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Abstract 

Background: Evidence from prospective cardiovascular (CV) outcome trials in type 2 diabetes (T2DM) patients sup‑
ports the use of sodium–glucose co‑transporter‑2 inhibitors (SGLT2i) to reduce the risk of CV events. In this study, we 
compared the risk of several CV outcomes between new users of SGLT2i and other glucose‑lowering drugs (oGLDs) in 
Catalonia, Spain.

Methods: CVD‑REAL Catalonia was a retrospective cohort study using real‑world data routinely collected between 
2013 and 2016. The cohorts of new users of SGLT2i and oGLDs were matched by propensity score on a 1:1 ratio. We 
compared the incidence rates and hazard ratio (HR) for all‑cause death, hospitalization for heart failure, chronic kidney 
disease, and modified major adverse CV event (MACE; all‑cause mortality, myocardial infarction, or stroke).

Results: After propensity score matching, 12,917 new users were included in each group. About 27% of users had 
a previous history of CV disease. In the SGLT2i group, the exposure time was 60% for dapagliflozin, 26% for empa‑
gliflozin and 14% for canagliflozin. The use of SGLT2i was associated with a lower risk of heart failure (HR: 0.59; 95% 
confidence interval [CI] 0.47–0.74; p < 0.001), all‑cause death (HR = 0.41; 95% CI 0.31–0.54; p < 0.001), all‑cause death 
or heart failure (HR = 0.55; 95% CI 0.47–0.63; p < 0.001), modified MACE (HR = 0.62; 95% CI 0.52–0.74; p < 0.001), and 
chronic kidney disease (HR = 0.66; 95% CI 0.54–0.80; p < 0.001).

Conclusions: In this large, retrospective observational study of patients with T2DM from a Catalonia, initiation of 
SGLT‑2i was associated with lower risk of mortality, as well as heart failure and CKD.

Keywords: SGLT2i, Heart failure, All‑cause mortality, Type 2 diabetes mellitus

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco 
mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ 
zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Cardiovascular disease (CVD) is the leading cause of 
morbidity and mortality among individuals with type 
2 diabetes mellitus (T2DM) [1, 2]. Indeed, people with 
T2DM have a two- to fourfold increased risk for coro-
nary heart disease compared to subjects without dia-
betes [3, 4], and heart failure (HF) is another common 
complication of T2DM associated with high risk of CV 
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death [5]. Moreover, different studies have shown that 
glycaemic control does not significantly reduce CV risk, 
stressing the need for novel treatments that can prevent 
the development of CVD complications independent of 
glucose lowering [6–8].

So far, meta-analyses of prospective CV outcome tri-
als (CVOTs) have consistently shown that treatment with 
sodium–glucose co-transporter-2 inhibitors (SGLT2i) 
modestly reduces the incidence of major adverse cardi-
ovascular outcomes (MACE) and have a consistent and 
robust beneficial effect on hospitalizations for heart fail-
ure and progression of kidney disease regardless of prior 
history of CVD or established CKD [9–12]. Besides, trials 
studying kidney function as a secondary outcome or sub-
group analysis have reported additional positive benefits, 
including reduced risk of end-stage renal disease and 
renal failure death [13–17].

In the real-world setting, several large multina-
tional, observational studies assessed the comparative 
effectiveness of initiating treatment with a SGLT2i vs. 
other glucose-lowering drugs (oGLDs) (CVD-REAL; 
NCT02993614). The results of the CVD-REAL 1 and 2 
studies showed that the use of SGLT2i was associated 
with decreased risk of hospitalisation for HF and all-
cause mortality in subjects with a broad range of CV risk 
[18, 19]. Moreover, the CVD-REAL Nordic (conducted 
in Denmark, Norway, and Sweden) reported an associa-
tion between SGLT2i initiation and a decreased risk of 
CV mortality and MACE compared with oGLDs [20]. 
Regarding dapagliflozin in particular, treatment initiation 
was associated with a lower risk of nonfatal myocardial 
infarction (MI), nonfatal stroke or CV death, and all-
cause mortality compared with dipeptidyl peptidase-4 
inhibitors (DPP-4i) [21]. The results from the CVD-REAL 
2 Study (conducted in Asia Pacific, the Middle East, 
North America and also Spain) confirmed that the use of 
SGLT2i was associated with a lower risk of death, death 
or hospitalisation for HF, MI, and stroke in a broad range 
of T2DM subjects with or without CVD [19]. Lastly, the 
recent CVD-REAL 3 Study (conducted in Israel, Italy, 
Japan, Taiwan, and the UK) showed that new users of an 
SGLT2i had a slower rate of kidney function decline and 
a lower risk of clinically meaningful kidney events com-
pared with those on oGLDs [22]. Other retrospective 
observational cohort studies conducted by independent 
groups in different populations and applying different 
methodologies have produced consistent results to what 
already observed in the CVD REAL studies [23–26].

