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Abstract 

Background:  Nonalcoholic fatty liver disease is associated with an increased cardiovascular disease (CVD) risk, 
although the exact mechanism(s) are less clear. Moreover, the relationship between newly redefined metabolic-
associated fatty liver disease (MAFLD) and CVD risk has been poorly investigated. Data-driven machine learning (ML) 
techniques may be beneficial in discovering the most important risk factors for CVD in patients with MAFLD.

Methods:  In this observational study, the patients with MAFLD underwent subclinical atherosclerosis assessment 
and blood biochemical analysis. Patients were split into two groups based on the presence of CVD (defined as at least 
one of the following: coronary artery disease; myocardial infarction; coronary bypass grafting; stroke; carotid stenosis; 
lower extremities artery stenosis).

The ML techniques were utilized to construct a model which could identify individuals with the highest risk of CVD. 
We exploited the multiple logistic regression classifier operating on the most discriminative patient’s parameters 
selected by univariate feature ranking or extracted using principal component analysis (PCA). Receiver operating 
characteristic (ROC) curves and area under the ROC curve (AUC) were calculated for the investigated classifiers, and 
the optimal cut-point values were extracted from the ROC curves using the Youden index, the closest to (0, 1) criteria 
and the Index of Union methods.

Results:  In 191 patients with MAFLD (mean age: 58, SD: 12 years; 46% female), there were 47 (25%) patients who 
had the history of CVD. The most important clinical variables included hypercholesterolemia, the plaque scores, and 
duration of diabetes. The five, ten and fifteen most discriminative parameters extracted using univariate feature rank-
ing and utilized to fit the ML models resulted in AUC of 0.84 (95% confidence interval [CI]: 0.77–0.90, p < 0.0001), 0.86 
(95% CI 0.80–0.91, p < 0.0001) and 0.87 (95% CI 0.82–0.92, p < 0.0001), whereas the classifier fitted over 10 principal 
components extracted using PCA followed by the parallel analysis obtained AUC of 0.86 (95% CI 0.81–0.91, p < 0.0001). 
The best model operating on 5 most discriminative features correctly identified 114/144 (79.17%) low-risk and 40/47 
(85.11%) high-risk patients.

Conclusion:  A ML approach demonstrated high performance in identifying MAFLD patients with prevalent CVD 
based on the easy-to-obtain patient parameters.
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Background
According to the statistics from the Global Burden of 
Disease study 2017, a significant number of all deaths 
globally (over 70%) is caused by noncommunicable dis-
eases, and CVD accounts for more than 43% [1]. The 
global prevalence of the non-alcoholic fatty liver disease 
(NAFLD) affects about 1 billion people worldwide [2] 
and patients with type 2 diabetes (T2DM) constitute the 
majority of cases [3]. NAFLD is the most rapidly increas-
ing cause of liver-related mortality across the globe [3]. 
However, it is not the liver itself but CVD that is the lead-
ing cause of death in patients with NAFLD [4].

For the last 40 years, NAFLD was characterized as an 
excessive hepatic lipid accumulation associated with 
metabolic abnormalities in the absence of significant 
alcohol consumption and other known causes of liver 
disease [5, 6]. Because NAFLD has been increasingly 
associated with glucose and lipid metabolic abnormali-
ties as well as cardiovascular risk that is why modification 
in the definition was proposed in early 2000s [7, 8]. Thus, 
the nomenclature changed from NAFLD to the meta-
bolic-associated fatty liver disease (MAFLD) in 2020 [9] 
and there is increasing evidence proving its importance 
in multidisciplinary care [10, 11]. Since the diagnosis of 
MAFLD is relatively new and it differs from NAFLD as 
it requires the presence of the metabolic risk factors and 
does not require the exclusion of alcohol intake or the 
presence of other liver diseases, the clinical course of the 
disease in patients with MAFLD might be different from 
NAFLD.

It is important to note that both European and Ameri-
can guidelines recommend to screen for CVD in people 
with NAFLD [5, 12] and it was demonstrated recently 
that better prediction of the progression of atheroscle-
rotic cardiovascular risk is obtained when the MAFLD 
(not NAFLD) definition is used [13, 14] Therefore, it is of 
paramount clinical importance to determine the factors 
associated with CVD in people with MAFLD because 
the CVD could be prevented if an efficient tool for 
early detection of the individuals at the highest risk was 
available.

