standards and antibodies (Meso 
Scale Discovery, Rockville, Maryland, United States of 
America). vWF was quantified in citrate plasma using 
ELISA (Dako, Glostrup, Denmark).

Covariates
As described previously [56], we determined glucose 
metabolism status according to the World Health Organ-
ization 2006 criteria as normal glucose metabolism, pre-
diabetes, type 2 diabetes, or other types of diabetes than 
type 2 [65]; assessed educational level (low, intermediate, 
high), income level and occupational status (low, inter-
mediate, high) as measures of socioeconomic status [66], 
smoking status (never, former, current), and history of 
cardiovascular disease by questionnaire; assessed dietary 
habits with the Dutch Healthy Diet index sum score, a 
measure of adherence to the Dutch dietary guidelines 
2015 [67], based on a validated food frequency question-
naire [58]; assessed lipid-modifying, antihypertensive, 
and glucose-lowering medication use as part of a medica-
tion interview; assessed weight, height, waist circumfer-
ence, office and 24-h ambulatory blood pressure during a 
physical examination; calculated body-mass index (BMI) 
based on body weight and height; measured total daily 
physical activity (hours/day) with an accelerometer [68]; 
measured fasting plasma glucose, 2-h post load glucose, 
hemoglobin A1c (HbA1c), lipid profile, serum creatinine, 
serum cystatin C, and plasma biomarkers of low-grade 
inflammation [69] (i.e. high-sensitive C-reactive protein, 
serum amyloid A, interleukin-6, interleukin-8 and tumor 
necrosis factor alpha) in fasting venous blood samples; 
calculated the estimated glomerular filtration rate (eGFR) 
with the CKD-EPI (Chronic Kidney Disease Epidemiol-
ogy collaboration) formula using serum creatinine and 
cystatin C [70]; and assessed presence of retinopathy in 
both eyes via fundus photography.

Statistical analyses
We used a total MVD composite score as endpoint. We 
composed a total MVD composite score because we 

assume that all measures of MVD under study repre-
sent a similar underlying measure of MVD [2]. In order 
to perform analyses we recalculated several variables. 
First, we inversed (i.e. multiplied by -1) flicker light-
induced increase in retinal arteriolar and venular diam-
eters and heat-induced skin hyperemia so that higher 
values indicate more MVD. Second, we logarithmically 
transformed white matter hyperintensity volume, cer-
ebral microbleeds, lacunar infarcts, and UAE as these 
outcome variables were not normally distributed. Third, 
to reduce noise (i.e. measurement error) we calculated 
composite scores for CSVD features, retinal microvas-
cular diameters, flicker light-induced increase in retinal 
microvascular diameters, plasma biomarkers of MVD, 
and total MVD [71]. To maximize the number of partici-
pants that we could use in the main analyses, we included 
participants in the main analyses if data were available for 
at least two out of six measures of MVD. Then, we per-
formed complete cases analyses, i.e. we included indi-
viduals in the main analyses if they had complete data on 
the total MVD composite score, alcohol consumption, 
and covariates required for the main statistical models 
(shown below). Last, we recalculated the Dutch Healthy 
Diet score so that the “diet score” reflects dietary intake 
without alcohol consumption.

As the association between alcohol consumption and 
MVD may be non-linear and quadratic (i.e. J-shaped), as 
previously described, we tested for a quadratic associa-
tion [72]. To test for a quadratic association, we entered 
a quadratic term of total alcohol consumption in to the 
model (we used the formula y = x +  x2). If the P-value of 
the quadratic term was < 0.05, we considered the associa-
tion statistically better described by a quadratic associa-
tion than by a linear association. We performed this test 
for total alcohol consumption instead of individual types 
of alcohol for reasons of statistical power, i.e. as the range 
of total alcohol consumption is greater than the range of 
individual types of alcohol consumption, the statistical 
power to detect a non-linear association is likely greater 
[73]. In these analyses we did not exclude zero alcohol 
consumers (more details in the next paragraph).

We used multivariable regression analyses to analyze 
non-linear and linear associations of total alcohol con-
sumption, wine, beer, and spirits consumption with the 
total MVD composite score.

We analyzed both linear and non-linear associations. 
For non-linear analyses, we entered total alcohol con-
sumption, wine, beer, and spirits consumption into 
the statistical model as dummies of none, moderate, or 
high, versus light, alcohol consumption. Wine, beer, and 
spirits consumption were entered in the same model to 
allow mutual adjustment for consumption of other alco-
holic beverages. In these analyses we used light drinkers 
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as a reference group as we cannot distinguish so-called 
sick quitters from never drinkers (i.e. life-long abstain-
ers) within the none consumers [55]. For linear analyses, 
we entered alcohol in the model as a continuous varia-
ble (per unit). For P for trend analyses, we entered alco-
hol consumption in the model as a categorical variable 
(coded 0 = none, 1 = light, 2 = moderate, and 3 = high 
alcohol consumption). For all linear analyses, we used 
zero drinkers as reference group. We did not use light 
drinkers as a reference group for linear analyses because 
in order to perform such analyses zero drinkers should be 
excluded, a methodological choice which would result in 
a substantial reduction in the size of the study population 
and a considerable loss of statistical power [73].

