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Cardiovascular benefits of sodium-glucose 
cotransporter 2 inhibitors in diabetic 
and nondiabetic patients
Boyang Xiang, Xiaoya Zhao and Xiang Zhou* 

Abstract 

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) were developed as antidiabetic agents, but accumulating 
evidence has shown their beneficial effects on the cardiovascular system. Analyses of the EMPA-REG OUTCOME trial 
(Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients) suggested that these benefits 
are independent of glycemic control. Several large-scale outcome trials of SGLT2i also showed cardiovascular benefits 
in nondiabetic patients, strengthening this perspective. Extensive animal and clinical studies have likewise shown that 
mechanisms other than the antihyperglycemic effect underlie the cardiovascular benefits. Recent clinical guidelines 
recommend the use of SGLT2i in patients with type 2 diabetes mellitus and cardiovascular diseases because of the 
proven cardiovascular protective effects. Since the cardiovascular benefits are independent of glycemic control, the 
therapeutic spectrum of SGLT2i will likely be extended to nondiabetic patients.
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Introduction
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) 
are antidiabetic drugs that lower blood glucose levels in 
patients with type 2 diabetes mellitus (T2DM). SGLT2i 
decrease renal glucose reabsorption by blocking SGLT2 
and thus enhance the urinary excretion of glucose [1]. 
Their mechanism of action differs from those of tradi-
tional antihyperglycemic interventions, which attenuate 
insulin sensitivity, preserve β-cell function, or increase 
tissue glucose uptake.

The concept of SGLTs was first proposed in the 1960s 
[2] and, during the ensuing decades, six SGLT subtypes, 
of which SGLT1 and SGLT2 are the most important, 
were discovered in the human body. SGLT1, which has 
high affinity and low transport capacity for glucose, 

is present in the intestine, kidney, heart, prostate, tra-
chea, brain, and skeletal muscle whereas SGLT2, which 
has low affinity and high transport capacity for glucose, 
is located almost exclusively in the epithelium of the 
proximal tubular segment [3–5]. In healthy individuals, 
almost all filtered glucose (approximately 160–180 g per 
day) undergoes tubular reabsorption [6]; most (> 90%) 
is reabsorbed by SGLT2 in the proximal tubule and the 
remainder (< 10%) is reabsorbed by SGLT1 in more dis-
tal segments of the proximal tubule [4, 5, 7]. However, 
because of a compensatory increase in SGLT1-mediated 
transport [8], or other latent factors, complete pharmaco-
logical blockade of SGLT2 only leads to urinary excretion 
of 50–80  g of glucose per day (i.e., SGLT2i block < 50% 
of renal glucose reabsorption) in healthy individuals [4] 
and this level of SGLT2i-mediated glycosuria does not 
increase even in those with diabetes mellitus [9, 10].

In addition to improving glycemic control, a growing 
body of clinical evidence has shown that SGLT2i pro-
vide remarkable cardiovascular benefits, most notably 
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a reduced risk of hospitalization for heart failure (HF). 
These benefits occur rapidly and persist throughout 
treatment, which is inconsistent with the slow effect 
of glycemic control on the cardiovascular system [11, 
12]. In the EMPA-REG OUTCOME trial (Empagliflozin 
Cardiovascular Outcome Event Trial in Type 2 Diabe-
tes Mellitus Patients), which included individuals with 
T2DM and cardiovascular diseases (CVD), only a mod-
est correlation was observed between changes in HbA1c 
(glycosylated hemoglobin) and amelioration of cardio-
vascular outcomes, suggesting that the cardiovascular 
benefits of empagliflozin might be independent of its 
antihyperglycemic effect [13, 14]. Recently, several large-
scale randomized controlled trials of SGLT2i have like-
wise demonstrated cardiorenal benefits in nondiabetic 
patients [15–17].

In this review, we focus mainly on the cardiovascu-
lar benefits of SGLT2i, the underlying mechanisms, and 
prospects for clinical application.