Predicting CVD events within the next 10  years with 
the use of the traditional risk factors is commonly applied 
[15]. However, numerous studies have shown that the 
currently adopted 10-year risk calculators, including the 
2013 American College of Cardiology/American Heart 
Association (ACC/AHA) Pooled Cohort Equations Risk 
Calculator [15], often overestimate the CVD events and 

in some cases, underestimate the risk [16–19], causing 
unnecessary prescriptions of drugs. Moreover, chronic 
CVD generate high socioeconomic cost, and hence it is a 
major public health task to find and manage people with 
risk factors before the onset of CVD, facilitating effective 
prevention strategies [20].

Machine learning (ML) is one method of artificial intel-
ligence in which computers utilize statistical approaches 
to effectively learn from data without being explicitly 
programmed to tackle a specific task. A variety of ML 
techniques have been increasingly applied in the medi-
cal field, including for the prediction of ventilator-asso-
ciated pneumonia in critical care patients [21], prolonged 
operative time in elective total shoulder arthroplasty 
[22], cancer-associated deep vein thrombosis [23], or the 
stroke risk in non-anticoagulated patients with and with-
out atrial fibrillation [24]. In a recent study, Kakadiaris 
et al. showed that their ML Risk Calculator outperformed 
the ACC/AHA Risk Calculator, and proposed less drug 
therapies while missing fewer CVD events [25].

We applied ML to determine the MAFLD patients who 
are at high CVD risk, and to better define the underly-
ing risk factors in a data-driven manner. To the best of 
our knowledge, there have been no studies performed to 
date that analyzed the associations between MAFLD and 
CVD risk using ML methods.

Methods
This single center, observational, study was performed 
in a cohort of MAFLD patients. Patients who had been 
previously diagnosed with fatty liver disease based on the 
liver ultrasonography were invited to participate in the 
study through the advertisement placed in the University 
Hospital in Zabrze and in the outpatient diabetology clin-
ics and family doctor clinics in the Upper Silesia region 
in Poland. The eligibility criteria were simple, ie. patients 
at  age  ≥ 18  years who fulfilled diagnostic criteria of 
MAFLD. The only exclusion criteria was the lack of writ-
ten informed consent for the participation in the study. 
We recorded demographic and clinical data (Table 1) and 
divided the patients in relation to the presence or absence 
of CVD. The presence of CVD was defined as one or 
more of the following:  angiography-confirmed coronary 
artery disease; myocardial infarction; coronary bypass 
grafting (CABG); stroke; carotid stenosis of at least 50% 
in diameter; and/or angiography-confirmed, clinically-
significant, lower extremities artery stenosis (peripheral 
artery disease). Every patient signed an informed consent 
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Table 1  Patient characteristics

For each parameter (if applicable), we report its mean ± standard deviation, together with the median (in parentheses)

CVD cardiovascular disease, ALT alanine aminotransferase, AST aspartate aminotransferase, BP blood pressure, eGFR estimated glomerular filtration rate, HbA1c 
hemoglobin A1c, HOMA-IR homeostasis model assessment of insulin resistance, HDL-C high density lipoprotein cholesterol, TG triglycerides, ACEi angiotensin 
converting enzyme inhibitor, ARB angiotensin receptor blocker,  MALFD metabolic-associated fatty liver disease, BMI body mass index, , CCA L left common carotid 
artery, CCA R right common carotid artery, IMT intima -media thickness, cfPWV carotid- femoral pulse wave velocity, crPWV carotid-radial pulse wave velocity, CAP 
controlled attenuation parameter, T2DM type 2 diabetes mellitus.

The p-values were obtained using the Mann–Whitney test or the Chi-square test, depending on the data characteristics