Model 1 shows crude results. In model 2 we adjusted 
for age, sex, glucose metabolism status (entered as dum-
mies of prediabetes, type 2 diabetes, or other types of 
diabetes versus normal glucose metabolism status [ref-
erence]) and educational level (low [reference], middle, 
high). We chose these variables as they are key potential 
confounders (all) or because individuals were oversam-
pled by design according to a certain condition (type 
2 diabetes). In model 3A we additionally adjusted for 
potential confounders (waist circumference, smoking sta-
tus [never {reference, current, former,}], and diet score). 
In model 3B we additionally adjusted for variables which 
are potential confounders and may additionally also be 
potential mediators (office systolic blood pressure, use 
of antihypertensive medication [yes/no], total choles-
terol/HDL cholesterol ratio, lipid-modifying medication 
[yes/no], and history of cardiovascular disease [yes/no]). 
Data were expressed as regression coefficients and corre-
sponding 95% confidence intervals.

We tested for interaction by history of cardiovascular 
disease and sex. We a priori hypothesized that the shape 
of the association may differ between individuals with 
and without a history of cardiovascular disease [10–12] 
and between men and women [13, 14]. We used a like-
lihood ratio test to test for interaction. The likelihood 
ratio test compares the goodness in fit between the fully 
adjusted model (model 3B) with and without an inter-
action term (e.g. history of cardiovascular disease*total 
alcohol consumption). A statistically significant P-value 
from the likelihood ratio test indicates that the shape 
of the association under study is (statistically) different 
between subgroups (e.g. between individuals with and 
without a history of cardiovascular disease).

To test robustness of our observations we performed 
several additional analyses. Here we highlight a selection, 
all additional analyses are presented in the Supplemen-
tal Methods section. First, we analyzed associations of 
alcohol consumption with individual measures of MVD 
under study. Second, we tested whether the association 

of total alcohol consumption with the total MVD com-
posite score was modified by individual cardiovascular 
risk factors (i.e. glucose metabolism status, hypertension, 
current smoking, and dyslipidemia). To test whether 
this association was modified by individual cardiovas-
cular risk factors, we tested for interaction by these fac-
tors. Third, we investigated the association between total 
alcohol consumption and the total MVD composite score 
in individuals with zero, one, two, three, or four of the 
above cardiovascular risk factors to investigate whether 
associations were stronger in individuals with pre-
sumed increasingly higher levels of oxidative stress. Last, 
we investigated how the shape of the association was 
impacted when we left either wine, beer, or spirits out of 
the total alcohol consumption index.

We performed all regression analyses with Statistical 
Package for Social Sciences version 23.0 (IBM SPSS, IBM 
Corp, Armonk, NY, USA) and likelihood ratio tests with 
Software for Statistics and Data Sciences version 14.0 
(StataCorp, Texas, USA). For all analyses, including inter-
action analyses, a P-value < 0.05 was considered statisti-
cally significant.

Results
Selection and characteristics of the study population
Figure  1 shows an overview of the study population 
selection and Tables 1A and 1B show general character-
istics according to total alcohol consumption (shown for 
individuals with complete data on UAE [n = 3,107]). Gen-
eral characteristics of individuals in the study population 
are: mean age 60 years old, 51% men, 27.5% type 2 diabe-
tes. Next, 16%, 31%, 20%, and 33% of participants were, 
respectively, none, light, moderate, and high total alcohol 
consumers, and 59%, 43%, and 10% of participants were, 
wine, beer, and/or spirits consumers, respectively. Over-
all, participants who consumed more alcohol were older 
and less likely to have type 2 diabetes. General charac-
teristics of participants included in the study were highly 
comparable to those of participants with missing data 
(Additional file  1: Tables S1 and S2 show general char-
acteristics of individuals who had available and missing 
data).

Associations between alcohol consumption and measures 
of MVD
The association between total alcohol consumption 
and MVD was non-linear, i.e. J-shaped (model 3B; 
 Pquadratic-value = 0.01; Fig.  2). The mathematical mini-
mum of the J-curve (“minimum”) was at approximately 
4 units/day in the crude model (i.e. the amount of total 
alcohol consumption where the association becomes 
directionally different; Fig.  2). After full adjustment 
(model 3B), moderate versus light total alcohol, wine, 
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beer, and spirits consumption was statistically signifi-
cantly associated with less MVD (model 3B; moderate 
versus light total alcohol, wine, beer, and spirits con-
sumption, respectively; standardized betas [95% confi-
dence interval], − 0.10 [− 0.19; − 0.01]; − 0.15 [− 0.25; 
−  0.05]; −  0.13 [−  0.25; −  0.02]; and −  0.16 [−  0.29; 
− 0.04]; Table 2 and Fig. 3).