Cardiovascular benefits of SGLT2i
Currently, four SGLT2i (empagliflozin, dapagliflozin, 
canagliflozin, and ertugliflozin) are licensed by the Euro-
pean Medicines Agency (EMA) and the US Food and 
Drug Administration (FDA). Several other SGLT2i (e.g., 
sotagliflozin, remogliflozin, ipragliflozin, and tofogliflo-
zin) have progressed to marketing approval in different 
regions. Table 1 lists nine large-scale cardiorenal outcome 
trials of SGLT2i published in the last five years, showing 
the baseline characteristics of individuals enrolled, inter-
ventions, and cardiovascular outcomes.

Across the whole patient population (including individ-
uals without T2DM), these randomized controlled trials 
all demonstrated the cardiovascular benefits of SGLT2i, 
most notably a remarkable reduction in the risk of hospi-
talization for HF (Fig. 1), and indicated the involvement 
of mechanisms other than glycemic control. In addition 
to improved prognosis, quality of life also improved in 
patients with HF and reduced ejection fraction (HFrEF), 
as indicated by improved Kansas City Cardiomyopathy 
Questionnaire (KCCQ) scores.

Empagliflozin
The EMPA-REG OUTCOME trial [18] in patients with 
T2DM and CVD demonstrated that empagliflozin, as 
compared with placebo, decreased the risk of major 
adverse cardiovascular events (MACE), an effect that was 
principally ascribed to a significant reduction in risk of 
death from cardiovascular causes. Both the risk of hos-
pitalization for HF and death from any cause were also 
markedly reduced by treatment with empagliflozin. 
Interestingly, a similar decrease in risk of MACE was 
observed in the two different dose groups in the trial, 

probably signifying a small dose–response relationship 
between the dose of empagliflozin and cardiovascular 
benefits. However, a marked correlation between changes 
in HbA1c and drug dose was observed, implying the 
involvement of mechanisms other than glycemic control 
in the cardiovascular benefits. This was later confirmed 
in several analyses of the EMPA-REG OUTCOME trial 
[13, 14].

The EMPEROR-Reduced trial (Empagliflozin Out-
come Trial in Patients with Chronic Heart Failure and a 
Reduced Ejection Fraction) [15] in patients with HFrEF, 
together with New York Heart Association class II–IV 
symptoms, showed that empagliflozin, as compared 
with placebo, reduced the composite risk of hospitali-
zation for worsening HF or death from cardiovascular 
causes, mainly driven by the reduced risk of the former, 
and increased KCCQ score at 52  weeks. The effects 
were of similar size whether diabetes was present or not, 
again revealing a cardiovascular benefit beyond the anti-
diabetic effect. As compared with other similar studies, 
the EMPEROR-Reduced trial extended the known car-
diovascular protection of SGLT2i to patients with more 
advanced but stable HF.

Canagliflozin
In the CANVAS (Canagliflozin Cardiovascular Assess-
ment Study) program [19], the risk of MACE in patients 
with T2DM and CVD or multiple cardiovascular risk fac-
tors was reduced by treatment with canagliflozin, albeit 
without a significant decrease in death from cardiovas-
cular causes or death from any cause. The CREDENCE 
(Canagliflozin and Renal Events in Diabetes with Estab-
lished Nephropathy Clinical Evaluation) trial [20], which 
involved patients with chronic kidney disease (CKD) 
and T2DM, showed that treatment with canagliflozin 
improved the composite primary endpoint of end-stage 
kidney disease, doubling of serum creatinine level, or 
death from cardiorenal causes. Both trials indicated that 
canagliflozin markedly decreased the risk of hospitali-
zation for HF. An analysis of the CREDENCE trial also 
found that the cardiorenal benefits were independent of 
glycemic control [21].