Parameter Patients without CVD (n = 144) Patients with CVD (n = 47) p-value

Biochemical parameters

 ALT [U/l] 47.92 ± 38.60 (32.75) 32.15 ± 15.44 (31.00) 0.0330

 AST [U/l] 38.40 ± 33.93 (28.10) 28.83 ± 11.35 (25.80) 0.1342

 eGFR [ml/min/1.73m2] 88.98 ± 18.52 (90.86) 76.31 ± 17.92 (78.08)  < 0.0001

 HbA1c [%] 6.70 ± 1.73 (6.10) 7.30 ± 1.76 (6.85) 0.0025

 HDL-C[mmol/l] 1.33 ± 0.57 (1.23) 1.25 ± 0.39 (1.19) 0.4144

 HOMA-IR 7.58 ± 6.79 (5.80) 6.94 ± 5.59 (5.89) 0.7293

 TG [mmol/l] 2.13 ± 1.95 (1.66) 2.90 ± 3.05 (1.95) 0.1220

Total cholesterol [mmol/l] 5.13 ± 1.57 (4.80) 4.92 ± 1.98 (4.60) 0.0839

Demographical parameters

 Age [years] 56.03 ± 12.15 (57.00) 65.68 ± 6.37 (66.00)  < 0.0001

 Gender (% of male) 52.78 57.45 0.5771

Clinical parameters

 ACEi or ARB (% of yes) 49.31 65.96 0.0469

 Active smoker (% of yes) 14.58 17.02 0.6859

 Betablocker (% of yes) 36.81 65.96 0.0005

 BMI [kg/m2] 33.74 ± 4.83 (33.39) 32.50 ± 4.83 (31.28) 0.0415

 Diastolic BP [mmHg] 81.83 ± 9.97 (80.00) 78.91 ± 9.14 (80.00) 0.0314

 T2DM (% of yes) 58.33 85.11 0.0008

 Duration of T2DM [years] 3.76 ± 5.60 (0.50) 8.90 ± 7.69 (10.00)  < 0.0001

 Hypercholesterolemia (% of yes) 27.08 70.21  < 0.0001

 Hypertriglyceridemia (% of yes) 7.64 10.64 0.5193

 Heart rate [beats/min] 78.15 ± 15.84 (75.00) 74.04 ± 8.96 (72.00) 0.1940

 Hypertension (% of yes) 70.14 93.62 0.0011

 Obesity (% of yes) 78.47 65.96 0.0837

 Overweight (% of yes) 18.75 31.91 0.0585

 Systolic BP [mmHg] 132.70 ± 13.74 (130.00) 133.60 ± 10.67 (132.00) 0.5461

 WHR 0.97 ± 0.10 (0.97) 0.99 ± 0.09 (0.99) 0.3318

Carotid ultrasound parameters

 Diameter of CCA L 7.37 ± 0.85 (7.30) 7.61 ± 1.40 (7.70) 0.0192

 Diameter of CCA R 7.71 ± 0.95 (7.70) 7.92 ± 0.95 (7.90) 0.2446

 IMT max CCA L 0.83 ± 0.18 (0.83) 0.85 ± 0.15 (0.84) 0.4248

 IMT max CCA R 0.82 ± 0.18 (0.80) 0.85 ± 0.17 (0.81) 0.2159

 Median IMT CCA R 0.68 ± 0.16 (0.66) 0.68 ± 0.15 (0.68) 0.8730

 Median IMT CCA L 0.68 ± 0.16 (0.68) 0.71 ± 0.13 (0.69) 0.1660

 Plaque area  L 0.04 ± 0.07 (0.00) 0.16 ± 0.29 (0.08)  < 0.0001

 Plaque area  R 0.06 ± 0.23 (0.00) 0.15 ± 0.22 (0.08)  < 0.0001

 Plaque score L 0.76 ± 1.33 (0.00) 2.24 ± 1.92 (2.00)  < 0.0001

 Plaque score R 0.89 ± 1.47 (0.00) 2.23 ± 1.86 (1.90)  < 0.0001

Arterial stiffness-related parameters

 cfPWV 9.08 ± 2.03 (8.85) 10.30 ± 2.42 (10.10)  < 0.0001

 crPWV 9.80 ± 1.55 (9.84) 9.73 ± 1.46 (9.60) 0.4637

Liver elastography parameters

 Liver steatosis CAP [dB/m] 316.30 ± 51.50 (323.00) 315.20 ± 43.76 (311.00) 0.4740

 Steatosis stage (S0-S3) 2.36 ± 0.87 (3.00) 2.28 ± 0.77 (2.00) 0.2729
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agreement for participation in the study. The study proto-
col obtained the approval of the Ethics Committee by the 
Medical University of Silesia (KNW/0022/KB1/38/I/17).

Anthropometric, demographic and clinical parameters
Anthropometric parameters, including height (meters) 
and weight (kilograms), as well as waist and hip circum-
ference were measured (meters) by standard methods, 
and the body mass index (BMI) was calculated as weight/
height2 (kg/m2). Additionally, the waist-to-hip ratio 
(WHR) was obtained. The obesity was diagnosed when 
BMI ≥ 30 whereas the overweight was diagnosed when 
BMI ≥ 25 but < 30. The patients were considered to have 
T2DM based on a known history of this disease. Blood 
pressure was measured three times after 5  min of rest 
in a sitting position, at least 2 min apart, and the mean 
blood pressure of the three measurements was calcu-
lated. Arterial hypertension was defined as a systolic 
blood pressure ≥ 140  mmHg and/or a diastolic blood 
pressure ≥ 90  mmHg or previous treatment with anti-
hypertensive medications. Hypercholesterolemia was 
recognized when a patient had this diagnosis present 
in the documented medical history and/or there was 
newly recognized plasma high density lipoprotein cho-
lesterol (HDL-C) < 1.0  mmol/l for men and < 1.3  mmol/l 
for women and/or patient was on statin therapy. Hyper-
triglyceridemia was recognized when a patient had this 
diagnosis present in the documented medical history 
and/or there was newly recognized plasma triglycer-
ide ≥ 1.7  mmol/l and/or patient was on fibrate therapy. 
The history of all concomitant diseases was obtained 
from the patient and confirmed on the basis of docu-
mented medical data. No self-reported diseases without 
medically confirmed diagnosis were recorded.