Interaction analyses
History of cardiovascular disease and sex modified the 
association between total alcohol consumption and 
the total MVD composite score (P-for-interaction val-
ues: < 0.001 and = 0.03, respectively). Additional file  1: 
Table S3 shows all P-for-interaction values.

Stratified analyses
History of cardiovascular disease
In individuals with and without a history of cardiovas-
cular disease the shapes of the non-linear association of 
total alcohol consumption with the total MVD composite 
score were different, both with regard to the location of 
the minimum of the J-curve as well as the depth of the 

minimum of the J-curve. The minimum of the J-curve, 
was at approximately 6 units/day in the crude model in 
individuals with a history of cardiovascular disease; and 
at approximately 2 units/day in the crude model in indi-
viduals without a history of cardiovascular disease (Addi-
tional file 1: Figure S1). Then, the minimum of the J-curve 
was lower in individuals with, versus without, a history of 
cardiovascular disease (indicating that higher than light 
total alcohol consumption was more strongly associated 
with less MVD in individuals with, versus without, a his-
tory of cardiovascular disease; e.g. model 3B; for moder-
ate versus light total alcohol consumption, -0.22 [-0.44; 
-0.01] in individuals with a history of cardiovascular dis-
ease versus -0.09 [-0.19; 0.01] in individuals without a 
history of cardiovascular disease; Fig.  3 and Additional 
file  1: Table  S4). Next, in individuals with a history of 
cardiovascular disease, wine and beer consumption were 
more strongly associated with less MVD than spirits 
consumption (model 3B; for moderate versus light wine, 
beer, and spirits consumption, respectively, -0.29 [-0.56; 
-0.03]; -0.28 [-0.55; 0.00]; and -0.21 [-0.51; 0.10]; Addi-
tional file 1: Table S4 and S Additional file 1: Figure S2).

Fig. 1 Delineates the selection of participants for inclusion. CSVD, cerebral small vessel disease; UAE, urinary albumin excretion; MVD, microvascular 
dysfunction
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Table 1 General characteristics of the MVD study population in the UAE study population

Characteristic Total study population
(n = 3107)

Total alcohol consumption

None
(n = 498)

Light
(n = 964)

Moderate
(n = 620)

High
(n = 1,025)

Demographics

 Age, years 59.9 ± 8.2 59.0 ± 8.6 59.1 ± 8.8 60.1 ± 8.2 61.0 ± 7.2

 Men 1,582 (50.9) 163 (32.7) 555 (57.6) 357 (57.6) 507 (49.5)

Lifestyle factors

 Smoking status

  Never 1088 (35.0) 214 (43.0) 379 (39.3) 236 (38.1) 259 (25.3)

  Former 1,624 (52.3) 196 (39.4) 480 (49.8) 313 (50.5) 635 (62.0)

  Current 395 (12.7) 88 (17.7) 105 (10.9) 71 (11.5) 131 (12.8)

Body mass index*, kg/m2 27.0 ± 4.5 28.2 ± 5.5 27.5 ± 4.6 26.4 ± 3.9 26.3 ± 4.0

Waist circumference, cm 95.8 ± 13.7 97.4 ± 15.7 97.3 ± 14.0 94.5 ± 12.7 94.2 ± 12.7

Physical activity*, hours/day 2.0 ± 0.7 1.9 ± 0.8 1.9 ± 0.7 2.0 ± 0.6 2.1 ± 0.7

Dutch Healthy Diet score, points 83.2 ± 14.7 84.8 ± 14.7 84.9 ± 14.1 85.7 ± 14.4 79.4 ± 14.8

Cardiovascular risk factors

 Glucose metabolism status

  Normal glucose metabolism 1,760 (56.6) 209 (42.0) 538 (55.8) 385 (62.1) 628 (61.3)

  Prediabetes 460 (14.8) 59 (11.8) 137 (14.2) 90 (14.5) 174 (17.0)

  Type 2 diabetes 854 (27.5) 225 (45.2) 282 (29.3) 137 (22.1) 210 (20.5)

  Other types of diabetes 33 (1.1) 5 (1.0) 7 (0.7) 8 (1.3) 13 (1.3)

  Fasting plasma glucose*, mmol/l 5.5 [5.1–6.5] 5.8 [5.1–7.3] 5.5 [5.0–6.7] 5.5 [5.0–6.4] 5.5 [5.1–6.2]

  2-h post load plasma glucose*, mmol/l 9.3 [6.3–9.3] 7.4 [5.5–13.0] 6.3 [5.0–9.4] 6.1 [4.9–8.3] 6.1 [5.1–8.4]

  HbA1c*, % 5.7 [5.4–6.2] 5.9 [5.5–6.7] 5.7 [5.3–6.3] 5.6 [5.3–6.1] 5.6 [5.3–6.0]

  Use of glucose-lowering medication 697 (22.4) 196 (39.4) 244 (25.3) 102 (16.5) 155 (15.1)