Available observational, real-world studies suggested 
that there might be a class effect of SGLT2i on CV and 
renal outcomes, and that the benefits could be extended 
to a broader population with diabetes (i.e., with a broad 
CV risk profile and different stages of renal disease) 

[27, 28]. As such, SGLT2i are nowadays endorsed as 
second line therapy by European and American clini-
cal guidelines for patients with T2DM and CV risk fac-
tors, history of HF, or chronic kidney disease (CKD) [29, 
30]. However, it is important to examine whether these 
results can be replicated in Southern Europe areas other 
than Italy, the only countries of this region included and 
only regarding the assessment of renal outcomes in the 
CVD REAL available studies [19]. It is also important to 
consider that Fadini et  al. reported that there are coun-
try-specific differences in the profile and characteristics 
of patients initiating dapagliflozin in Southern Europe 
[31]. In their real-world practice study, including patients 
from Italy, Spain, and Greece, the authors found that the 
SGLT2i dapagliflozin was initiated at different stages 
depending on the country, with significant differences 
regarding age, mean T2DM duration, and the presence 
of comorbidities (e.g., retinopathy, prior stroke, MI, or 
CVD) [31]. The authors concluded that the observed geo-
graphic heterogeneity might not only have an impact in 
the glucose-lowering effectiveness of SGLT2i but also in 
the protective CV and renal outcomes. Moreover, the CV 
risk factors and the prevalence of CVD in persons with 
T2DM differ across regions in Europe [32, 33]. For exam-
ple, Spain has a lower prevalence of CVD than Northern 
European countries but higher than Italy [33]. Consider-
ing these potential differences, we hypothesised that the 
CVD-Real outcomes could be different when the general 
T2D population is estimated in a Southern European 
country—region such as Catalonia (Spain).

Based on the need to confirm the applicability of results 
from other observational, real-world studies, the primary 
aim of the present study was to investigate, in a primary 
care population database in Catalonia (Spain), whether 
the risk for HF among users initiating SGLT2i was differ-
ent from those initiating oGLDs. Secondarily, we aimed 
to compare all-cause mortality, modified MACE (i.e., all-
cause mortality, MI, or stroke), all-cause mortality or HF, 
MI, stroke, and CKD between these two groups of new 
users.

Methods
Study design and data sources
This was a retrospective cohort study of adult subjects 
with T2DM between January 2013 and December 2016. 
Data from patients were extracted from the electronic 
medical records of the SIDIAP database (Information 
System for the development of Primary Care Research) 
and the CMDB register (Hospital Discharge Records in 
the National Health System) from the Catalan Institute of 
Health (ICS) [34]. The assigned population of the ICS is 
around 5.6 million individuals (approximately 74% of the 
total Catalan population) organised in 288 primary care 
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teams. These electronic datasets include anonymised 
demographic data, visits to primary care services, spe-
cialist referrals, diagnoses and procedure codes (Interna-
tional Classification of Diseases [ICD]-9 and 10 systems), 
clinical data, laboratory test results, all-cause mortal-
ity, information on drugs prescriptions, and pharmacy 
dispensations.

Subjects
To identify patients initiating glucose-lowering treat-
ment with either an SGLT2i (canagliflozin, dapagliflozin, 
or empagliflozin) or oGLDs in our databases we used the 
codes of the Anatomical Therapeutic Chemical (ACT) 
classification system from the World Health Organiza-
tion (WHO) [35]. New users were defined as individu-
als with a registered prescription or drug dispensation 
(either as initial or add-on therapy) for any SGLT-2i (i.e., 
canagliflozin, dapagliflozin or empagliflozin) or oGLDs, 
including fixed-dose combinations, with no prior pre-
scriptions of an SGLT-2i during the preceding year [18]. 
If the subject in the oGLDs group started with more than 
one drug, one of these drugs was randomly selected as 
the index drug.