MAFLD diagnostic criteria
The patients were diagnosed with MAFLD [26] if there 
was an evidence of steatosis acquired by the hepatic ultra-
sonography and presence of one of the following criteria: 
T2DM, overweight or obesity defined as BMI greater 
than or equal to 25 kg/m2 or at least two metabolic risk 
abnormalities, i.e., waist circumference ≥ 102 cm in men 
and ≥ 88  cm in women, blood pressure ≥ 130/85  mmHg 
or specific drug treatment, prediabetes, plasma triglyc-
erides ≥ 1.7  mmol/l or specific drug treatment, plasma 
HDL-C < 1.0 mmol/l for men and < 1.3 mmol/l for women 
or specific drug treatment,  Homeostatic Model Assess-
ment of  Insulin Resistance (HOMA- IR)  ≥ 2.5, serum 
C-reactive protein level > 2 mg/l.

Liver elastography with Fibroscan
Liver elastography was performed with the use of the 
Fibroscan 502TOUCH F611100049 device exploiting 
the XL 8 80,685 probe (2.5 Hz). The liver was tested after 
6 h of fasting, and the test lasted from 5 to 10 min. In the 
patient lying in the dorsal position with the right arm 
extended, a gel-coated ultrasound probe was applied to 
the skin in the intercostal space above the right lobe of 
the liver. The time motion ultrasound image allows the 
operator to locate a fragment of the liver at least 6  cm 
thick and devoid of large vascular structures or ribs. The 
median and interquartile range (IQR) values of at least 
10 successful liver stiffness measurements  (LSM) and 
the controlled attenuation parameter (CAP), adequately 
defining fibrosis and steatosis, respectively, were calcu-
lated by the device. The results included the median and 
IQR of the CAP values (dB/m) and the median, IQR, 
IQR/median LSM (kPa), the success rate (i.e., the number 
of successful measurements/total number of attempts), 
the determination of the degree of steatosis (S0-S3) and 
liver fibrosis (F0-F4). The LSM classified as reliable are 
characterized by having all three of the following: ≥ 10 
passed measurements, ≥ 60% success rate, and IQR/ 
median < 0.30.

Carotid ultrasound measurement
The ultrasound examination of the carotid arteries was 
performed using a high-resolution Doppler ultrasound 
with double imaging and color coding of the flow (Color 
Doppler Duplex, CDD) exploiting the Esaote MyLab60 
ultrasound equipment by the same certified neurolo-
gist. The examinations were done in the supine position, 
without any additional preparation, with a linear ultra-
sound head emitting an ultrasonic wave with a variable 
frequency of 4 MHz to 15 MHz. In the 2D presentation, 
the common carotid artery (CCA), the separation (bifur-
cation) of the common carotid artery into the internal 
carotid artery and the external and internal carotid artery 
(ICA), alongside the external carotid artery (ECA) were 
determined. Measurement of the intima-media complex 
(KIM) thickness and the assessment of atherosclerotic 
lesions in the carotid arteries were performed.

Arterial stiffness assessment
For these measurements, piezoelectric mechanical 
transducers in the cervical, femoral and radial areas 
were used (Complior, Alam Medical, France). The 
velocity of the carotid-femoral pulse wave  (cfPWV) 
was used to assess the stiffness of the central artery and 
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the velocity of the carotid-radial pulse wave  (crPWV) 
was used to assess the stiffness of the peripheral arter-
ies. With the Seca mod. 207 height meter, the right 
carotid-femoral and carotid-radial distances were 
measured. Blood pressure was measured in the supine 
position after at least 5  min of rest with the Microlife 
BP A1 sphygmomanometer immediately prior to the 
PWV assessment, and the mean of the three meas-
urements on both arms was calculated and recorded. 
Derivative variables such as the central blood pressure, 
central pulse pressure and the gain index were ana-
lyzed, calculated by the integrated software on the basis 
of the carotid pulse waveform.

