
Kee et al. Cardiovascular Diabetology           (2023) 22:13  
https://doi.org/10.1186/s12933-023-01741-7

REVIEW

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Cardiovascular Diabetology

Cardiovascular complications in a diabetes 
prediction model using machine learning: 
a systematic review
Ooi Ting Kee1, Harmiza Harun1, Norlaila Mustafa2, Nor Azian Abdul Murad1, Siok Fong Chin1, 
Rosmina Jaafar3 and Noraidatulakma Abdullah1,4* 

Abstract 

Prediction model has been the focus of studies since the last century in the diagnosis and prognosis of various dis-
eases. With the advancement in computational technology, machine learning (ML) has become the widely used tool 
to develop a prediction model. This review is to investigate the current development of prediction model for the risk 
of cardiovascular disease (CVD) among type 2 diabetes (T2DM) patients using machine learning. A systematic search 
on Scopus and Web of Science (WoS) was conducted to look for relevant articles based on the research question. The 
risk of bias (ROB) for all articles were assessed based on the Prediction model Risk of Bias Assessment Tool (PROBAST) 
statement. Neural network with 76.6% precision, 88.06% sensitivity, and area under the curve (AUC) of 0.91 was found 
to be the most reliable algorithm in developing prediction model for cardiovascular disease among type 2 diabetes 
patients. The overall concern of applicability of all included studies is low. While two out of 10 studies were shown to 
have high ROB, another studies ROB are unknown due to the lack of information. The adherence to reporting stand-
ards was conducted based on the Transparent Reporting of a multivariable prediction model for Individual Prognosis 
or Diagnosis (TRIPOD) standard where the overall score is 53.75%. It is highly recommended that future model devel-
opment should adhere to the PROBAST and TRIPOD assessment to reduce the risk of bias and ensure its applicability 
in clinical settings. Potential lipid peroxidation marker is also recommended in future cardiovascular disease predic-
tion model to improve overall model applicability.
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Introduction
Machine learning is a branch of computer science that 
uses existing data to predict future responds when new 
data is provided [1]. By utilizing artificial intelligence, 
pattern recognizing, and computational statistics, the 
training of prediction model can improve its overall per-
formance and make decisions based on new set settings 
or situations.

Early prediction of cardiovascular disease (CVD) 
among diabetes patients were created based on logis-
tic regression, but machine learning has been used as 
a predictive model for its flexibility and variability [2]. 
Regression models are made based on a hypothesis and 
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a fixed model structure but machine learning search for 
the optimal fit based on different algorithms [3]. Various 
machine learning algorithms are used in creating predic-
tive model such as neural networks (NN), support vec-
tor machine (SVM), decision tree (DT), and k-nearest 
neighbours (k-NN) [4]. The building of predictive model 
using machine learning approach will require extra steps 
that include the model training and validation. Through 
repeated training and testing of models, different algo-
rithms can only be compared among each other to find 
out the best performing model or algorithm.

The performance of machine learning model also 
affected by the predictors or risk factors used in the 
model [5]. Several risk factors that involve in the devel-
opment of atherosclerosis which lead to CVD in indi-
viduals with T2DM were include hypertension, insulin 
resistance, hyperglycaemia, obesity, and dyslipidaemia 
[6]. In addition, recent studies have shown that T2DM 
patients have higher risk in developing CVD due to lipid 
peroxidation where free radicals or reactive oxygen spe-
cies (ROS) attacked polyunsaturated fats (PUFAs) [7, 
8]. Polyunsaturated acyl group of phospholipids lose its 
hydrogen to form a highly reactive radical, followed by 
the reaction with oxygen to form a peroxyl radical [9]. 
The peroxyl group is then obtain hydrogen from other 
phospholipids to form a lipid hyperperoxide [10]. The 
peroxide will react with other organic substrate such as 
another phospholipid [11]. As the result, production of 
electrophilic molecules such as malondialdehyde (MDA) 
increases causing oxidative stress [12]. The cytotoxicity 
of these molecules can cause complications such as aging 
and atherosclerosis by binding to DNA, proteins, or other 
nucleophilic molecules. These damages induce cell death 
and eventually progress into cardiovascular complica-
tions [11]. Since the increase of level of lipid peroxide 
molecules and oxidative stress known for causing CVD, 
the level of these biomolecules can be potentially used 
as predictors in the development of prediction model for 
cardiovascular disease among diabetes patients.

