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Abstract 

Background: A strong correlation exists between type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD), 
with CVD and the presence of atherosclerosis being the prevailing cause of morbidity and mortality in diabetic popu-
lations. T2DM is accompanied by various coagulopathies, including anomalous clot formation or amyloid fibrin(ogen), 
the presence of dysregulated inflammatory molecules. Platelets are intimately involved in thrombus formation and 
particularly vulnerable to inflammatory cytokines.

Methods: The aim of this current study was therefore to assess whole blood (hyper)coagulability, platelet ultrastruc-
ture and receptor expression, as well as the levels of IL-1β, IL-6, IL-8 and sP-selectin in healthy and diabetic individuals. 
Platelet morphology was assessed through scanning electron microscopy (SEM), while assessment of GPIIb/IIIa recep-
tor expression was performed with confocal microscopy and flow cytometry with the addition of FITC-PAC-1 and 
CD41-PE antibodies. IL-1β, IL-6 and IL-8 and sP-selectin levels were assessed using a multiplex assay.

Results: In T2DM there is significant upregulation of circulating inflammatory markers, hypercoagulation and platelet 
activation, with increased GPIIb/IIIa receptor expression, as seen with flow cytometry and confocal microscopy. Analy-
ses showed that these receptors were additionally shed onto microparticles, which was confirmed with SEM.

Conclusions: Cumulatively, this provides mechanistic evidence that pathological states of platelets together with 
amyloid fibrin(ogen) in T2DM, might underpin an increased risk for cardiovascular events.
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Introduction
Type 2 diabetes mellitus (T2DM) has become one of the 
most prevalent and costly chronic diseases of lifestyle [1, 
2]. Statistics from the World Health Organisation (Nov, 
2017) indicated an increased incidence of diabetes from 
108 million (1980) to 422 million (2014). The highest 
incidence mostly occurs in regions dominated by devel-
oping countries due to westernization and urbanization 
[2]. According to the International Diabetes Federation 
(IDF) these statistics are expected to further increase 
to 642 million diagnosed individuals between the ages 

of 20–79  years in 2040 [2], more than 6% of the entire 
population.

Evidence demonstrates a strong correlation between 
T2DM and cardiovascular disease (CVD), with CVD 
and the presence of atherosclerosis being the prevailing 
cause of morbidity and mortality in diabetic populations 
[1, 3]. Furthermore, The Insulin Resistance Atheroscle-
rosis Study (2002) confirmed the association of chronic 
inflammation with development of T2DM, as well as 
the relationship between the resultant insulin resistance 
and progression of atherosclerosis [4]. It is well known 
that a dysregulated low-grade systemic inflammatory 
milieu is present in T2DM, including C-reactive protein 
(CRP), tissue factor, interleukins (IL-1β, IL-6 and IL-8) 
and tumour necrosis factor alpha (TNF-α) [5–8]. These 
elevated circulating inflammatory markers are associated 
with dyslipidaemia and atherosclerosis (albeit markers of 
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many other inflammatory diseases [9]), and are thought 
to be potential predictors of the development of T2DM 
[4, 10, 11].

Previously our group has shown that many chronic, 
inflammatory diseases, including T2DM, are accom-
panied by various coagulopathies,  which manifest as 
anomalous clot formation in the form of ‘dense matted 
deposits’ that might arise in circulation due to the pres-
ence of dysregulated inflammatory markers [7, 12–14]. 
More recently we have shown that in T2DM, these clots 
are amyloid in nature, where the actual fibrin molecules 
have undergone structural alterations. This was demon-
strated using fluorescent amyloid protein markers which 
were added to platelet-poor plasma (PPP) from indi-
viduals with T2DM [15, 16]. Considering the cytotoxic 
characteristics of amyloids and many of the sequelae of 
chronic T2DM involving damage to cells, the focus of the 
current paper is to study platelet activation in the pres-
ence of aberrant fibrin(ogen) in diabetic individuals.