New users were eligible if they initiated treatment with 
either an SGLT2i or oGLD between the 1st December 
2013 and the 31st December 2016. In our approach, all 
episodes of SGLT-2i and oGLD initiation were eligible 
to be included, thus one patient might be included more 
than once and might have contributed with more than 
one episode of new glucose-lowering medication initia-
tion for different drug classes (e.g., SGLT-2i and various 
classes of oGLDs) and at different time points. Further-
more, subjects were not selected hierarchically; there-
fore, the potential risk period from the oGLD group 
was removed, which could lead to mortality bias [36]. 
This methodological approach allowed all oGLD expo-
sure episodes to contribute to oGLD estimates and all 
SGLT2i exposure episodes to contribute to SGLT2i esti-
mates. Additionally, the groups were built with 1:1 pro-
pensity matching for new glucose-lowering agent (oGLD 
or SGLT2i) episodes rather than individual subjects, tak-
ing into account each drug episode within subjects. This 
methodologic approach was made in order to minimize 
immortal time bias. Moreover, subjects were included in 
the study by the index date (defined as the prescription/
dispensation date for the new SGLT2i or oGLD) were 
≥ 18 years and had more than 1-year medical history in 
the database. Subjects with a diagnosis of type 1 diabe-
tes (ICD10 code E10), gestational diabetes (ICD10 code 
O24.4), or on dialysis treatment (ICD10 code Z49) were 
excluded from the study. All subjects were followed from 
the index date to the earliest end of the use of the given 
treatment or the date that the subject moved to another 

healthcare region not served by ICS (thus withdrawn 
from the database), last date of data collection, or to the 
death date in the on treatment approach. In the intention 
to treat approach, subjects were followed until the last 
date of data collection independently if they discontinued 
their index treatment or switched to another treatment.

Variables
Variables were captured for all patients at the index date 
inclusive or before (1  year prior to the index date). At 
baseline, we collected data for social-demographic char-
acteristics, including age, gender, toxic habits (smoking), 
and deprivation index (DI). The DI assesses five socioeco-
nomic indicators related with work and education (i.e., 
unemployment, manual and eventual workers, and insuf-
ficient education overall and in young people) extracted 
from census tracks [37]. It detects small areas of large cit-
ies in Spain with unfavorable socioeconomic characteris-
tics and is associated with overall mortality. The higher is 
the DI, the worse the social deprivation is.

Clinical characteristics included diabetes-related 
parameters [e.g., glicated haemoglobin (HbA1c) and dia-
betes duration], concomitant medications, comorbidi-
ties, and laboratory parameters (with the baseline value 
defined as the last available value during the prior year 
including the index date). During the follow-up, we col-
lected data (ICD10 diagnostic codes) on the follow-
ing events as single outcomes: all-cause mortality, HF 
[hospitalisation for HF or diagnostic code (ICD10: I50), 
atrial fibrillation (ICD10: I48), stroke (ICD10: I60–I62), 
ischemic stroke (ICD10: I63–I64), MI (ICD10: I21–I22), 
and CKD (ICD10: N18, N08.3, E11.2]. In addition, we 
also analysed the following composite outcomes: (a) all-
cause mortality or HF (hospitalisation for HF or diagnos-
tic code), and (b) modified MACE, defined as all-cause 
mortality, MI or stroke.

Statistical methods
The SGLT-2i group was matched to the oGLDs group 
(comparator) based on propensity score and calendar 
period of study entry. For matching, we used the nearest 
neighbour calliper width of 0.25 multiplied by the stand-
ard deviation (SD) of the propensity score distribution 
[38]. The variables considered for the estimation of the 
propensity score included age at study date entry (index 
date), gender, CV risk factors, indicators of diabetes 
severity, and use of concomitant medications (Additional 
file  1: Table  S1). Once the propensity score was per-
formed, new treatment episodes of initiators of SGLT2i 
and oGLDs were matched 1:1.