  Total/HDL cholesterol ratio 3.7 ± 1.2 3.8 ± 1.2 3.8 ± 1.2 3.6 ± 1.1 3.5 ± 1.2

  Use of lipid-modifying medication 1,137 (36.6) 231 (46.4) 347 (36.0) 222 (35.8) 337 (32.9)

  Office systolic blood pressure, mm Hg 135.0 ± 18.3 134.4 ± 18.3 134.3 ± 18.1 135.9 ± 18.4 135.5 ± 18.3

  Office diastolic blood pressure, mm Hg 76.1 ± 9.9 75.0 ± 9.2 76.4 ± 10.0 76.3 ± 10.6 76.4 ± 9.8

  Ambulatory systolic blood pressure, mm Hg 118.9 ± 11.7 116.7 ± 11.1 118.6 ± 11.7 119.8 ± 11.8 119.7 ± 11.7

  Ambulatory diastolic blood pressure, mm Hg 73.4 ± 7.1 71.9 ± 9.0 73.7 ± 7.2 73.6 ± 7.3 73.7 ± 7.1

  Use of antihypertensive medication 1,252 (40.3) 261 (52.4) 387 (40.1) 236 (38.1) 368 (35.9)

  History of cardiovascular disease 522 (16.8) 115 (23.1) 175 (18.2) 101 (16.3) 131 (12.8)

  Diabetic retinopathy* 41 (1.6) 9 (2.1) 20 (2.5) 6 (1.1) 6 (0.6)

  eGFR, ml/min/1.732 88.0 ± 14.9 86.4 ± 17.3 87.3 ± 15.5 88.6 ± 14.6 89.0 ± 13.2

Biomarkers of low-grade inflammation*

 C-reactive protein, µg/ml 1.2 [6.1–2.8] 1.7 [0.7–3.8] 1.4 [0.7–3.0] 1.2 [0.6–2.5] 1.0 [0.6–2.3]

 Serum amyloid A, µg/ml 3.3 [2.1–5.4] 3.7 [2.3–6.4] 3.3 [1.9–5.7] 3.2 [2.0–5.3] 3.2 [2.1–5.1]

 Tumour necrosis factor alpha, pg/ml 2.2 [1.9–2.6] 2.3 [1.9–2.7] 2.2 [1.9–2.6] 2.2 [1.9–2.5] 2.1 [1.8–2.5]

 Interleukin-6, pg/ml 4.1 [3.3–5.3] 0.7 [0.5–1.0] 0.6 [0.4–0.9] 0.6 [0.4–0.8] 0.6 [0.4–0.9]

 Interleukin-8, pg/ml 4.1 [3.3–5.3] 4.2 [3.4–5.4] 4.2 [3.3–5.4] 3.9 [3.2–5.3] 4.2 [3.3–5.3]

Other

 Educational status

  Low 1041 (33.5) 225 (45.2) 331 (34.3) 190 (30.6) 295 (28.8)

  Medium 877 (28.2) 158 (31.7) 285 (29.6) 172 (27.7) 262 (25.6)

  High 1189 (38.3) 115 (23.1) 348 (36.1) 258 (41.6) 468 (45.7)

 Occupational status*

  Low 801 (31.0) 177 (46.6) 265 (32.5) 151 (28.8) 208 (20.3)

  Middle 922 (35.7) 130 (34.2) 289 (35.5) 198 (37.7) 305 (35.3)

  High 860 (33.3) 73 (19.2) 261 (32.0) 176 (33.5) 350 (40.6)
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Sex
In men and women, the shapes of the associations of 
total alcohol consumption with the total MVD compos-
ite score clearly differed with regard to the location of the 

minimum of the J-curve and somewhat, but not materi-
ally, differed with regard to the depth of the minimum of 
the J-curve. The minimum of the J-curve for total alco-
hol consumption in the association with the total MVD 

Data are presented as mean ± standard deviation, median [interquartile range] or n (%)

Definitions of alcohol consumption categories: none (< 1 unit per week [for both men and women]); light (≥ 1 unit/week to 1 unit/day for men, ≥ 1 unit/week to 0.5 
unit/day for women); moderate (> 1 to 2 units/day for men, > 0.5 to 1 unit/day for women); and high (> 2 units/day for men, > 1 units/day for women)

HbA1c glycated hemoglobin, HDL high-density lipoprotein, SD standard deviation, CSVD cerebral small vessel disease, SD standard deviation, MVD microvascular 
dysfunction, PU perfusion units, ICAM soluble intercellular adhesion molecule-1, sVCAM soluble vascular adhesion molecule-1, sE-selectin soluble E-selectin, vWF von 
Willebrand factor, UAE urinary albumin excretion, MU measurement units
† value shown for study population with complete data on cerebral small vessel disease, or retinal arteriolar and venular diameters, or flicker light-induced increase in 
retinal arteriolar and venular diameter, or heat-induced skin hyperemia, or UAE, or plasma biomarkers of microvascular dysfunction i.e. for features of cerebral small 
vessel disease n = 2075; for retinal arteriolar and venular diameters n = 2721; for flicker light-induced increase in retinal arteriolar and venular diameter n = 2090; for 
heat-induced skin hyperemia n = 1517; for urinary albumin excretion n = 3107; and for plasma biomarkers of microvascular dysfunction n = 3078
* Data were available for: ambulatory blood pressure, n = 1345; BMI, n = 3106; physical activity, n = 2408; fasting plasma glucose, n = 3106; 2-h post load glucose, 
n = 2868; HbA1c, n = 3100; diabetic retinopathy, n = 2610; eGFR, n = 3082; biomarkers of low grade-inflammation, n = 2079; occupational status, n = 2,583; income, 
n = 2,368