The platelet membrane consists of glycoproteins, inte-
grins, phospholipids and other receptors [17]. Major 
platelet receptors include G-protein coupled receptors, 
tyrosine kinase adhesive receptors, integrins, leucine-rich 
adhesion receptors and immunoglobulin superfamily 
adhesion receptors [17].

Upon activation, platelets undergo conformational 
changes that result in cytoplasmic foot-like extensions 
known as pseudopodia, also known as simple contact-
level activation [18]. However, further activation, degran-
ulation and platelet adhesion is required during primary 
haemostasis [19]. The platelet membrane flattens in a 
“fried-egg-like” silhouette, in order to cover an increased 
surface area. Activated platelets also provide a negatively 
charged pro-coagulant surface, to facilitate aggregation 
[20].

The formation of circulating platelet-derived micropar-
ticles might be of interest in T2DM. These microparticles 
are microvesicles, approximately 0.02–0.1  μm in diam-
eter [21], that are released by platelets upon activation 
[22]. They have been shown to possess most of the mem-
brane proteins and receptors found on platelets including 
P-selectin, GPIb/CD41 [23] and GPIIb/IIIa. Formation 
of microparticles is associated with the loss of asym-
metry of the platelet phospholipid membrane i.e. exter-
nalization of phosphatidylserine [24, 25]. Platelet-derived 
microparticles promote platelet interaction with the sub-
endothelial matrix [26] and are thought to be involved in 
thrombin generation [27]. Elevated levels of these micro-
particles are observed in various pathological conditions 
such as myocardial infarctions [25].

Activation of platelets also induces the rapid trans-
location and expression of P-selectin, which is stored 
within the platelet α-granules, to the cell surface [28, 29]. 

P-selectin plays a key role in haemostasis as it mediates 
the adhesion of activated platelets to neutrophils and 
monocytes to facilitate the innate immune response, as 
well as inducing platelet-to-platelet binding and aggrega-
tion [30]. Thus, P-selectin proteins can be secreted into 
circulation, now called soluble P-selectin (sP-selectin), as 
apart of platelet-derived microparticles or as free spliced 
versions of the protein. Consequently, an increase in sP-
selectin occurs upon platelet activation [31], and can 
therefore possibly be used as a surrogate marker of plate-
let activation.

The aim of this current study was to assess whole blood 
(WB) (hyper)coagulability, platelet ultrastructure, as well 
as the levels of three interleukins (IL-1β, IL-6 and IL-8) 
and sP-selectin in healthy and diabetic individuals. Plate-
let morphology was assessed through scanning electron 
microscopy (SEM) of platelet rich plasma to show plate-
let ultrastructure and interactions. IL-1β, IL-6 and IL-8 
and sP-selectin levels were assessed with a multiplex 
assay. We also assessed GPIIb/IIIa receptor expression 
with confocal microscopy and flow cytometry with the 
addition of FITC-labelled monoclonal antibodies-PAC-1 
[32–34], correlated to CD41 expression on platelets.

Materials and methods
Ethics, consent and permissions
Ethical clearance was obtained from the Health Research 
Ethics Committee (HREC) of Stellenbosch University 
(Ethics Reference: 6329). Volunteers provided written 
informed consent for sample use and data publication, 
after which whole blood samples were collected in cit-
rated tubes.

Participants
A total of 60 healthy age-matched volunteers (refer to 
Table  1 for sample demographics) were recruited with 
the following inclusion criteria: (i) non-smokers (ii) no 
history of thrombotic disorders, and (iii) were not on 
any chronic antiplatelet therapy/anticoagulant medica-
tion or any contraceptive/hormone replacement ther-
apy. Similarly, whole blood samples were collected from 
51 individuals diagnosed with type 2 diabetes mellitus 
and cardiovascular disease. Diabetic volunteers were 
recruited and blood samples were obtained as part of 
standard care during their routine visit to their medical 
practitioner, at the MediClinic Hospital, Stellenbosch. 
The inclusion criteria for this group included: (i) a con-
firmed diagnosis of type 2 diabetes with cardiovascular 
disease, and (ii) males and females older than 35 years. To 
limit and exclude confounding factors, volunteers from 
both healthy and diabetic groups were only included if 
they did not have tuberculosis, HIV or any malignancies. 
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Additionally, diabetic volunteers on GPIIb/IIIa inhibitors 
were excluded from the study.