Biochemical methods
Hemoglobin A1c (HbA1c) was determined using a 
high-performance liquid chromatography (HPLC) 
method, and the results were expressed in the National 
Glycohemoglobin Standardization Program/Diabetes 
Control and Complications trial units [27]. Cholesterol 
and triglycerides were measured using the enzymatic 
methods, with the HDL-C measured after precipitation 
of the very low-density lipoprotein cholesterol (VLDL-
C). The concentration of the low density lipoprotein 
cholesterol (LDL-C) was calculated using the Friede-
wald formula [28]. Serum creatinine was measured by 
means of the Jaffe’s method. The estimated glomeru-
lar filtration rate (eGFR) per 1.73 m2 was calculated 
according to the Chronic Kidney Disease Epidemiology 
Collaboration (CKD-EPI) formula [29]. Blood cell mor-
phology to obtain the platelet count (PLT) was deter-
mined using the fluorescent flow cytometry with the 
Sysmex XN-1000 (Sysmex) hematology analyzer [30]. 
Serum C reactive protein concentration were meas-
ured by a latex particle-enhanced turbidimetric immu-
noassay [31]. Alanine and aspartate aminotransferase 
activities in serum were assayed by the kinetic method 
according to the IFCC reference procedure. Analyzes 
of serum C reactive protein, alanine and aspartate 
aminotransferase were carried out on the Cobas 6000 
analyzer, c 501 module (Roche). Fasting glucose was 
assessed using the enzymatic method with the Cobas 
6000 hexokinase analyzer, c501 module (Roche). Insu-
lin concentration was measured by electrochemilumi-
nescence using the Cobas 6000 analyzer (module E601) 
[32].

Identifying high‑risk patients using machine learning
To automatically identify the patients with a high risk 
of overt CVD, we investigated biochemical (8 param-
eters), demographical [2], clinical [17], carotid ultra-
sound [10], arterial stiffness-related [2] and steatosis 

stage in elastography [3] parameters (42 parameters 
in total)—the parameters are summarized in Table  1. 
To handle the missing data, we imputed the mean val-
ues for each parameter—the percentage of patients for 
whom the parameter was missing never exceeded 5% of 
all patients (mean: 0.68%). Afterwards, the parameters 
underwent univariate feature ranking. First, we examined 
whether each feature (predictor variable) is independ-
ent of a response variable (low- vs. high-risk patient) by 
using individual chi-square tests. Then, the parameters 
were ranked using the p-values of the chi-square test sta-
tistics—here, the importance of a feature is quantified as 
(−log(p)) , therefore a large score indicates that the corre-
sponding predictor is important. The subsets of the most 
discriminative predictors were selected, and they were 
utilized to fitted the multiple logistic regression classi-
fiers. Additionally, we fitted the classifiers over the prin-
cipal components (PCs) extracted using PCA followed 
by the parallel analysis to determine the significant PCs 
[33]. For each model, we investigated the relationship 
between the model’s ability to correctly classify low- and 
high-risk patients using the ROC curve analysis, and we 
calculated the area under the ROC curve (AUC) as the 
summary metric to quantify the diagnostic ability of the 
corresponding classifier. To obtain the optimal cut-point 
value from each ROC curve, we exploited the (i) Index 
of Union (IoU), (ii) the closest to (0, 1) criteria (referred 
to as the Distance technique) and (iii) the Youden index 
methods [34]. For the selected cut-point values, we 
reported not only sensitivity  and specificity  of the corre-
sponding classifier, but we also calculated its positive and 
negative predictive value (PPV and NPV, respectively), 
and the percentage of correctly classified low- and high-
risk patients. The clinical utility of the developed ML 
models was investigated in the decision curve analysis. 
GraphPad Prism 9.4.1 was used for principal component, 
parallel analysis and other statistical processing, whereas 
MATLAB R2021b was exploited for feature selection (the 
fscchi2 function).

Results
There were 301 potentially eligible patients identified, 
and from these, only 191 individuals (mean age 58, SD 12, 
median: 60, IQR: 15 years; 46% female) fulfilled the inclu-
sion/exclusion criteria for the study (Fig. 1). The patient 
characteristics are gathered in Table 1.

In feature selection, we focused on Top-5, Top-10, and 
Top-15 most important predictors (with the 5, 10, and 15 
highest importance scores, respectively) which are sum-
marized in Table  2. The most important 5 clinical vari-
ables included hypercholesterolemia, the plaque score of 
the left internal carotid artery, plaque score of the right 
internal artery, duration of T2DM and plaque area of the 



Page 6 of 12Drożdż et al. Cardiovascular Diabetology          (2022) 21:240 

Fig. 1  Patient flow. Out of 301 potentially eligible patients, 191 patients fulfilled the inclusion criteria (144 without CVD and 47 with CVD). CVD – 
cardiovascular disease
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right internal carotid artery, which were all positively 
associated with overt CVD.