Previous studies have provided the basis to build a dis-
ease prediction model by machine learning [13]. Machine 
learning (ML) approach offers the opportunity to iden-
tify patients at greater risk of T2DM complications [14] 
while prediction models built using ML techniques 
improve cardiovascular disease prediction and reducing 
the number of screenings required when compared with 
the ACC/AHA Pooled Cohort Equations (PCE) calcula-
tor alone [15].

In the Action to Control Cardiovascular Risk in Dia-
betes Study (ACCORD) and the Veterans Affairs Diabe-
tes Trial (VADT) trials, a ML analysis provided evidence 
supporting the diabetes treatment guideline recommen-
dation of intensive glucose lowering in diabetes patients 

with low cardiovascular risk and additionally suggested 
benefits of intensive glycaemic control in some individu-
als at higher cardiovascular risk [16]. Moreover, an unsu-
pervised ML clustering method could address T2DM 
patients with heterogeneous clinical indicators and iden-
tify groups with different types of coronary plaque and 
degrees of coronary stenosis, allowing patient stratifica-
tion [17]. In addition, a ML approach demonstrated high 
performance in identifying metabolic-associated fatty 
liver disease (MAFLD) patients with prevalent cardiovas-
cular disease based on the easy-to-obtain patient param-
eters [18]. Finally, incorporating genome-wide polygenic 
risk score (gPRS) and serum metabolite data enhances 
diabetes risk prediction [19]. The application of the cardi-
ovascular diabetes prediction model can assist in clinical 
settings such as decision-making, clinical management 
in diabetes care, and patient communication to reduce 
the risk of cardiovascular complications among diabetes 
patients [20]. In this context, this systematic review is to 
identify the available machine learning-based prediction 
models for diabetic cardiovascular disease.

Methods
Systematic searches and the development of this review 
was guided by Preferred Reporting Items for Systematic 
Review and Meta-analyses Protocols (PRISMA-P) [21]. 
A protocol has been registered at The International Pro-
spective Register of Systematic Reviews (PROSPERO) 
under the reference ID CRD42022337764. Criteria of the 
studies are outlined based on PICOTS framework [22].

Participants (P)
Studies that involve patients that are diagnosed with 
T2DM. These patients include individuals with or with-
out cardiovascular complications. Studies that involve 
other types of diabetes were not included in this review. 
There were no eligibility restrictions on age, population, 
gender, ethnicity, geographic location of participants. 
Studies that include other diabetes complications are 
included.

Interventions (I)
Only predictive modelling studies that clearly describe 
the use of machine learning (ML) in prognosis and diag-
nosis models are included. Therefore, studies without 
the clear demonstration of ML-based prediction model 
will be excluded. Studies that include supervised, unsu-
pervised or combination of both are accepted as the 
interventions to build a predictive model. Since different 
studies’ aim may or may not require external validation, 
thus, the three study types that are, prediction models 
development studies without external validation, predic-
tion model development studies with external validation, 
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and external model validation studies with or without 
model updating were included [23].

Outcomes (O)
The effects and properties of prediction models were 
observed and measured in this review based on the 
reported metrics, including c-statistics or classification 
measurements such as, the accuracy, sensitivity, and 
specificity. Secondary outcomes that were observed were 
study design, population, predictors, and model types.

Time (T)
The search was limited to publications from 1st January 
2017 to 14th April 2022 to ensure data were up to date 
within five years from this study.

Settings (S)
Only studies published in English were included.

Search strategies
A uniform systematic search was performed in two data-
bases including SCOPUS and Web of Science. Relevant 
articles from the references were searched manually. The 
search terms are based on the PICOTS list in Table 1.

Data extraction and risk of bias assessment
The extraction had been performed according to the 
Transparent Reporting of a multivariable prediction 
model for Individual Prognosis or Diagnosis (TRIPOD) 
statement [24, 25]. TRIPOD statement had also been 
used for reporting adherence. ROB for each studies 
included was carried out based on Prediction Model Risk 
of Bias Assessment Tool (PROBAST) [26] (Additional 
files 1, 2).

Results
Of 109 articles reviewed, only 10 were selected in this 
review article (Fig.  1). The general characteristics of 
each included study are described in Table 2. All studies 

included in this review were cohort studies all over the 
world except for only one is from cross-sectional study 
that conducted in China (Table 2). Majority of the studies 
were based on the European/Caucasian population (Ger-
many, Greece, Sweden, Denmark, Australia, and United 
States), but only two studies were based on the Chinese 
population.