The baseline characteristics for each cohort were sum-
marised by frequencies and percentages for categorial 
variable, and as mean (± SD or median and quartiles) for 
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continuous and count variables. For the main on treat-
ment analysis, we calculated the person-time at risk for 
each patient as the length of the index exposure episode, 
defined as the number of days from the day after the 
index prescription start date to the last day of follow-up. 
For each outcome of interest, the crude incidence rate 
(IR) in each index exposure group was estimated as the 
number of incident events divided by the total number of 
patient-years (PY) at risk and was expressed as per 100 
PY. The IRs for the SGLT2i group and oGLD group were 
then compared using a hazard ratio (HR) and the corre-
sponding 95% confidence interval (CI). This analysis was 
performed using Cox proportional hazards regression 
by clusters (patient ID) with robust estimation of stand-
ard errors. Both crude and adjusted HR were estimated 
for all endpoints. As covariates for adjustment, we used 
gender, age, T2DM duration, hypertension, body mass 
index (BMI), use of antihypertensive drugs, and HF or MI 
(Additional file  1: Table  S2). In addition, Kaplan–Meier 
plots were are also generated for each of the analysed 
outcomes. A sensitivity analysis was further conducted 
with an intent-to-treat approach with those subjects 
who continued in the study even after they discontinued 
their index treatment or switched to another treatment. 
Finally, a subgroup analysis was performed within the fol-
lowing pre-specified subgroups: prior CV disease, prior 
heart failure, ≥ 65 years of age at the index date, gender, 
prior kidney disease, and baseline treatment with anti-
hypertensive drugs, insulin, sulfonylureas, GLP1-RA, 
thiazolidinedione and statins. All statistical analyses were 
performed using the free R statistical software, version 
3.6.1 (https:// www.r- proje ct. org/). The source code is 
available at https:// github. com/ jreal gatius/ CVD_ REAL_ 
OP2, and a dashboard with interactive Additional mate-
rial at https:// dapcat. shiny apps. io/ CVD_ REAL.

Results
A total of 239,733 subjects with T2DM were identified 
as new user episodes of glucose-lowering drugs during 
the observational period in the SIDIAP database, with 
226,452 of them (94.5%) initiating treatment with and the 
remaining 13,281 with an SGLT2i (5.5%). Baseline char-
acteristics before propensity-score matching are shown 
in Additional file  1: Table  S3. Briefly, we observed that 
SGLT2i new users were younger, with a longer duration 
of T2DM, higher BMI, and poorer glycemic control than 
oGLDs new users. Moreover, the proportion of patients 
with microvascular disease, hypertension, previous MI, 
and peripheral artery disease (PAD) was higher among 
those initiating an SGLT2i.

After propensity-score matching, we obtained well-bal-
anced cohorts for patients’ baseline characteristics with 
standardised differences for all of the variables less than 

10%, which resulted in a total of 25,834 new user epi-
sodes, 12,917 in each drug cohort (Additional file 1: Fig-
ures S1 and S2; http:// dapcat. shiny apps. io/ CVD_ REAL). 
In the overall population, more than two-thirds of users 
at the moment of initiation with a new glucose-lowering 
drug had a diabetes duration of ≥ 5 years (77.7%), subop-
timal glycemic control (mean HbA1c = 8.69%; SD = 4.8), 
and nearly two-thirds (65.1%) were on statins treatment 
(Table 1).

In the SGLT2i group, the overall exposure to the drug 
class was 9484  years. The dapagliflozin, empagliflozin 
and canagliflozin accounted for 60%, 26%, and 14% of the 
total exposure time, respectively. The overall exposure 
time for oGLDs was 10,012  years (see Additional file  1: 
Table  S4 for detailed information on exposure time for 
the different drugs). New users of dipeptidyl peptidase-4 
inhibitors (DPP4i) had the highest proportion of expo-
sure time (20.8%), followed by metformin (20.7%), insulin 
(20.6%), sulphonylurea (15.5%), glucagon-like peptide-1 
receptor agonists (GLP1RA; 10.3%), meglitinide (9.1%), 
and other drugs (3.4%).