Dapagliflozin
The DECLARE-TIMI 58 (Dapagliflozin Effect on Cardio-
vascular Events-Thrombolysis in Myocardial Infarction 
58) trial [22], which involved individuals with T2DM and 
atherosclerotic CVD (ASCVD) or a high risk of ASCVD, 
demonstrated a remarkable reduction in risk of hospi-
talization for HF in the dapagliflozin group compared 
with the placebo group. The reduction in risk of MACE, 
death from cardiovascular causes, and death from any 
cause did not, however, reach statistical significance. In a 
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prespecified study of the DECLARE-TIMI 58 trial, dapa-
gliflozin therapy showed cardiovascular benefits, regard-
less of levels of biomarkers of myocardial injury and HF 
(including high sensitivity troponin T and N-terminal 
pro-brain natriuretic peptide), with more benefits seen 
in patients with more severe CVD [23]. The DAPA-HF 
(Dapagliflozin and Prevention of Adverse Outcomes in 
Heart Failure) trial [16], which involved patients similar 
to those in the EMPEROR-Reduced trial [15], showed 
that dapagliflozin provided similar cardiovascular ben-
efits to empagliflozin. The DAPA-CKD (Dapagliflozin 
and Prevention of Adverse Outcomes in Chronic Kid-
ney Disease) trial [17], which involved patients with an 
estimated glomerular filtration rate (eGFR) of 25–75 ml/
min/1.73  m2 and albuminuria, showed that treatment 
with dapagliflozin led to a reduction in the combined risk 
of end-stage kidney disease, a decline of ≥ 50% in eGFR, 
or death from cardiorenal causes, regardless of T2DM. 
All-cause mortality and the composite risk of death from 
cardiovascular causes or hospitalization for HF were also 
reduced.

Other SGLT2 inhibitors
The VERTIS-CV (Evaluation of Ertugliflozin Efficacy 
and Safety Cardiovascular Outcomes) trial [24], which 
recruited patients with T2DM and established ASCVD, 
showed that ertugliflozin, as compared with placebo, only 
reduced the risk of hospitalization for HF, without signifi-
cant reduction in risk of MACE, death from cardiovascu-
lar causes, or other cardiovascular outcomes. The reason 
why the results of the trial did not reach statistical signifi-
cance remains unclear.

The SOLOIST-WHF (Effect of Sotagliflozin on Car-
diovascular Events in Patients with Type 2 Diabetes Post 
Worsening Heart Failure) trial [25] showed that sotag-
liflozin, an SGLT2i that also inhibits gastrointestinal 
SGLT1 to some extent, decreased the risk of death from 

cardiovascular causes or hospitalization and urgent vis-
its for HF in patients with T2DM and recent hospitaliza-
tion for worsening HF. Treatment with sotagliflozin also 
increased the KCCQ score, but the trial was stopped ear-
lier than planned due to loss of funding from the sponsor, 
which probably limited the statistical power to evaluate 
some outcomes, such as cardiovascular death.

Cardiovascular protection mechanisms of SGLT2i
The cardiovascular benefits of SGLT2i are mediated by 
multiple direct and indirect mechanisms that are inter-
woven and interactional (Fig.  2). These mechanisms 
improve many aspects of the cardiovascular system, 
including hemodynamics, metabolism, oxidative stress, 
and inflammation.

Glycemic control and attenuation of glucotoxicity
Clinical studies in patients with T2DM have suggested 
that SGLT2i, as compared with placebo, decrease HbA1c 
by 0.6–1.0% in the presence of different background 
therapies [26–28]. Although it remains controversial 
whether SGLT2i can be combined with insulin to treat 
type 1 diabetes mellitus (T1DM) because of safety issues, 
recent meta-analyses of clinical trials have demonstrated 
a reduction in HbA1c levels of approximately 0.4% in 
patients with T1DM [29, 30]. The antihyperglycemic 
effect of SGLT2i depends on urinary glucose excretion 
and, in patients with CKD, the effect is thus diminished 
as eGFR decreases [31]. In the CREDENCE trial, the 
blood glucose lowering effect weakened over time, 
whereas the cardiovascular benefits did not [20], indicat-
ing that glycemic control does not account for the cardio-
renal benefits of SGLT2i.