Table 1 (continued)

Characteristic Total study population
(n = 3107)

Total alcohol consumption

None
(n = 498)

Light
(n = 964)

Moderate
(n = 620)

High
(n = 1,025)

  Income per month*, euros 2028 ± 818 1653 ± 704 1919 ± 725 2123 ± 823 2229 ± 869

Alcohol consumption

 Total alcohol consumption, units/day 0.85 [0.2–1.9] 0.0 ± 0.0 0.3 [0.1–0.5] 1.1 [0.8–1.5] 2.3 [1.8–3.1]

 Total wine consumption, units/day 0.3 [0.0–1.1] 0.0 ± 0.0 0.1 [0.0–0.3] 0.6 [0.3–0.9] 1.7 [0.9–2.1]

 Total beer consumption, gram/day 0.1 [0.0–0.5] 0.0 ± 0.0 0.1 [0.0–0.3] 0.3 [0.0–0.8] 0.3 [0.0–1.6]

 Total spirits consumption, units/day 0.0 [0.0–0.0] 0.0 ± 0.0 0.0 [0.0–0.0] 0.0 [0.0–0.0] 0.0 [0.0–0.1]

Endpoints

 CSVD features

  White matter hyperintensity volume,  ml† 0.0 [0.0–0.1] 0.0 [0.0–0.1] 0.0 [0.0–0.0] 0.0 [0.0–0.1] 0.0 [0.0–0.1]

  Presence of cerebral  microbleeds† 245 (11.8) 26 (8.3) 74 (11.8) 60 (14.2) 85 (11.9)

  Number of cerebral microbleeds 0.0 [0.0–0.0] 0.0 [0.0–0.0] 0.0 [0.0–0.0] 0.0 [0.0–0.0] 0.0 [0.0–0.0]

  Presence of lacunar  infarcts† 114 (5.5) 20 (6.4) 37 (5.9) 21 (5.0) 36 (5.0)

  Number of lacunar infarcts 0.0 [0.0–0.0] 0.0 [0.0–0.0] 0.0 [0.0–0.0] 0.0 [0.0–0.0] 0.0 [0.0–0.0]

  Composite  score† 0.0 ± 1.0 − 0.0 ± 1.0 − 0.0 ± 1.0 0.0 ± 1.0 0.0 ± 1.0

Retinal microvascular diameters

 Arteriolar diameter,  MU† 142.3 ± 20.2 145.3 ± 19.9 143.0 ± 20.1 140.9 ± 20.7 141.1 ± 20.1

 Venular diameter,  MU† 214.6 ± 31.4 218.2 ± 31.3 215.6 ± 32.2 211.0 ± 31.4 214.0 ± 30.4

 Composite  score† 0.0 ± 1.0 − 0.0 ± 1.0 − 0.0 ± 1.0 0.1 ± 1.0 0.0 ± 1.0

Flicker light-induced increase in retinal microvascular diameters

 Arteriolar flicker light-induced dilation,  MU† 4.4 ± 3.6 4.1 ± 3.7 4.3 ± 3.4 4.8 ± 3.8 4.3 ± 3.5

 Venular flicker light-induced dilation,  MU† 7.6 ± 4.1 7.7 ± 4.2 7.5 ± 4.0 7.5 ± 4.1 7.7 ± 4.1

 Composite score† 0.0 ± 1.0 0.0 ± 1.0 0.0 ± 1.0 -0.1 ± 1.0 -0.0 ± 1.0

 Heat-induced skin hyperemia,  PU† 112.1 ± 57.3 113.1 ± 61.4 107.7 ± 53.0 109.9 ± 55.5 116.9 ± 59.8

 UAE, mg/24  h† 6.7 [4.0–11.9] 7.3 [4.4–14.2] 6.7 [4.2–12.3] 6.4 [3.8–11.0] 6.5 [3.9–11.4]

  ≥ 30 mg/24  h† 270 (18.7) 59 (11.8) 86 (8.9) 47 (7.6) 78 (7.6)