We investigated the performance of the multiple 
regression classifier fitted to ten PCs extracted by PCA, 
as ten PCs were found significant in the parallel analy-
sis. The ROC analysis (Fig.  2) of the models fitted over 
the selected parameters, alongside the extracted PCs 
revealed that the highest AUC amounted to 0.87 (95% 
confidence interval [CI]: 0.82–0.92, p < 0.0001) for the 
model fitted to 15 most discriminative features (Top-
15), whereas the worst AUC was 0.84 (95% CI 0.77–0.90, 
p < 0.0001) for the classifier operating on 5 features with 
the highest importance scores (Top-5). The multiple 
regression model fitted over 10 PCs resulted in AUC of 
0.86 (95% CI 0.81–0.91, p < 0.0001)–utilizing 10 most 
important predictors led to the same AUC of 0.86 (95% 
CI 0.80–0.91, p < 0.0001). Once the optimal cut-point val-
ues have been elaborated for all models, the results were 
further analyzed—the performance (specificity, sensitiv-
ity, percentage of all correctly classified [CC] patients, 
percentage of CC low- and high-risk patients reported 
separately, positive and negative predictive values) of the 
multiple regression classifiers for the cut-point values 
determined using the i) IoU, ii) Distance and iii) Youden 
methods are reported in Table 3. The best machine learn-
ing model, as quantified by CC All and operating over five 
most discriminative features correctly identified 114/144 

(79.17%) low-risk patients and 40/47 (85.11%) high-risk 
patients (Top-5 with the cut-point selected using the IoU 
and Distance methods).

In Fig. 3, the clinical utility of the three best-perform-
ing ML models (according to all quality metrics gathered 
in Table  3) was investigated. In general, all classifiers 
had significantly better clinical utility (above the prob-
ability threshold of 10%) in terms of net benefit than the 
two alternative treatment strategies, ie. treat all or none. 
The logistic regression model operating on top 5 most 
discriminative features outperformed two other ones 
(exploiting 10 principal components) above the probabil-
ity threshold of 25%.

Discussion
In this study our principal findings are as follows: (i) we 
determined the most discriminative patient’s parameters 
which can be used to build a ML model for identifying 
MAFLD patients with high CVD risk, (ii) we showed 
that using five interpretable and easy-to-obtain clinical 
parameters (including hypercholesterolemia, the plaque 
score of the left internal carotid artery, plaque score of 
the right internal artery, duration of T2DM and plaque 
area of the right internal carotid artery) is enough to 
elaborate well-generalizing logistic regression classifiers 
to the above-mentioned task; and (iii) we demonstrated 
better clinical utility of the developed ML models when 
compared to the “treat all” and “no treatment” strategies.

Shortly after the new definition of the fatty liver has 
emerged, it is still unknown how it will influence the 
clinical practice. Indeed, this does not represent a simple 
change in the nomenclature: differently from NAFLD, 
MAFLD can be recognized in patients who present 
with fatty liver and dysmetabolism, even when alcohol 
intake is reported yet not in lean ones without meta-
bolic comorbidities [35]. It has been shown that NAFLD 
contributes to subclinical atherosclerosis [36–38] and 
that there is an independent association of NAFLD and 
higher prevalence of CVD in patients with DM [39]. 
However, it is still unclear if it is a direct effect of NAFLD 
per se or is it just due to the cardiometabolic risk factors 
shared between NAFLD and CVD [4]. It has been proved 
recently that presence of metabolic dysfunction, rather 
than alcohol consumption, may be the element which 
could be responsible for the superiority of MAFLD over 
NAFLD for discriminating worsening of atherosclerotic 
CVD risk in patients with fatty liver [13]. That is why it 
seems justified to look closer at risk factors of CVD in 
patients with MALFD.

In this study, 25% of relatively young patients with 
the Fibroscan-confirmed MAFLD presented with 
CVD. We have carefully reviewed the patients’ medical 

Table 2  The 15 most discriminative features (with the largest 
importance scores)

We report the two-tailed p-values for nonparametric Spearman correlation to 
verify if the correlation is due to random sampling (if p < 0.05 this hypothesis can 
be rejected)

T2DM type 2 diabetes mellitus, cfPWV carotid-femoral pulse wave velocity, ALT 
alanine aminotransferase, eGFR estimated glomerular filtration rate, HbA1c 
hemoglobin A1c