Because urinary glucose levels are elevated, the most 
common adverse event of SGLT2i is genital infections, 
with a higher incidence in females than in males [32]. 
SGLT2i generally do not lead to hypoglycemia [16–19, 

Fig. 1 SGLT2i reduce the risk of hospitalization for heart failure in large randomized controlled trials. With SGLT2i therapy, the reduction in risk of 
hospitalization for heart failure was consistent and significant across different patients. CI, confidence interval; NA, not available
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22], unless combined with drugs that cause hypoglyce-
mia, such as sulfonylureas [33].

As well as reducing blood glucose, SGLT2i also 
decrease glucotoxicity, which is manifest as reduced 
generation of advanced glycation end products (AGEs) 
and reduced expression of receptors for advanced gly-
cation end products (RAGEs). AGEs are an assort-
ment of heterogeneous compounds that are produced 
via non-enzymatic glycation and oxidation of proteins, 
lipids, and nucleic acids [34]. RAGEs are present on 
the surface of numerous different cardiovascular cells, 
including smooth muscle cells, endothelial cells, car-
diomyocytes, and immune cells, such as monocytes/
macrophages and T lymphocytes [35]. Accumulating 
evidence shows that AGEs mediate detrimental effects 
on the cardiovascular system by two main mecha-
nisms: crosslinking of tissue proteins and activation 
of AGE-RAGE signaling pathways [36, 37]. AGEs con-
tribute to vascular stiffness and myocardial fibrosis by 
crosslinking tissue collagen and elastin [38–40] and 
enhance oxidative stress and inflammation by binding 
to RAGEs [41, 42]. Studies in diabetic rodents treated 
with SGLT2i showed suppression of the AGE-RAGE 

axis in the kidney [43] and aortic tissues [44] but not in 
the myocardium [45].

Natriuresis, diuresis, and reduction in plasma volume
SGLT2i reduce the reabsorption of filtered glucose and 
sodium by blocking SGLT2, thus leading to natriuresis 
and osmotic diuresis. The natriuretic effect of SGLT2i 
may also be enhanced because of functional coordination 
with  Na+/H+ exchanger 3, which mediates a large frac-
tion of sodium absorption in the proximal tubule [46]. 
Skin sodium levels, which are closely associated with 
left ventricular mass [47], are increased in patients with 
T2DM [48] and SGLT2 inhibition reduced skin sodium 
levels (without osmotic activity) in T2DM patients [49].

SGLT2i lead to a rapid increase in urine volume 
(approximately 110–470 ml/day), which settles at a new 
stable level over 12 weeks [50], with a persistent decline 
in plasma volume of about 7% by 12  weeks [51]. The 
gradual attenuation of the diuretic effect is presumably 
regulated by compensatory mechanisms. A study in rats 
showed an increase in vasopressin-induced solute-free 
water reabsorption after administration of SGLT2i [52]. 
SGLT2i increase the sodium concentration delivered to 

Fig. 2 Cardiovascular protection mechanisms of SGLT2i. SGLT2i directly increase natriuresis and glycosuria, leading to a spectrum of secondary 
beneficial effects on the cardiovascular system. Inhibition of the cardiac  Na+/H+ exchanger and protection of renal function mediated by SGLT2i 
may also, to some extent, play a beneficial role. These effects jointly contribute to the cardiovascular benefits of SGLT2i, especially the reduced risk 
of hospitalization for heart failure
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the macula densa and thus enhance renal tubuloglomeru-
lar feedback signals, resulting in a decrease in GFR and 
contraction of the renal afferent arterioles [53].

SGLT2i attenuate congestion, with little effect on 
arterial perfusion, in patients with HF. A mathematical 
model suggested that this is because the osmotic diuresis 
induced by SGLT2i leads to greater clearance of electro-
lyte-free water in the intercellular space than in the blood 
vessels, causing a greater reduction in intercellular fluid 
volume, relative to circulating volume [54]. The improved 
quality of life in patients with HF during therapy with 
SGLT2i might be partly explained by this mechanism.