The most common predictor used in the predictive 
model was HbA1c, which six out of ten studies included 
in their model, followed by body mass index (BMI) where 
50% used in their model and medical history or disease, 
which only included in three articles (Table  2). Other 
predictors were sex, age, heart rate, blood pressure, 
lipid profile, fasting blood glucose, waist circumference, 
parental history of diabetes, patients’ smoking or drink-
ing habits and the treatment of the patients received 
such as insulin treatment and lipid-lowering treatment. 
Among the 18 predictors involved in this study, the top 
five predictors are BMI, anxiety, depression, total choles-
terol, and systolic blood pressure.

There were several models or algorithms that have been 
reported to predict cardiovascular diabetes so far such 
as support vector machine (SVM), decision tree (DT), 
random forest (RF), Naïve Bayes (NB), linear regres-
sion (LR), Self-Organizing Maps (SOM), and knowledge 
learning symbiosis (KLS) [27]. Gradient boosting models 
have been reported in four studies that included extreme 
gradient boosting, cox gradient boosting, and decision 
tree gradient boosting. Other reported models were neu-
ral networks and k-nearest neighbour from another three 
studies (Table 2).

Model performance
From the review, not all studies reported their model 
performance using the same metrics of evaluation. 
Based on Table  3, neural network model [28] has 
the best performance which achieve 87.5% accuracy, 
88.06% sensitivity, 87.23% specificity and AUC of 0.91. 
The precision of the model was not reported but based 

Table 1 Selection criteria of predictive modelling studies in PICOTS format

Participants (P) Intervention (I) Comparison (C) Outcomes (O) Timeframe (T) Settings (S) Other limitations

Inclusion criteria Patients with 
T2DM

ML-based predic-
tive model-
ling including 
supervised and 
unsupervised 
machine learning 
or combination of 
both

N/A Study designs, 
population, 
predictors, and 
models used, 
quality validation 
of models

From 1st Janu-
ary 2017 to 
date

N/A Language = English

Exclusion criteria Patients with other 
types of diabetes 
or pre-diabetes

Prediction models 
without specific 
use of ML
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on the confusion matrix provided, it is 76.6%. In addi-
tion, previous studies [13, 28, 29] have shown that the 
overall performance of neural network is better than 
gradient boosting.

Gradient boosting algorithm was indicated as the sec-
ond-best performing algorithms after neural network 
based on the performance metrics provided. A cohort 
study conducted in US [30] has shown gradient boost-
ing with the highest performance with 84.5% accuracy, 
85% sensitivity, and precision of 84.5% compared to other 
models. This is supported with previous study conducted 
in Greece [31] that extreme gradient boosting (XGBoost) 
has the potential to handle the imbalanced medical data-
set. In that study, the best reported model was based on 
XGBoost with sensitivity of 71.00% (CI 74.15, 94.85) and 
AUC of 0.71 (CI 0.59, 0.83). The third performing model 
are the only comparable models with complete perfor-
mance data are LR and SVM models [35]. The two mod-
els in this study have the same performance with 83.33% 
accuracy, 83.33% sensitivity, 83.33 specificity, 83.33% pre-
cision, and AUC of 0.81. SVM model developed in Swed-
ish cohort [36] also reported to perform better compared 

to k-nearest neighbour with 96.93% accuracy, 92.87% 
sensitivity, and 94.44% precision.

Risk of bias assessment
From Fig.  2, two out of 10 included studies have high 
risk-of bias, another eight have unclear risk-of-bias. The 
elevated risk is from the participant domain, which the 
inclusion and exclusion criteria are often not reported. 
All included studies have low risk in the predictor’s 
domain. As in the outcome domain, all studies have mini-
mal risk, while another four studies have an unclear risk 
due to the lack of information about the time interval 
between predictor assessment and outcome determina-
tion. Whereas another six studies have unclear risk in 
their analysis due to the lack of multivariable analysis 
and four studies did not discuss about sampling controls. 
Although there is no study with low overall risk of bias, 
the concern of applicability for all models developed are 
low because the included participants and settings, defi-
nition, timing, or assessment of predictors, and the out-
come definition, timing, or determination in all studies 
match the review question.

Fig. 1 PRISMA flow diagram for the inclusion of cardiovascular diabetes prediction models from 1st January 2017 till 14th April 2022
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Adherence to reporting standards
The overall percentage of adherence to reporting stand-
ards based on the TRIPOD assessment is 53.75% with 
13 out of 31 items with less than 50% adherence (Fig. 3). 
However, there are four out of the 13 items have 0% of 
adherence, which are sample size calculation, participant 
characteristics, full prediction model, and model usage 
guide. Other items with less than 50% reporting adher-
ence are outcome blinding, predictors blinding, missing 
data, risk groups, flow of participants, unadjusted associ-
ation, and model performance. The rationale, objectives, 
study design, setting, and model building and validation 
have a 100% reporting adherence. The lack of reporting 
adherence about full prediction model and model usage 
rendered the model unapplicable in real life clinical set-
tings (Table 4).