Incidence rate and risk of CV events and renal impairment
At baseline, 27% of patients had established CVD, and 
6.6% CKD. The incident rate (i.e., new events per 100 
patient-years) of HF, all-cause death, the combination 
of both outcomes, and modified MACE was lower in 
patients with T2DM receiving SGLT2i than in patients 
initiating oGLDs (IR = 1.24 vs. 2.16, 0.72 vs. 1.97, 1.88 
vs. 3.90, and 1.96 vs. 3.31, respectively; Fig. 1). However, 
the IRs of the other studied CV events (i.e., non-fatal MI, 
non-fatal stroke, ischemic stroke, and atrial fibrillation) 
were similar between the two groups (Fig.  1). Finally, 
the occurrence of CKD during the follow-up period was 
lower after initiation of SGLT2i compared with initiation 
of oGLDs (IR 1.65 vs. 2.58).

The initiation of an SGLT2i was associated with 41% 
lower adjusted risk of incident HF, 59% lower risk of 
all-cause death, 54% lower risk of the composite out-
come, and 38% lower risk of modified MACE compared 
with matched patients on oGLDs (all p < 0.001; Fig.  2). 
In contrast, no statistically significant difference was 
detected in the risk for incident non-fatal MI, non-fatal 
stroke, ischemic stroke, and atrial fibrillation between the 
two treatment groups. Lastly, we observed that patients 
receiving SGLT2i had significantly reduced incident CKD 
compared with those on oGLDs (p < 0.001; Fig. 2).

Sensitivity and subgroup analyses
Similar results regarding the number of events and IRs 
were observed for all of the study outcomes in the sen-
sitivity analysis using the intention-to-treat approach 
population (Additional file  1: Table  S5 and http:// 
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dapcat. shiny apps. io/ CVD_ REAL). Moreover, crude and 
adjusted Cox regression analyses (i.e., by gender, age, 
T2DM duration, hypertension, BMI, and antihyperten-
sive drugs) showed magnitude and effects similar to the 
ones detected in the on-treatment analysis approach 
(Additional file 1: Table S6 and http:// dapcat. shiny apps. 
io/ CVD_ REAL).

The subgroup analyses showed no statistically sig-
nificant interactions with users’ characteristics, includ-
ing age (≥ 65  years), gender, comorbidity profile (i.e., 
prior CVD, HF, or CKD), or CV and baseline medica-
tion (i.e., treatment with antihypertensive drugs, insu-
lin, sulfonylureas, GLP1-RA thiazolidinedione, and 
statins). As such, none of the these variables modified 

the association between SGLT2i use and reduced risk 
of HF, all-cause death, all-cause death or HF, MACE, 
and CKD (Additional file 1: Figures S3 to S11 or http:// 
dapcat. shiny apps. io/ CVD_ REAL).

Discussion
In the present study involving a primary care popula-
tion with T2DM from Catalonia starting new antidia-
betic treatment we observed a significantly lower risk of 
HF associated with initiation of SGLT2i compared with 
matched patients initiating oGLDs. We also detected 
lower risk of all-cause mortality, CKD, modified MACE, 
and all-cause death or HF. In contrast, we did not identify 

Table 1 Baseline characteristics of the study participants after propensity score matching

a Defined as diabetic neuropathy, retinopathy, or nephropathy

eGFR estimated glomerular filtration rate by Chronic Kidney Disease Epidemiology formula, oGLD other glucose-lowering drugs, SGLT2i sodium–glucose 
co-transporter inhibitors

Total population
N = 25,834

oGLD
N = 12,917

SGLT2i
N = 12,917

Standardized 
mean 
differences

Age, mean (SD), years 62.9 (11.1) 62.8 (11.8) 62.9 (10.4) 0.007

Gender, n (%), females 11,331 (43.9) 5682 (44.0) 5649 (43.7) 0.005

Smoking, n (%) 4145 (16.3) 2081 (16.3) 2064 (16.2) 0.004

Diabetes duration ≥ 5 years, n (%) 20,065 (77.7) 10,037 (77.7) 10,028 (77.6) 0.002

HbA1c (%), mean (SD) 8.69 (1.57) 8.79 (1.64) 8.59 (1.48) 0.128

Missing’s, n (%) 5980 (23.1) 2948 (22.8) 3032 (23.5)

Deprivation index (medium–high), n (%) 12,356 (47.9) 6156 (47.6) 6200 (48.0) 0.016