Plasma biomarkers of MVD composite score

 sICAM-1, ng/ml† 353.9 ± 99.8 390.0 ± 134.2 349.2 ± 89.6 347.2 ± 95.5 344.6 ± 87.2

 sVCAM-1, ng/ml† 428 ± 101.0 450.1 ± 125.9 432.8 ± 99.2 427.8 ± 96.3 412.9 ± 88.6

 sE-selectin, ng/ml† 117.8 ± 65.7 131.8 ± 90.7 117.9 ± 64.2 119 ± 58.2 114.3 ± 55.0

 vWF, %† 132.6 ± 48.4 140.4 ± 52.0 133.7 ± 47.1 131.5 ± 48.4 128.4 ± 47.3

 Composite  score† 0.0 ± 1.0 0.4 ± 1.3 0.0 ± 0.9 − 0.1 ± 1.0 − 0.1 ± 0.9
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composite score was at approximately 5 units/day in men 
in the crude model; and at approximately 3 units per/day 
in women in the crude model (Additional file  1: Figure 
S1). Then, the strength of this association was somewhat 
stronger in women than in men (e.g. model 3B; moderate 
versus light total alcohol consumption, -0.11 [-0.25; 0.04] 
in women versus − 0.09 [− 0.20; 0.03] in men; Fig. 3 and 
Additional file 1: Table S5). Additionally, in both men and 
women, wine consumption was somewhat more strongly 
associated with less MVD, estimated from the total MVD 
composite score, than beer or spirits consumption, where 
wine, but not beer or spirits, consumption was somewhat 
more strongly associated with less MVD in women than 
in men (model 3B; moderate versus light total alcohol 
consumption, −  0.09 [−  0.14; −  0.01] in women versus 
-0.06 [-0.11; -0.02] in men; Additional file 1: Table S5).

Additional analyses
We observed quantitatively similar results in a range 
of additional analyses (all results are reported in the 

Extended Results section in the Additional file 1: Tables 
S6-S18 and Additional file  1: Figures  S1-S14). We high-
light three findings. First, we found that alcohol con-
sumption was in the same direction associated with 
retinal arteriolar and venular diameters (model 3B; Addi-
tional file 1: Table S9). Second, we found that the mini-
mum in the J-curve was at increasingly higher levels of 
total alcohol consumption in individuals with increas-
ingly more cardiovascular risk factors (Additional file 1: 
Table  S7 and Additional file  1: Figure S5). Third, when 
we left wine or beer consumption out of the total alco-
hol consumption index the location of the minimum 
of the J-curve was different (at higher levels of alcohol 
consumption when wine was left out of the index and at 
lower levels of alcohol consumption when beer was left 
out of the index; Additional file 1: Figure S8). We did not 
see material changes when we left spirit out of the index 
(Additional file 1: Figure S8).

Discussion
The present population-based study has three main 
findings. First, in the complete population we found a 
J-shaped association between total alcohol consump-
tion with MVD, indicating that moderate versus light 
total alcohol consumption was associated with less MVD 
and higher than moderate versus light total alcohol con-
sumption was associated with more MVD. In addition, 
associations with MVD were similar for wine, beer, and 
spirits. Second, in individuals with, versus without, a his-
tory of the cardiovascular disease, the minimum of the 
J-curve was at higher levels of total alcohol consump-
tion; and the depth of the minimum of the J-curve was 
considerably lower. In addition, in individuals with a 
history of cardiovascular disease, the depth of the mini-
mum of the J-curve was considerably lower for wine and 
beer consumption than for spirits consumption. Third, 
in men, the minimum of the J-curve was at higher levels 
of alcohol consumption than in women; and in women 
the depth of the minimum of the J-curve was somewhat 
lower than in men (indicating a somewhat stronger asso-
ciation in women than in men). In addition, wine con-
sumption was somewhat more strongly associated with 
less MVD in women than in men. We did, however, not 
see a consistent pattern for other types of alcoholic bev-
erages (i.e. beer and spirits).

Our findings are in line with observations from most 
previous studies [15–53]. Importantly, the present study 
is the first large population-based study to comprehen-
sively report associations of total alcohol, wine, beer, 
and spirits consumption with MVD assessed in various 
organs, both in the general population as well as in sub-
strata of individuals with a history of cardiovascular dis-
ease or a cardiovascular risk factor. Further, the present 

Fig. 2 General population (N = 3,120; minimum of the J-curve at 
4 units/day). Figure 2 The Scatter plot shows data points for total 
alcohol consumption (x-axis; per unit) and the total MVD composite 
score (y-axis; in SD) where a quadratic association was modeled (blue 
line). In the general population the minimum of the J-curve was 
located at approximately 4 units/day
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study is the first study to report the associations of total 
alcohol, wine, beer, and spirits consumption with flicker 
light-induced increase in retinal diameters and heat-
induced skin hyperemia.

Our observations support the concept that alcohol 
consumption is a determinant of MVD. All measures of 
MVD under study likely (in part) reflect endothelial cell 
function, which relies on NO bioavailability, and NO bio-
availability can be modified by alcohol consumption [2, 
6, 7]. Mechanistically, the J-shaped association between 
alcohol and MVD may reflect a triphasic balance, where 
in the descending part of the curve alcohol consumption 
induces a net increase in NO bioavailability (reducing 
MVD); at the minimum of the curve there is an equilib-
rium between increasing and reducing effects of alcohol 
on NO bioavailability (net no effect on MVD); and in the 
ascending part of the curve, alcohol consumption induces 
a net reduction in NO bioavailability (increasing MVD) 
[5, 9, 74–76]. Biologically, at lower levels of alcohol con-
sumption ethanol likely increases NO bioavailability via 
stimulation of NO synthesis by the enzyme eNOS; [5, 9, 

74–76] and polyphenols likely increase NO bioavailabil-
ity via reducing eNOS uncoupling and scavenging of NO 
by oxidative stress [5, 9, 74–76]. Then, at higher levels of 
alcohol consumption ethanol likely reduces NO bioavail-
ability by inducing oxidative stress [5, 9, 74–76].