Discussion
This review identified ten machine learning models 
that were developed for predicting cardiovascular dis-
ease among diabetic patients conducted mostly among 

European population. Even though the prevalence of 
cardiovascular diabetic was high in Asian countries, only 
two included studies were conducted among the Chinese 
population but none from the Malay or Indian popu-
lation. In 2019, 44.2% of Malaysian patients presented 
with acute coronary syndrome had diabetes which is 
the second common cardiovascular risk factor (CVRF) 
after hypertension (61.9%) [37]. Thus, this highlighted 
the importance of conducting predictive model studies 
of diabetic cardiovascular disease for Malaysian since its 
population also pose a higher risk at younger age than the 
European population [38]. Furthermore, a sharp increase 
of T2DM treatment cost from USD 232  billion in 2007 
to USD 966  billion in 2021 with the high prevalence of 
the disease worldwide is causing concerns on its burden 
in the lower-income nations [39]. It is known that most 
T2D patients do not require insulin for the rest of their 
life, but the complications developed from T2D eventu-
ally increase the economic burden on the patients and 
the healthcare system worldwide [1, 40]. Thus, it is essen-
tial to develop cardiovascular diabetes prediction model 

Table 3 Performance of the proposed models reported using various metrics of evaluation including accuracy, sensitivity, specificity, 
precision, C-value, and area under the curve

References Best performing model Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) Area under the curve

[31] XGBoost NA 71.00 ± 23.85 NA NA 71.13 ± 11.69

[32, 34] Gradient Boosting Machine NA 79.1 55.8 NA 0.69–0.825

[29] Hybrid Wavelet Neural Network (HWNN) 83.04 ± 8.22 29.50 ± 23.15 87.30 ± 9.73 NA 67.64 ± 15.09

[30] XGBoost 84.5 85 NA 84.5 NA

[13] Ensembles of ANN 80.20 NA NA NA 0.849

[33] Knowledge Learning Symbiosis (KLS) NA NA NA NA NA

[28] Neural network 87.50 88.06 87.23 76.6 0.91

[35] Logistic regression, support vector machine 83.33 83.33 83.33 83.33 0.81

[36] Support vector machine 96.93 92.87 NA 94.44 NA

Fig. 2 Prediction Model Risk of Bias Assessment Tool (PROBAST) for the studies included in this review. a The risk of bias of the 10 included studies. 
b The applicability of the 10 included studies
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to effectively reduce the morbidity and further complica-
tion as well as the economic burden especially in Asian 
countries.

The artificial neural network model (ANN) reported by 
Dalakleidia and Zarkogianni [13] showed that ANN per-
formed better than other algorithms such as NB, decision 
tree, and logistic model when working with the imbal-
anced nature of medical datasets. Imbalanced dataset is 

when the distribution of classes is unequal that leads to 
the situation where one class out represent the other. This 
suggest that receiver operating curves, precision-recall 
curves, and cost curves are necessary when imbalanced 
datasets are involved [41]. This nature of medical datasets 
lead to prediction bias towards larger disjuncts and mis-
classification of the smaller disjuncts [42]. To avoid class 
imbalance, oversampling of the minority class such as 

Fig. 3 Adherence of included studies to Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) 
assessment

Table 4 PROBAST results

“+” indicates low ROB/low concern regarding applicability; “−” indicates high ROB/high concern regarding applicability; and “?” indicates unclear ROB/unclear concern 
regarding applicability

ROB risk of bias

Study ROB Applicability Overall

Participants Predictors Outcome Analysis Participants Predictors Outcome ROB Applicability

Athanasiou et al. 2020 − + + + + + + − +
Dworzynski et al. 2020 + + + − + + + − +
Zarkogianni et al. 2018 − + + ? + + + − +
Derevitskii and Kovalchuk 2020 + + + ? + + + ? +
Dalakleidi et al. 2017 ? + + ? + + + ? +
Mei and Xia 2019 + + + ? + + + ? +
Nowak et al. 2018 + + ? + + + + ? +
Chu et al. 2021 + + ? − + + + − +
Hossain et al. 2021 + + ? ? + + + ? +
Miao et al. 2020 ? + ? ? + + + ? +
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the use of Synthetic Minority Oversampling Technique 
(SMOTE) can help improving the overall accuracy of a 
model [14]. In addition, three out of ten studies in this 
review have supported that neural network can be used 
to construct predictive models for diabetic cardiovascu-
lar disease. However, the three studies that involve neu-
ral network did not include the use of gradient boosting 
algorithm, thus, these models were not compared based 
on their accuracy, sensitivity, specificity, and precision.