Reduction in blood pressure
Recent meta-analyses of clinical research that monitored 
ambulatory blood pressure show that SGLT2i therapy 
leads to a decline in systolic and diastolic blood pres-
sure (approximately 3–4 mmHg and 1–2 mmHg, respec-
tively), over study durations of 4–12 weeks. The decrease 
in blood pressure is greater during the daytime than 
during the night [55, 56], and the effect does not vanish 
with more prolonged therapy [15, 16, 57]. The combined 
effects of SGLT2i on osmotic diuresis and natriuresis are 
postulated to play a major role in blood pressure lowering 
[53], although the effect of SGLT2i on the sympathetic 
nervous system may also contribute to the reduction 
in blood pressure [58]. Interestingly, the antihyperten-
sive effect remains unchanged regardless of the dose of 
SGLT2i [55], also indicating little correlation between the 
dose and the cardiovascular benefits of SGLT2i, as men-
tioned above. The effect of SGLT2i on blood pressure 
may also be independent of renal function and glycemic 
control [59, 60].

Although SGLT2i reduce plasma volume and blood 
pressure, heart rate is not increased [18, 61, 62], probably 
implying that SGLT2i decrease the preload and afterload, 
with cardiac output maintained, or inhibit sympathetic 
nervous activity.

Amelioration of endothelial dysfunction and vascular 
stiffness
Arterial stiffness is strongly associated with hyperten-
sion, cardiovascular events, HF, and death [63–65], and 
endothelial dysfunction plays a vital role in the develop-
ment of coronary artery disease and HF [66, 67]. Many 
clinical studies [62, 68–70] have shown that short-term 
therapy with SGLT2i mitigates aortic stiffness and 
improves endothelial function. One study [71], however, 
did not show such benefits, presumably because of differ-
ences in design and settings between this and the other 
studies. A study investigating the effects of long-term 
treatment is in progress and should further confirm the 
vascular benefits [72].

Weight loss and effects on fat
A systematic review of clinical research comparing 
SGLT2i monotherapy with placebo showed a treatment-
related weight loss of approximately 1.5–3  kg [73]. A 
rapid decrease in body weight was observed during the 
initial few weeks, followed by a gentle decrease. Weight 
loss plateaued after 24  weeks and thereafter remained 
stable [74, 75]. Studies using bioimpedance spectros-
copy showed that the weight loss during treatment with 
SGLT2i could be principally attributed to a decrease in 
both visceral and subcutaneous adipose tissue [74, 76, 
77], with no obvious change in lean tissue mass [78, 79]. 
This finding is in line with other studies calculating adi-
pose distribution indices [80, 81] or using x-ray absorp-
tiometry [74, 82]. The initial rapid weight loss may be 
caused by a transient decrease of extracellular water 
(approximately − 0.5 L of extracellular fluid at 1 month), 
which gradually normalizes over the next few months 
[78, 83]. It has been suggested that the reduction in adi-
pose tissue mass after medication with SGLT2i may be 
caused by an energy loss (around 200–300 kilocalories 
per day [84, 85]) due to increased glucose excretion [86, 
87] and enhanced lipid mobilization [77, 88].

It is noteworthy that the decrease in epicardial adipose 
tissue mass observed with SGLT2i [89, 90] is independ-
ent of the antihyperglycemic effects [91]. In addition to 
reducing adipose tissue mass, SGLT2i attenuate systemic 
and adipose inflammation [77]. The accumulation and 
inflammation of epicardial fat may promote inflamma-
tion and fibrosis in the underlying tissues, thereby con-
tributing to atrial tachyarrhythmias, ASCVD, and HF 
with preserved ejection fraction (HFpEF) [92]. SGLT2i 
probably generate cardiovascular benefits by blocking 
these pathogenic mechanisms.

Protection of renal function
The renal outcome trials of SGLT2i in patients with 
CKD have shown renal benefits, including preserva-
tion of eGFR and a reduction in albuminuria, although 
a rapid but slight decrease in eGFR was observed during 
the first month. The renal benefits and cardiovascular 
benefits were intertwined [17, 20]. Renal dysfunction is 
related to cardiac remodeling and systolic dysfunction in 
patients with HFpEF [93]. Cardiac and renal dysfunction 
are closely linked and partially share pathophysiological 
mechanisms [94].