Sample preparation
Whole blood was kept at room temperature in citrate 
tubes for thromboelastographic (TEG) analyses. To cre-
ate platelet-rich plasma (PRP) for electron microscopy, 
confocal and flow cytometry, citrated blood samples 
were centrifuged at 150×g for 10 min at room tempera-
ture (± 22 °C) to separate PRP from other blood constitu-
ents. To create PPP for multiplex analysis, citrated whole 
blood samples were centrifuged at 3000×g for 15 min at 
room temperature to separate PPP from other blood con-
stituents. The PPP was stored at – 80 °C, until day of mul-
tiplex analyses.

Thromboelastography
TEG analysis was performed on naïve (untreated) whole 
blood samples. A TEG analysis requires the addition of 
20  μL calcium chloride  (CaCl2) and 340  μL of WB to 
a  disposable TEG cup, which is according to manufac-
turer instructions and previously published papers [35, 
36].  CaCl2 reverses the effect of the sodium citrate (cit-
rated tube), which then initiates the coagulation cascade. 
Seven viscoelastic TEG parameters were used to assess 
coagulation efficiency in this study. Thromboelastogra-
phies were performed using the Thromboelastograph 
5000 Hemostasis Analyzer System, configured and used 
according to the manufacturer’s protocol.

Multiplex cytokine analysis
Platelet-poor plasma from control (n = 21) and T2DM 
(n = 24) volunteers were analysed in duplicate using the 
Invitrogen’s Inflammation 20-Plex Human ProcartaPlex™ 
Panel (catalogue number: EPX200-12185-901). Briefly, 
25 µL of PPP and internal controls were incubated with 
magnetic beads prior to a series of wash steps. 25 μL of 
detection antibody was added and incubated for 30 min 
before 50 μL of Streptavidin-PE was added. The 96-well 
plate was then analysed using Bio-Plex® 200 system 

(BioRad) with inflammatory markers being measured in 
pg mL−1.

Scanning electron microscopy
10  μL  of PRP is used to prepare a scanning electron 
microscopy smear. Sufficient time is allowed for PRP 
sample attachment to the 10 mm round glass slide before 
the addition of 10× Gibco™ PBS (phosphate-buffered 
saline), pH 7.4 (ThermoFisher Scientific, 11594516). All 
smears were fixed with 4% paraformaldehyde in PBS for 
at least 30 min, followed by three PBS washes before fixa-
tion with 1% osmium tetroxide (Sigma-Aldrich, 75632) in 
double distilled  H2O for an additional 30 min. The sam-
ples were again washed three times with PBS. An etha-
nol series dehydration was performed in which samples 
were washed in 30%, 50%, 70%, 90% and 100% ethanol 
for 3  min each time. Sample dehydration is completed 
with 99.9% hexamethyldisilazane ReagentPlus® (Sigma-
Aldrich, 379212) treatment for 30  min, after which the 
samples are left to air dry in a fume hood overnight 
(± 16 h). Dried samples are mounted on glass microscope 
slides with double-sided carbon tape before the final car-
bon coating is applied. Scanning electron microscopy 
ultrastructural analysis of PRP samples was performed on 
the Zeiss MERLIN™ field emission scanning microscope 
located in the Central Analytical Facility (CAF) Electron 
Microbeam Unit, Stellenbosch University. Micrographs 
were captured using high resolution InLens capabilities 
at 1 kV.