Before machine learning was introduced, prediction 
models were developed using classical statistics such as 
logistic regression. The Framingham Heart Studies (FHS) 
is one of the most famous examples of a prediction model 
for cardiovascular disease that applies logistics regres-
sion [43] and the focus on diabetes mellitus as a risk fac-
tor of CVD emerged after years of follow up studies [44, 
45]. Other than logistic regression, a classic statistical 
model such as the cox regression model was also applied 
in the development of CVD prediction model for dia-
betic patients. For example, a study that incorporated the 
patient population and electronic medical record (EMR) 
data in US [46] developed a cox regression model with a 
c-statistic of 0.782 and the model reported in Ley et  al. 
[47] achieved a c-statistic of 0.73 (0.72–0.74). While clas-
sical statistic has been applied in various medical disci-
plines from CVD to cancer studies [48–50], machine 
learning model is advantageous when working with 
pattern recognition other than just projection based on 
existing data [51].

Predictors in a predictive model are important as it 
affects the performance when dealing with new datasets. 
However, not all studies mention about the impact of the 
predictors involved in their models. Out of ten articles 
reviewed, only four studies summarized the most impor-
tant factors for their model and BMI were reported as 
the top five key factors. BMI has been used as an obesity 
indicator, which is directly linked to cardiovascular dis-
ease and diabetes [52]. With the increasing availability of 
fast food and processed food, the general eating habit and 
diet of most people are known to become less healthy due 
to increasing carbohydrates and fat intake. This phenom-
enon worsens in recent years as part of the urbanization 
[53]. Body mass index reflects the diet of an individual 
which is also known to be a strong factor in causing car-
diovascular complications among diabetic patients [54]. 
Although its contribution to the prediction models was 
not reported in all included studies, six out of ten arti-
cles used BMI as one of their predictors. Although family 
history is known to be a major risk factor in the devel-
opment of the CVD, but none of the study included this 
predictor. This might be due that family history of CVD 
has been excluded in these studies [55, 56]. In the past 
few decades, the number of studies on lipid peroxidation 

is increasing due to its association with cardiovascular 
disease through lipid alteration [8, 57]. The earliest men-
tion of lipid peroxidation with extensive discussion is in 
1958 by Lundberg [58]. Since then, more studies about 
the autoxidation of lipid were published. Even though the 
relationship between increased lipid peroxidation level 
in diabetic patients and risk of CVD is well known [59], 
no studies included in this systematic review included 
any lipid peroxidation marker as a predictor in model 
development.

Although this review is quite comprehensive that fol-
lowed the guideline of PRISM-P, the selection frame-
work by PICOTS and addressed all the risk assessment 
bias using PROBAST and TRIPOD, but the search of 
this study was only performed on Scopus and WoS only. 
Meta-analysis also could not be done due to the limited 
number of articles and recent studies. To address the 
imbalanced nature of clinical data, which is very com-
mon in life sciences, precision-recall curve (PRC) is the 
recommended metric to display the true performance 
of a prediction model [60]. The sample size varies sig-
nificantly among the prediction models discussed in this 
review, ranging from 560 in the study by Nowak and 
Carlsson [34] to more than 200,000 subjects in the study 
by Dworzynski, Aasbrenn [32]. The best model has the 
sample size of 834 subjects where the study with second 
best models involved 124,000 subjects.

For clinical practice, prediction models are required 
to be user friendly, and the presentation of the results 
also play a vital role in the communication between cli-
nician and patients. Furthermore, to ensure the reliabil-
ity and overall precision of a prediction model, external 
validation must be conducted using new datasets as the 
test data [61]. In the future, existing models can also be 
improved using newly collected data.

Conclusion
In this review, we discovered ten studies of cardiovascular 
disease prediction models among T2DM patients which 
used various machine learning approaches. The best 
model among the studies is the neural network model 
proposed by Chu and Chen [28] with AUC of 0.91. How-
ever, the precision of the model is only 76.6% and exter-
nal validation is recommended to verify its performance 
when dealing with different datasets. External validation is 
a crucial step to ensure the applicability of a model in clin-
ical settings [14]. This review shows that neural network 
has the best performance followed by gradient boosting 
machine to predict cardiovascular disease among diabetes 
patients. Future studies are recommended to include the 
comparison between neural network and gradient boost-
ing machine using same datasets.
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