Improvement of cardiac energy metabolism
During the development of HF, the substrate utilized by 
cardiomyocytes switches from free fatty acids towards 
glucose. Oxidation of fatty acids produces many aden-
osine triphosphate (ATP) molecules and has a high 
demand for oxygen molecules, whereas oxidation of 
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glucose produces less ATP but has higher oxygen effi-
ciency [95, 96]. The switch from free fatty acids to glu-
cose results in an energy deficiency [88], which lowers 
cardiac work efficiency and worsens HF. In addition to 
free fatty acids and glucose, β-hydroxybutyrate (a type 
of ketone body), which is most easily extracted by the 
myocardium [97], is also utilized by the heart in the fast-
ing state. Oxidation of β-hydroxybutyrate has the high-
est oxygen efficiency and produces many ATP molecules 
with the lowest oxygen demand [95, 96]. SGLT2i-induced 
glycosuria reduces blood glucose and consequently con-
tributes to many metabolic adaptations similar to those 
in the fasting state, including decreased glucose oxida-
tion, acceleration of lipolysis, augmentation of fat oxi-
dation, and increased plasma concentrations of ketone 
bodies [88, 98]. SGLT2 inhibition also leads to a myo-
cardial metabolic shift away from glucose toward ketone 
bodies and free fatty acids. This shift enhances the gen-
eration of myocardial energy, thereby improving myocar-
dial remodeling and left ventricular systolic function [99]. 
The energetic advantage provided by preferential ketone 
body utilization by cardiomyocytes probably underlies 
the cardiovascular benefits of SGLT2i, as described in the 
"thrifty substrate" hypothesis [95].

Clinical studies have shown a slight increase in hemato-
crit, probably driven by a reduction in plasma volume and 
a transient elevation in erythropoietin [51]. The increased 
hematocrit is expected to enhance oxygen delivery to tis-
sues [100] and improve cardiac metabolism. Addition-
ally, ketone bodies, especially β-hydroxybutyrate, can 
also attenuate systemic inflammation and oxidative stress 
by inhibiting the Nod-like receptor protein 3 (NLRP3) 
inflammasome [101, 102] and class I histone deacetylases 
[103], and by activating G-protein coupled receptor 109 
and hydroxycarboxylic acid receptor 2 [104]. Because 
plasma ketone levels are modestly elevated by SGLT2i 
[88, 105], the elevation in levels of ketone body exerts 
salutary effects with little increase in the occurrence of 
diabetic ketoacidosis [18, 19, 22].

Inhibition of cardiac  Na+/H+ exchanger
Enhanced cardiac  Na+/H+ exchanger activity is found 
during the development of HF [106, 107]. Studies in ani-
mal models demonstrate that SGLT2i lower cytoplasmic 
sodium and calcium concentrations and elevate mito-
chondrial calcium concentration via direct inhibition 
of the myocardial  Na+/H+ exchanger [108, 109]. Previ-
ous animal studies showed that inhibition of the  Na+/
H+ exchanger alleviates myocardial hypertrophy and HF 
[110, 111], and that enhancing mitochondrial calcium 
concentrations during the development of HF is associ-
ated with attenuation of cardiac remodeling and fibro-
sis and the prevention of sudden cardiac death [112]. 

Inhibition of the  Na+/H+ exchanger may thus, to some 
extent, account for the cardiovascular benefits of SGLT2i.

Based on the inhibitory effect of SGLT2i on the  Na+/
H+ exchanger, a sodium hypothesis has been put for-
ward. The reduction in mitochondrial calcium con-
centration, which is secondary to the elevation in 
intracellular sodium concentration in the failing myo-
cardium, decreases the activity of Krebs cycle dehydro-
genases, thus hindering regeneration of the reducing 
equivalents that plays a key role in matching energy 
supply to demand. Inhibition of the cardiac  Na+/H+ 
exchanger by SGLT2i improves the failing myocardium 
by correcting sodium and calcium handling [113]. The 
sodium hypothesis is an extension of the "thrifty sub-
strate" hypothesis [95].