Flow cytometry
For platelet staining, 100  μL of PRP was aliquoted into 
12 × 75  mm round bottom tubes (BD Biosciences, 
352063). Thereafter, 20  μL of PAC-1 FITC (BD Bio-
sciences, 340507) and 20  μL of CD41 PE (Beckman 
Coulter, IM1416U) stored in a phosphate buffered saline 
storage solution with gelatin and 0.1% sodium azide, 
were added to the PRP and gently mixed by pipetting. 
The samples were incubated in a dark environment for 
30 min at room temperature. After incubation, 500 μL of 

Table 1 Demographics of healthy (n = 60) and type 2 diabetic (n = 53) volunteers

Data expressed as mean ± SEM. No significant correlation was observed between age and HbA1c between the healthy and diabetic samples (Pearson-test)

Medications were recorded in conjugation with biomedical parameters, with the most prevalent amongst diabetes patients including  Metformin® (n = 40) oral 
hypoglycaemic, simvastatin (n = 21) for cholesterol regulation, and  Coversyl® (n = 13) for blood pressure regulation

Healthy individuals
(n = 60)

Diabetic individuals
(n = 53)

p-values

Gender Male (n = 22), Female (n = 38) Male (n = 27), Female (n = 26)

Age (years) 59 ± 1.64
(n = 60)

64 ± 1.8
(n = 52)

HbA1c (%) 5.2 ± 0.07
(n = 58)

8.9 ± 0.34
(n = 51)

< 0.0001
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PBS was added to each tube and the samples were ana-
lysed on the BD FACSAria IIu cell sorter located in the 
CAF Fluorescence Microscopy Unit, Stellenbosch Uni-
versity. For each sample, a minimum of 30,000 events 
were acquired and all signal were gated. The addition of 
prostaglandin (which is usually added to prevent platelet 
activation during a second step where a platelet pellet is 
needed), was omitted since PRP was obtained by centri-
fuging WB only once, at a very low relative centrifugal 
force (150×g). For compensation, single stained platelets 
were used to determine optimal voltages and Anti-Mouse 
Ig compensation beads (BD Biosciences, 552843) were 
used to determine the compensation matrix. To ensure 
the consistency and reproducibility of the data, appli-
cation settings were set and applied to the experiment 
and eight peak beads were used as a secondary measure. 
Platelets were identified and gated using SSC vs CD41-PE 
dot plot and the PAC-1 positive and negative cells were 
identified from this population. All analyses were per-
formed using FlowJo v10.4.1, and data were exported to 
Microsoft Excel for further analysis.

Confocal microscopy
The platelet staining procedure for confocal microscopy 
is identical to that used for flow cytometric analysis. Fur-
ther sample processing included the deposition of 6 μL of 
fluorescently stained PRP sample on a microscope slide 
10 min prior to viewing, to allow platelets to settle. The 
Zeiss LSM 780 ELYRA PS1 confocal microscope with 
Super-Resolution Structured Illumination Microscopy 
(SR-SIM) was used in this study (CAF, Fluorescence 
Microscopy Unit, Stellenbosch University).

Statistical analysis
All statistical analyses were performed using GraphPad/
Prism v7. Data was checked and tested for normality 
using the Shapiro–Wilk normality test. All data is either 
expressed as means and standard deviations, or medians 
and interquartile ranges. To analyse differences in TEG 
parameters between diabetic and healthy individuals, an 
unpaired t-test was performed for parametric, and the 
Mann–Whitney test for non-parametric data between 
the two groups. Statistical significance was accepted 
at p < 0.05. For the biomarker analysis, the ROUT 
method  for detecting outliers  was used in cases where 
data was not normally distributed. A  modified t-test 
(Welch correction) was performed on the cleaned data.

Results
The results of the TEG analysis (Table  2) show signifi-
cant differences between all parameters assessed. Com-
pared to healthy individuals, diabetic individuals showed 
significantly slower reaction time (R-value), clot kinetics 

(K) and time to maximum rate of thrombus generation 
(TMRTG). Furthermore, diabetic individuals had signif-
icantly higher TEG values for the clot angle, maximum 
clot amplitude (MA), maximum rate of thrombus genera-
tion (MTRG) and total thrombus generation (TTG). This 
suggests a hypercoagulable state in T2D individuals.