In individuals with, versus without, a history of the 
cardiovascular disease, the minimum of the J-curve in 
the association of total alcohol consumption with the 
total MVD composite score was located at higher lev-
els of total alcohol consumption, possibly because levels 
of background oxidative stress are higher in individuals 
with, versus without, a history of cardiovascular disease 
[5, 74]. Biologically, higher levels of ethanol-induced 
oxidative stress may be required to induce more oxida-
tive stress than already present in the background [5, 27]. 
Indeed, consistent with this concept, we found that the 
minimum in the J-curve was located at higher levels of 
alcohol consumption in individuals with, versus without, 
a cardiovascular risk factor (for any individual risk factor 
under study).

0.0

-0.10 (-0.19; -0.01)*

Standardized B  (95% CI)

Without history of cardiovascular disease

-0.22 (-0.44; -0.01)*

-0.09 (-0.19; 0.01)

General population

With history of cardiovascular disease

Associations of moderate versus light total alcohol consumption with the total MVD composite score in the general population
and stratified by history of cardiovascular disease and sex (in SD; model 3B)

 Microvascular dysfunction (per  SD)

Indicates that moderate
alcohol consumption is
associated with more
MVD

Indicates that moderate
alcohol consumption is
associated with
less MVD

-0.
10

-0.
20 0.1

0
-0.

30

Stratified by history of cardiovascular disease

-0.
40

Stratified by sex

Men

Women -0.11 (-0.25; 0.04)

-0.09 (-0.20; 0.03)

Fig. 3 Associations of moderate versus light total alcohol consumption with the total MVD composite score in the general population. Betas and 
95% confidence intervals indicate the strength of the associations of total alcohol consumption (moderate versus light) with total MVD composite 
score (per SD) where a negative beta indicates less MVD. The number of participants in analyses and the numerical values per SD for all endpoints 
are reported in the legends of Table 2 (general population), Additional file 1: Table S4 (history of cardiovascular disease strata) and Additional 
file 1: Table S5 (sex strata). Variables included in model 3B are age, sex (where applicable), glucose metabolism status, education level, waist 
circumference, smoking status, diet score, office systolic blood pressure, use of antihypertensive medication, total cholesterol/HDL cholesterol ratio, 
lipid-modifying medication, and history of cardiovascular disease (where applicable). *indicates P-value < 0.05. B, beta; CI: confidence interval; SD: 
standard deviation; MVD, microvascular dysfunction



Page 12 of 16van der Heide et al. Cardiovascular Diabetology           (2023) 22:67 

In individuals with, versus without, a history of the 
cardiovascular disease the depth of the minimum of the 
J-shaped association of total alcohol consumption with 
MVD was considerably lower (indicating a stronger 
association of total alcohol consumption with MVD), 
possibly because at higher, versus lower, levels of back-
ground oxidative stress polyphenols can more potently 
increase NO bioavailability [5, 5, 27, 74]. Biologically, 
polyphenols can both increase NO bioavailability 
via preventing the scavenging of co-factors that are 
required for NO synthesis and via inhibiting a vicious 
circle in which oxidative stress scavenges NO and oxi-
dizes NO into more oxidative stress (i.e. peroxynitrate, 
a reactive nitrogen species) [5, 27]. Indeed, consist-
ent with this concept, in individuals with a history of 
cardiovascular disease, wine and beer consumption, 
which reflect greater intake of polyphenols than spirits 
consumption, were more strongly associated with less 
MVD than spirits consumption.

In men, versus women, the minimum of the J-curve 
was located at higher levels of total alcohol consumption, 
likely due to sex differences in the pharmacokinetics of 
ethanol [77, 78]. Biologically, as in women, versus men, 
the gastric activity of the antidiuretic hormone (ADH) is 
lower, which regulates the clearance of ethanol (first-pass 
metabolism), the consumption of a comparable quan-
tity of ethanol likely leads to a higher level of ethanol in 
the blood of women than men [77, 78]. Additionally, as 
women on average have a lower volume of body water 
than men and ethanol is distributed in water in the body, 
the consumption of a comparable quantity of ethanol 
likely leads to higher blood concentrations of ethanol in 
women than in men [77, 78].