Comorbidities, n (%)

 Cardiovascular disease 7019 (27.2) 3466 (26.8) 3553 (27.5) 0.015

 Heart failure 1421 (5.5) 692 (5.4) 729 (5.6) 0.013

 Myocardial infarction 1624 (6.3) 800 (6.2) 824 (6.4) 0.008

 Unstable angina 383 (1.5) 197 (1.5) 186 (1.4) 0.007

 Atrial fibrillation 1343 (5.2) 668 (5.2) 675 (5.2) 0.002

 Stroke 1488 (5.8) 752 (5.8) 736 (5.7) 0.005

 Chronic kidney disease 1697 (6.6) 1021 (7.9) 676 (5.2) 0.108

 Peripheral artery disease 1895 (7.3) 942 (7.3) 953 (7.4) 0.003

 Microvascular  diseasea 5749 (22.3) 2884 (22.3) 2865 (22.2) 0.004

 Cancer 2975 (11.5) 1589 (12.3) 1386 (10.7) 0.049

 eGFR, mL/min/1.73  m2, mean (SD) 58.8 (4.82) 58.5 (5.5) 59.0 (3.98) 0.100

 Missing’s, n (%) 6058 (23.4) 3003 (23.2) 3055 (23.7)

Concomitant medications, n (%)

 Anti-hypertensives 19,453 (75.3) 9645 (74.7) 9808 (75.9) 0.029

 ACE inhibitors 9891 (38.3) 4950 (38.3) 4941 (38.3) 0.001

 Angiotensin II receptor blockers 8577 (33.2) 4272 (33.1) 4305 (33.3) 0.005

 Beta blockers 6926 (26.8) 3441 (26.6) 3485 (27.0) 0.008

 Calcium channel blockers 540 (2.1) 290 (2.3) 250 (1.9) 0.022

 Thiazides 2431 (9.4) 1219 (9.4) 1212 (9.4) 0.002

 Loop‑diuretics 3008 (11.6) 1492 (11.6) 1516 (11.7) 0.006

 Statins 16,812 (65.1) 8381 (64.9) 8431 (65.3) 0.008

http://dapcat.shinyapps.io/CVD_REAL
http://dapcat.shinyapps.io/CVD_REAL
http://dapcat.shinyapps.io/CVD_REAL
http://dapcat.shinyapps.io/CVD_REAL
http://dapcat.shinyapps.io/CVD_REAL
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any significant differences between groups regarding MI, 
non-fatal stroke, ischemic stroke and atrial fibrillation.

Several real-world observational studies have been 
published with routinely collected data from different 
countries [18–22, 39–41]. The baseline characteristics 
of the subjects included in our study are similar to those 
reported regarding age, prevalence of CVD, microvascu-
lar complications, and prior CV therapies. Moreover, the 
highest proportion of exposure time was to dapagliflozin, 
which was also the case in other RW studies (60% in our 
population, and between 51 and 94% in other observa-
tional studies) [18–22, 41].

The main outcome of our study was the reduction in 
the incidence rate of HF, which is a common complica-
tion associated with CV death in T2DM [5]. The rela-
tive risk reduction of HF was 41%, which is in line with 
the 30–39% reduction observed in other RW studies for 
hospitalizations for HF [18–22, 41]. In addition, the risk 
reduction for HF or all-cause mortality was 45% in our 
analysis, which is as well in agreement with the 31–46% 
range reported in observational studies [18–21, 40]. It is 
possible that the greater risk reduction observed in our 
study was due to the fact that we had no data on hospi-
tal events for HF admissions. Indeed, the need for hos-
pitalization among patients with HF is frequent due to 
recurrent decompensation, with an estimated 12–45% 
incidence of hospitalizations for HF at 1  year [42, 43]. 
In addition, we had a higher exposition to empagliflo-
zin in our study compared with the other observational 