Reduction in serum uric acid level
Uric acid, the end-product of purine metabolism in 
humans, is largely excreted in urine. SGLT2i-induced gly-
cosuria competitively suppresses uric acid absorption by 
glucose transporter 9b in the proximal tubule, leading to 
increased uric acid excretion and reduced plasma levels 
of uric acid [114, 115]. In a meta-analysis of 62 clinical 
studies involving 34,391 patients with T2DM, SGLT2i 
decreased plasma uric acid levels by 15–45 μmol/L. The 
effect had a rapid onset and persisted during long-term 
treatment [116]. Increased uric acid stimulates the pro-
liferation and hypertrophy of vascular smooth muscle 
cells [117], promotes intracellular oxidative stress [118], 
depletes nitric oxide [119], activates the vascular renin-
angiotensin system [120], and induces an inflammatory 
reaction [121]. Increased uric acid is also associated with 
hypertension [122], atrial fibrillation [123], and HF [124].

Improvements in cardiac structure and function
Since there is no expression of SGLT2 in the human 
heart [125], the underlying effect of SGLT2i on cardiac 
structure and function is probably mediated largely by 
hemodynamic, metabolic, and neurohormonal effects. In 
diabetic mice, SGLT2i reduces expression of pro-fibrotic 
proteins, decreases deposition of collagen I/III and 
α-smooth muscle actin in the myocardial interstitium, 
and improves cardiomyocyte mitochondrial ultrastruc-
ture, thereby reducing cardiac fibrosis and hypertrophy, 
and improving diastolic function [45, 126]. In rats with 
myocardial infarction, SGLT2i attenuate myocardial 
fibrosis by activating the signal transducer and activa-
tor of transcription 3 (STAT3) pathway and reducing the 
release of superoxide and nitrotyrosine [127]. In a non-
diabetic pig model of HF, SGLT2 inhibition appears to 
improve cardiac remodeling at the three levels of anat-
omy, metabolism, and neurohormones, thereby enhanc-
ing cardiac systolic function [99].
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Many clinical studies using cardiac magnetic reso-
nance imaging or echocardiography have also shown that 
SGLT2i improve cardiac diastolic function and reduce 
left ventricular mass and volume [128–131]. However, 
most studies excluded individuals with overt HF and it, 
therefore, remains uncertain whether SGLT2i can attenu-
ate advanced left ventricular remodeling.

Attenuation of inflammation
Low-grade inflammation is recognized to contribute to 
the development of atherosclerosis and to be associated 
with an increased risk of CVD [132, 133]. Many studies 
have indicated that SGLT2i slightly decrease circulating 
levels of inflammatory factors, including interleukin-6, 
high‐sensitivity C‐reactive protein, and tumor necrosis 
factor-γ and -α, in patients with T2DM [90, 134–137]. 
SGLT2i also reduce M1 macrophage accumulation and 
polarize M2 macrophages in fat and liver [77]. The anti-
inflammatory effect of SGLT2i is probably mediated by 
many other factors, such as increased levels of ketone 
bodies and reduced levels of uric acid [138, 139].

Other possible mechanisms
Detection of increased luminal sodium concentrations by 
the macula densa would theoretically lower plasma renin 
levels by reducing the release of renin by juxtaglomeru-
lar cells, leading to inhibition of the renin–angioten-
sin–aldosterone system (RAAS). Animal studies showed 
that SGLT2i suppressed renal RAAS [140, 141] whereas 
a clinical study in outpatients with T2DM suggested 
that SGLT2i transiently enhanced plasma renin activity, 
which then returned to baseline after 3 months [78]. The 
effect of SGLT2i on the RAAS thus remains unclear.

A shift in cell life programs from defense to dormancy 
has been hypothesized to underlie the cardiovascular 
benefits of SGLT2i. The beneficial effects on the car-
diovascular system are suggested to involve aspects of 
metabolism, hormones, and inflammation [142, 143] but 
this mechanism is not totally consistent with the "thrifty 
substrate" hypothesis.