Parameter Importance 
score

Spearman’s (r) p-value

Hypercholesterolemia 15.96 0.38  < 0.0001

Plaque score L 12.68 0.41  < 0.0001

Plaque score R 10.94 0.38  < 0.0001

Duration of T2DM 10.65 0.32  < 0.0001

Plaque area  R 10.00 0.34  < 0.0001

Age 8.60 0.37  < 0.0001

Plaque area  L 8.36 0.35  < 0.0001

Betabloker 7.66 0.25 0.0004

T2DM 7.08 0.24 0.0008

Hypertension 6.83 0.24 0.0010

cfPWV 6.64 0.28  < 0.0001

ALT 4.69 –0.15 0.0329

eGFR 3.51 –0.28  < 0.0001

HbA1c 3.19 0.22 0.0025

Obesity 3.17 –0.15 0.0421
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documentation and, surprisingly, none of the patients 
presented with a history of heart failure which accounts 
for about 2% of world adult population [40, 41]. It is, 
however, possible since – as the epidemiological data 

suggest – there is still a high number of unrecognized 
heart insufficiency cases [42, 43].

The feature analysis indicated that  simple to obtain in 
everyday clinical practice parameters, such as carotid 

Fig. 2  The ROC curves obtained using the multiple logistic regression classifiers over the a Top-5, b Top-10, and c Top-15 most discriminative 
patient parameters (according to their important scores), and over d 10 principal components (PCs). We report the area under the ROC curve (AUC) 
for each classifier

Table 3  The performance of the multiple regression classifiers

The best results are boldfaced, whereas the second best are underlined

CC correctly classified, PPV positive predictive value, NPV negative predictive value

Cut-point Top-5 Top-10 Top-15 PCA (10 PCs)

i, ii iii i, iii ii i ii iii i, ii iii

Specificity 0.79 0.77 0.73 0.78 0.75 0.74 0.68 0.80 0.63

Sensitivity 0.85 0.87 0.85 0.79 0.87 0.89 0.96 0.77 1.00
CC low-risk [%] 79.17 77.08 72.92 78.47 75.00 74.31 68.06 79.86 62.50

CC high-risk [%] 85.11 87.23 85.11 78.72 87.23 89.36 95.74 76.60 100.0
CC All [%] 80.63 79.58 75.92 78.53 78.01 78.01 74.87 79.06 71.73

PPV [%] 57.14 55.41 50.63 54.41 53.25 53.16 49.45 55.38 46.53

NPV [%] 94.21 94.87 93.75 91.87 94.74 95.54 98.00 91.27 100.0
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ultrasound, and clinical and biochemical ones can be 
discriminative in patients with overt CVD. This is very 
important from the practical point of view because 
before overt CVD occurs there is a long period of the 
silent disease presence and knowing the patient’s param-
eters which could be potentially associated with overt 
CVD gives the clinicians a chance to improve the preven-
tion and screening methods of CVD.

The ML models operating on such features achieved 
high predictive performance with the AUC values rang-
ing from 0.84 to 0.87 (Fig. 2). Similarly, in a recent study, 
Oh et  al. [44] analyzed the Korean national epidemio-
logical data and demonstrated that the proposed classi-
fiers can achieve a comparable performance (with AUC 
exceeding 0.85). Oh et al. determined that the most sig-
nificant risk factors of CVD were age, gender, and hyper-
tension, and they identified the positive correlation with 
hypertension, age, and BMI, and the negative correla-
tion with the gender, alcohol consumption and monthly 
income [44]. Another study by Alaa et  al. revealed that 
there are easy to collect, non-laboratory predictors of 
CVD, such as self-reported health ratings and usual walk-
ing pace which could be used in practice [45].

In our study, the top 5 most discriminative features 
(hypercholesterolemia, the plaque score of the left inter-
nal carotid artery, plaque score of the right internal 
artery, duration of diabetes and plaque area  of the right 
internal carotid artery; are positively associated with 
overt CVD) could correctly identify 85.11% patients who 

present with CVD. While the highest score was seen for 
traditional risk factors, such as hypercholesterolemia and 
the duration of diabetes, there were also plaque  related 
risk factors (both the plaque score and the plaque area) 
when taking into account top 5 most discriminative CVD 
features. The plaque score has been indeed identified as a 
factor associated with the long-term coronary artery dis-
ease risk in middle-aged asymptomatic individuals [46, 
47]. Hypercholesterolemia, contrary to the duration time 
of diabetes, is a modifiable traditional risk factor which 
stress the necessity to treat this metabolic abnormali-
ties underlined in both cardiology as well as diabetology 
guidelines for the management of patients with diabetes 
[48, 49].