studies (26% vs. 5–9%) [22, 27, 28]. The users who initi-
ated SGLT2i in our study reported 68 events related to 
all-cause mortality compared with 197 events in the 
oGLD group, corresponding to a risk reduction of 59%. 
These results were slightly higher, but in line with the 
other real-world studies, in which the risk reduction 
of all-cause mortality ranged from 46 to 56% [18–22, 
37–39]. It could be hypothesized that the differences 
between our results and those of other RCTs or RW stud-
ies could be related to different exposure to the individual 
SGLT2i across studies. However, the relative effective-
ness of each product on the different outcomes remains 
to be elucidated, because study populations and designs 
are different. Recent attempts to indirectly address this 
issue through network meta-analyses led to differing 
conclusions regarding the differential effect of individual 
SGLT2i on outcomes such as HF and all-cause mortal-
ity [44, 45]. Therefore, in the absence of prospective or 
retrospective head-to-head trials comparing individual 
SGLT2i, it cannot be ascertained to what extent the expo-
sure to the individual SGLT2i in CVD-REAL Catalonia 
vs. other studies could have contributed to the observed 
differences.

New use of SGLT2i was associated with a 38% lower 
risk of MACE compared to a new use of oGLDs, which 
is higher than the 21–22% reported by two other obser-
vational studies [19, 20]. In the absence of data on CV 
death, we used a modified MACE and replaced CV death 
by all-cause death. It is then conceivable that we included 

Fig. 1 Incidence rates of the different events per 100 person‑years by treatment. CKD chronic kidney disease, HF heart failure, MACE major adverse 
cardiovascular events, MI myocardial infarction, oGLDs other glucose‑lowering drugs, PY patient‑years of exposure, SGLT2i sodium–glucose 
co‑transporter inhibitors
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a greater number of events, thus resulting in a higher-
than-expected reduction in this particular outcome.

In the moment of realization of the study SGLT2i were 
not recommended in severe renal impairment, namely 
< 45  mL/min/1.73   m2 for empagliflozin and canagliflo-
zin, and < 60 mL/min/1.73   m2 for dapagliflozin [46, 47]. 
Regarding the assessed renal outcome, we found that 
the risk of CKD after initiation with SGLT2i was 34% 
less than in the oGLDs group, while the risk of the com-
posite outcome eGFR decline or end stage renal disease 

(ESRD) was 50% lower in the CVD REAL 3 cohort [22]. 
On the one hand, the mean eGFR value in our study was 
58.8 mL/min/1.73  m2, indicating a mild to moderate loss 
of kidney function, while in CVD REAL 3 the mean value 
was above 90 mL/min/1.73   m2 (normal range) and only 
8% of initiators had values below 60 mL/min/1.73  m2. In 
that study, the annual rate of change in eGFR from base-
line showed the benefit of initiating an SGLT2i regard-
less the eGFR subgroup, although the magnitude of the 
change was lower among those with compromised kidney 