In women the depth of the minimum of the J-curve 
was somewhat, but not materially, lower than in men, 
possibly because certain small polyphenol-based phar-
macodynamic sex differences exist [14, 79]. Biologi-
cally, as certain polyphenols in alcoholic beverages (e.g. 
resveratrol) can, via binding to the estrogen receptor, in 
a sex-specific manner alter intra-endothelial cell signal-
ing pathways that regulate NO bioavailability, alcohol 
consumption may more strongly lead to an increase 
in endothelial cell NO bioavailability in women than in 
men [14, 79, 80]. Indeed, consistent with this concept, 
we found that wine consumption, which reflects greater 
resveratrol intake (mainly from red wine), was somewhat 
more strongly associated with less MVD in women than 
in men [14, 79].

In analyses with individual measures of MVD we 
observed that higher alcohol consumption was associated 
with narrower retinal microvascular diameters. Retinal 
arteriolar widening is thought to occur in early stages of 

MVD; thus, a narrower arteriolar diameter may represent 
less widening (i.e. indicating less MVD) [2, 4]. Biologi-
cally, widening of retinal arteriolar diameter is thought 
to reflect impairment of autoregulation, which is (in part) 
thought to be caused by endothelial cell dysfunction, as 
well as focal downstream ischemia [2, 4]. Indeed, human 
and animal data from observational and experimental 
studies in the retina, as well as in other organs such as the 
kidney, support this concept [2, 4].

Our findings should not be interpreted as to imply that 
changing alcohol consumption can be used to prevent 
MVD. Every unit increase in consumption of alcohol 
is associated with increased risk of loss of disability-
adjusted life-years, as found in The Global Burden of 
Alcohol study which used data from 195 countries [81]. 
In addition, another important point is that it remains 
under debate which threshold for alcohol consump-
tion should be recommended. Previous studies found 
differing thresholds at which alcohol consumption was 
associated with more favorable health outcomes. For 
example, a recent individual participant data analysis of 
n ~ 600,000 participants found that 100 g/week of alcohol 
consumption (for both men and women) was associated 
with a lower risk of all-cause mortality; [82] and a recent 
randomized clinical trial found that < 1 unit of alcohol 
consumption was associated with a decrease in arterial 
stiffness [83]. These results differ from our results, in 
which we found that up to two units per day of alcohol 
consumption for women and up to five units per day or 
alcohol consumption for men were associated with less 
MVD. Nevertheless, our findings add to the increasing 
body of evidence that it may be possible to reduce MVD 
via dietary interventions; and that it may be possible to 
personalize recommendations on alcohol consumption 
according to the presence of risk factors for cardiovascu-
lar disease [84].

Main strengths of this study are the large size of this 
population-based cohort study with oversampling of 
individuals with type 2 diabetes, which enables accurate 
comparison of individuals with and without diabetes [73]; 
the large number of potential confounders that was con-
sidered [85]; and the use of state-of-the-art techniques 
to assess CSVD features and MVD in various organ beds 
[60]. In addition, a strength of this study is that sick quit-
ters were accounted for in analyses in which light alcohol 
consumption was used as a reference group [55].

Limitations include the following. First, due to 
the cross-sectional nature of the study causal infer-
ences should be made with considerable caution. Sec-
ond, some misclassification  of high drinkers may have 
occurred as high drinkers may be more likely to self-
underreport their alcohol consumption [36]. This may 
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have led to an underestimation of strength of the asso-
ciations in this study [71]. Third, even though we took 
an extensive set of confounders into account, we cannot 
fully exclude unmeasured confounding. For example, 
we did not take binge drinking into account and binge 
drinking may be more detrimental than chronic high 
alcohol consumption [6]. Fourth, there were relatively 
low numbers of high beer consumers (≤ 7% of partici-
pants) and moderate or high spirits consumers (≤ 2% 
of participants) in this study and this may resulted in a 
lack of statistical power to be able to detect statistically 
significant associations of beer and spirits consump-
tion with endpoints under study (i.e. type 2 error) [73]. 
Fifth, we could not account for how drinking behav-
ior changes related to the presence of certain medical 
conditions may have affected the analyses. For exam-
ple, certain individuals with type 2 diabetes may have 
quit alcohol consumption due to dietary restrictions 
(imposed by their medical doctors due to the pres-
ence of cardiovascular risk factors). Sixth, we studied 
Caucasian individuals aged 40–75  years and therefore 
our results may be generalizable to such a population; 
whether these results also apply to other populations 
requires further study [86].

In conclusion, in this cross-sectional study we found 
a J-shaped association between total alcohol, wine, 
beer, and spirits consumption and MVD, indicating 
that moderate versus light alcohol consumption was 
associated with less MVD and higher than moderate 
versus light alcohol consumption was associated with 
more MVD. Additionally, the location and the depth of 
the minimum of the J-curve differed by history of cardi-
ovascular disease and sex. Therefore, alcohol consump-
tion may have an effect on MVD and via MVD mitigate 
microvascular clinical disease such as stroke, dementia, 
depression, retinopathy, and chronic kidney disease [1–
3]. Although increasing alcohol consumption cannot 
be recommended as a policy, this study suggests that 
prevention of MVD may be possible through dietary 
interventions.
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