When looking closer at the top 10 features which could 
discriminate the vulnerable patients, these are again the 
traditional risk factors—like being diagnosed with T2DM 
and hypertension—but also the use of betablocker, with 
all the features being positively associated with CVD. 
An interesting parameter which was among the top 15 
ones associated with CVD is the parameter related to the 
arterial stiffness which is already recognized as the one 
which improves cardiovascular event prediction [50], 
and this one was also positively associated with CVD. On 
the other hand, other top 15 parameters (including ALT, 
eGFR and obesity) were negatively associated with overt 
CVD. Since it is understandable in relation to the kidney 
function expressed as eGFR which is a known risk factor 
of CVD, the negative association of ALT and obesity is 
surprising. The explanation of the negative association of 
obesity with CVD may be that nowadays there is a high 
emphasis on a healthy lifestyle, and patients who partici-
pated in our study were interested in their health since 
they answered the advertisement. Thus, it is also possible 
that they have already lost weight just before the partici-
pation in the study.

The results obtained for PCA indicated that the best-
generalizing multiple regression classifiers were elab-
orated using interpretable features, and the models 
operating on the five most important features outper-
formed all other classifiers (exploiting more features and 
PCs) for the selected cut-point values, and correctly clas-
sified 80.63% of all patients (Table  3). This observation 
was further manifested while analyzing the clinical utility 
of the three best ML models – for the probability thresh-
old of 25%, a logistic regression classifier operating on 5 
patient parameters outperformed two other models, both 
exploiting 10 PCs which are more challenging to inter-
pret in clinical practice. Such models directly operating 
on patient parameters and uncovering their interrelation-
ships with the CVD risk are not only easier to interpret, 
but also are they less likely to overfit to our relatively 
small patient cohort. Finally, the results show that the 

Fig. 3  Decision curve analysis showing clinical utility of using the 
three best-performing ML models according to all classification 
performance metrics. One top-performing logistic regression 
classifier operated on top-5 most discriminative features with the 
optimal cut-point value selected using the i) Index of Union (IoU) and 
ii) the closest to (0, 1) criteria (yellow line), whereas two operated on 
10 principal components with the optimal cut-point value selected 
using i) Index of Union (IoU) and ii) the closest to (0, 1) criteria (violet 
line) method, and using iii) the Youden index method (green line)



Page 10 of 12Drożdż et al. Cardiovascular Diabetology          (2022) 21:240 

ROC curve analysis may effectively lead to the classifiers 
with higher specificity or sensitivity, depending on the 
clinical scenario.

Most of the studies targeting the prediction of the CVD 
risk focus on the self-reported patient parameters which are 
not necessarily proved by medical documentation, hence 
may lead to biased outcomes. In our study, we have addressed 
this issue, and we analyzed a very well-defined population of 
patients whose concomitant diseases were medically docu-
mented. We used ML, which has been increasingly used to 
assess the risk of adverse outcomes in chronic disease states, 
outperforming simple clinical risk assessments [46, 47]. Most 
importantly, we are unaware of any studies to date which has 
assessed the risk factors in patients with MAFLD, let alone 
with the use of novel approaches such as ML.

Limitations
We are aware that there are important limitations of our 
study, which was a proof of concept for a wider program of 
work. This would include larger cohorts and further external 
validation, as well as prospective observations for all of them. 
Also, the patients were not asked whether they had lost their 
weight before participating in the study, which could explain 
the negative association of obesity with CVD. An important 
aspect of cardiovascular pharmacologic management is anti-
platelet treatment. However, we were unable to gather reli-
able information related to this type of treatment in patients 
without CVD, hence we excluded this parameter from the 
analysis due to a large amount of missing data. Moreover we 
included patients with at least 50% of carotid artery stenosis 
qualifying them as those with overt CVD since 50% is a cut 
point of stroke related to large artery atherosclerosis [51–53]. 
In this context, one should notice that the plaque score has 
been identified as one of the top 5 risk factors related to 
CVD so this information potentially could be biased. Finally, 
exploiting the recent deep learning advances which estab-
lished the state of the art in various medical data analysis 
tasks could help us further improve the classification perfor-
mance of the CVD patients, but it would also require focus-
ing on the interpretability of such large-capacity learners, to 
make their deployment in clinical setting much easier [48, 
49].

Conclusion
The use of a ML approach demonstrated high perfor-
mance in identifying MAFLD patients with high CVD 
risk based on the subset of the most discriminative, inter-
pretable and easy-to-obtain patient’s parameters. Our 
approach has the potential to facilitate timely diagnoses 
and management of prevalent CVD risk in patients who 
present with MAFLD in routine clinical practice.
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