0.0 0.5 1.0 1.5 2.0

Modified MACE

All-cause death or HF

CDK

Atrial fibrillation

Ischaemic stroke

Non-fatal stroke

Non-fatal MI

HF

All-cause death

Hazard Ratio

Favours SGLT2i Favours oGLDs

HR (95% CI); P-value

0.41 (0.31-0.54); p<0.001

0.59 (0.47-0.74); p<0.001

1.11 (0.75-1.63); p=0.608

0.84 (0.63-1.12); p=0.238

0.81 (0.57-1.13); p=0.213

0.93 (0.67-1.24); p=0.618

0.66 (0.54-0.80); p<0.001

0.55 (0.47-0.63); p<0.001

0.62 (0.52-0.74); p<0.001

Fig. 2 Forest plot of the adjusted incident hazard ratios (HR) and 95% CI for the different outcomes. CKD chronic kidney disease, CI confidence 
interval, HF heart failure, MACE major adverse cardiovascular events, HR hazard ratio, MI myocardial infarction, oGLDs other glucose‑lowering drugs, 
PY patient‑years of exposure, SGLT2i sodium–glucose co‑transporter inhibitors
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function (30% and 79% in those with < 60 and 60–90 mL/
min/1.73  m2, respectively). Another RW study conducted 
in Italy, the DARWIN-T2D, assessed the albumin excre-
tion rate (AER) as a surrogate of kidney outcome in 
T2DM patients treated with dapagliflozin vs. active com-
parators (i.e., GLPR-1a, DPP-4i, or glicazide) [48]. The 
mean eGFR was 83 mL/min/1.73  m2 at baseline and the 
authors reported a decline of 37% in the AER irrespec-
tive of baseline eGFR, while there was no change among 
those who received a comparator. Lastly, a systematic 
review and meta-analysis of RCTs in patients with T2DM 
and CKD (defined as eGFR < 60 mL/min/1.73  m2) treated 
with SGLT2i found that these agents slowed the annual 
loss in kidney function (eGFR slope) and led to a 29% 
reduction in the risk of the composite outcome doubling 
serum creatinine, ESRD, or renal death [15]. A reduc-
tion of 34% vs. placebo in the composite outcome was 
as well reported in the CREDENCE trial, conducted in 
patients with T2DM and albuminuric CKD receiving 
canagliflozin [17]. Besides, in the DAPA-CKD trial with 
dapagliflozin, which included 68% of patients with CKD 
and T2DM, reductions of 39% and 31% vs. placebo were 
observed in the primary composite outcome and in all-
cause mortality, respectively [16].

The incident rates of non-fatal MI, stroke (non-fatal 
or ischemic), and atrial fibrillation were not different 
between patients initiating SGLT2i or other oGLDs in 
our study. A neutral or small effect of SGLT2i on all of 
these particular outcomes has been as well observed in 
previous RW studies [20, 21, 39, 49]. There is also a pos-
sibility that the diagnostic codes used and proposed by 
the global CVD Real study protocol for these events had 
low prevalence in our database. Moreover, this modest or 
even nonsignificant association of SGLT2i with athero-
thrombotic events has been as well observed in several 
meta-analyses of RCTs comparing this drug class against 
placebo or active comparators [10, 50–52].

The results of our study should be considered in the 
context of several potential strengths and limitations. The 
main strength of our study is a large number of patients 
included the representativeness of the diabetic popula-
tion [19]. Moreover, our study involves real-world data 
from a South European region where the prevalence of 
CV risk factors and CV disease in patients with T2DM 
is expected to be different from that in Northern Europe 
or the US [53]. Indeed, our results go in the same direc-
tion as other CVD-Real studies, besides differences in 
the studied populations. Moreover, the SIDIAP database 
has been extensively used for different epidemiologic 
and pharmacoepidemiologic national and international 
research, and it is established as the well-validated pri-
mary care Spanish database for the study of diabetes [33, 
54]. One limitation of the study is that inherent to all 

observational studies based on health care records of real 
clinical practice, the possibility of residual and unmeas-
ured confounding factors cannot be ruled out. However, 
we used robust statistical techniques, including well-bal-
anced groups created by propensity-matching and sensi-
tivity analyses. Another limitation is that we did not have 
information on CV mortality, which could have impacted 
the estimation of the incident rates of MACE if defined 
as including CV death. Moreover, our average follow-up 
time was relatively limited, as SGLT2i use in real-world 
settings is still relatively recent; thus, longer period anal-
yses will be needed to evaluate if the positive effects of 
SGLT2i are sustained over time. Since the comparator 
group was oGLD’s in our study, there was a possibility 
of “immortal time bias,” which occurs when two patient 
groups are hierarchically formed within a time interval. 
However, the new user episodes design combined with 
propensity score matching for index date and time since 
initiation eliminate this bias. Furthermore, if the compar-
ator group was DPP4i instead of OGLD´s, a similar ten-
dency in outcomes favouring SGLT2i users was observed 
and published [55]. Lastly, we had limited socio- eco-
nomic data and no information on lifestyle variables for 
patients. For instance, dietary differences between Euro-
pean countries may modulate CV outcomes, since it is 
well known that subjects highly adherent to the Medi-
terranean diet have about 30% lower risk of CVD mor-
bidity and mortality, and this raises up to 40–45% in 
randomized clinical trials (RCTs) with patients at high 
CVD risk [56–58].

Conclusion
In this real-world study of patients with T2DM attended 
in routine clinical practice from a South European region, 
new use of SGLT2i was associated with a lower risk of 
HF, mortality and renal events compared with the use 
of oGLDs. These results expand previous observational 
studies supporting the use of SGLT2i in patients with 
a broad CV risk profile in real-world clinical practice. 
Moreover, they show that the magnitudes of the associ-
ated CV and renal benefits are similar to those observed 
in other European geographical regions.
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