Prospects for use of SGLT2i in CVD
Extensive clinical studies of SGLT2i consistently sug-
gested an improvement in the quality of life and 
prognosis of individuals with HFrEF, including more 
advanced but stable HFrEF. A comparative analysis of 
three large randomized controlled trials also supports 
the combined use of an SGLT2i, a mineralocorticoid 
receptor antagonist, an angiotensin receptor-neprilysin 
inhibitor, and a β-blocker as a new treatment standard 
for HFrEF. This new therapeutic regimen produced 
greater treatment effects than traditional therapy 
with an angiotensin-converting enzyme inhibitor or 

angiotensin receptor blocker and β-blocker [144]. In 
the future, SGLT2i have great potential to be a pre-
ferred class of cardiovascular drugs to treat HFrEF.

Almost half of patients with HF have HFpEF [145]. In 
observational studies, patients with HFpEF have a simi-
lar incidence of hospitalization and death to patients 
with HFrEF, but have better outcomes [146]. Several 
hemodynamic and molecular mechanisms, such as 
left atrial hypertension, increased circulating volume, 
microvascular inflammation, cardiometabolic dysfunc-
tion, and cardiac fibrosis, have been suggested to offer 
potential treatment opportunities for HFpEF [147]. As 
discussed above, many experimental and clinical stud-
ies have shown that SGLT2i have a beneficial role in 
these aspects of disease, though the subjects in most 
studies did not have HFpEF. SGLT2i improved left ven-
tricular remodeling and diastolic function in animal 
models with HFpEF and in cardiac tissues from patients 
with HFpEF [148, 149]. The SOLOIST-WHF trial dem-
onstrated that sotagliflozin significantly reduced the 
composite risk of hospitalization or urgent visit for HF 
or death from cardiovascular causes in patients with 
HFpEF [25]. Whether other SGLT2i likewise have car-
diovascular benefits in patients with HFpEF remains 
unknown.

The DECLARE-TIMI 58 trial and the VERTIS-CV trial 
did not show significant improvement in cardiovascular 
outcomes (except for hospitalization for HF) in patients 
with established ASCVD or risk factors for ASCVD [22, 
24]. Other large clinical studies of SGLT2i also showed no 
marked reduction in the occurrence of ASCVD, includ-
ing myocardial infarction and stroke. Consequently, 
SGLT2i may only have a modest benefit in the treatment 
of ASCVD.

SGLT2i share many pharmacological advantages, 
including rapid oral absorption, long half-life, absence 
of clinically relevant drug–drug interactions, extensive 
hepatic biotransformation, and low renal clearance of 
the parent drug [150]. Practice guidelines have recom-
mended using SGLT2i in patients with T2DM and CVD 
or CKD because of the proven cardiorenal benefits [151, 
152].

Of note, recent large-scale clinical trials have likewise 
revealed substantial cardiorenal benefits in patients with-
out T2DM (Fig.  3). The EMPEROR-Reduced trial [15] 
and the DAPA-HF trial [16] both showed a remarkable 
reduction in risk of hospitalization for HF or death from 
cardiovascular causes in nondiabetic patients with HFrEF 
after treatment with SGLT2i. The DAPA-CKD trial [17] 
demonstrated renal protection in nondiabetic patients 
with CKD. These results signify that the therapeutic 
spectrum of SGLT2i will probably be extended to nondia-
betic individuals with HFrEF or CKD.
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Conclusions
Large-scale clinical trials of SGLT2i all showed cardio-
vascular benefits across different patients, most notably 
a significant decrease in the occurrence of HF. Because of 
the proven benefits of SGLT2i, which are independent of 
glycemic control, many international guidelines recom-
mend the use of SGLT2i in diabetic patients with CVD. 
SGLT2i directly increase natriuresis and glycosuria, lead-
ing to a spectrum of downstream effects. These effects 
jointly underlie the cardiovascular benefits of SGLT2i. 
Recently, several large-scale trials have discovered simi-
lar cardiovascular benefits in nondiabetic patients with 
HFrEF. Consequently, SGLT2i will be likely to be used to 
treat nondiabetic patients with HFrEF.
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