Previously we have noted that when IL-1β, IL-6 and 
IL-8 is added to WB from healthy individuals, platelet 
hyperactivation is stimulated [37]. In the current analy-
sis, we investigated the levels of these cytokines in our 
samples. Multiplex cytokine analyses confirmed the sig-
nificant upregulation of circulating levels of IL-1β, IL-6 
and IL-8 in PPP from T2DM individuals when compared 
to controls (Fig.  1). Moreover, sP-selectin, a plausible 
marker of platelet activation, was also significantly upreg-
ulated (p < 0.05) in the diabetic groups when compared to 
healthy individuals.

Scanning electron microscopy analyses of platelets 
from control and T2DM volunteers are illustrated in 
Figs.  2 and 3. Morphologically, platelets from healthy 
individuals typically appear round, with slight pseudo-
podia formation, which is due to contact activation dur-
ing the placement of the PRP onto the glass slide (Fig. 2). 
Contact activation could be a confounder, however, as 
the controls show limited activation on the cover slips, 
we believe that this serves as an appropriate baseline for 
excessive activation observed in T2DM. In the presence 
of inflammation, platelet hyperactivation, spreading and 
clumping may occur. This was also seen in samples from 
T2DM individuals, together with increased microparticle 
formation (Fig. 3). 

We also investigated the presence of the GPIIb/IIIa 
platelet receptor on platelets from both healthy and 
T2DM individuals. Confocal microscopy shows that in 
T2DM GPIIb/IIIa receptors (green signal) were present 
on both the actual platelets, but to a greater extent on the 

Table 2 TEG results of  the  seven viscoelastic parameters 
assessing the  efficiency of  coagulation in  naïve whole 
blood samples of  healthy (n = 44) and  diabetic (n = 26) 
volunteers

Data expressed as means and interquartile ranges. Parameters were compared 
using the non-parametric Mann–Whitney test

Parameter Healthy individuals
(n = 51)

Diabetic individuals
(n = 36)

p-value

R-value 8.2 [7–9.8] 6.6 [4.7–8.4] 0.001

K 2.8 [2.2–3] 1.9 [1.6–2.5] 0.0004

A (angle) 59.7 [51.9–64] 68.8 [63.3–72.2] < 0.0001

MA 58.8 [55.1–63.6] 66.1 [60.5–71.1] 0.0001

MRTG 4.6 [4.2–5.8] 7.4 [5.7–10.4] < 0.0001

TMRTG 11.9 [9.8–13.6] 9.4 [7.9–12.1] 0.003

TTG 715.1 [616.9–877] 978.1 [774.8–1222] 0.0001
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small platelet-derived microparticles (see Fig. 4d), while 
minimal if any shedding is seen in control samples. Addi-
tionally, diabetic samples displayed significant masses of 
platelet aggregates, indicative of the pro-thrombotic state 
of these individuals (see Fig. 4b). In micrographs of con-
trol PRP, signal overlap (white signal) is noted, indicat-
ing the presence of activated GPIIb/IIIa receptors on the 
actual platelets, while this is largely absent in the micro-
graph’s of PRP from T2DM individuals.

The analyses by flow cytometry involved adding 
CD41-PE, as well as PAC-1 to PRP, and recording at 
least 30,000 events. We gated the singlet platelets by 
using FCS-A, and determined the number of platelets 
that showed PAC-1 signal. The number of platelets 
positive for PAC-1, as well as the median fluorescent 
intensity (MFI) for each sample was recorded. From 
these two values, we determined a coefficient of vari-
ation (CV) by dividing MFI by number of platelets 
with PAC-1 signal. Our results showed that in T2DM 
platelets, the CV is significantly more than in the con-
trol sample. This supports both our confocal and our 

SEM data. Furthermore, these results also support 
our significantly upregulated biomarker data, sug-
gesting that the circulating upregulated cytokines in 
particular, result in a pro-inflammatory platelet envi-
ronment, contributing to increased platelet receptor 
activity in T2DM. Flow cytometry results are shown 
in Fig. 5. Due to the small size of the platelet-derived 
microparticles, we could not quantify these using our 
flow cytometry system. Microparticles are also known 
to be pro-inflammatory and may additionally contain 
shed and activated receptors, as observed with confo-
cal microscopy.

Previously we also showed that fibrin(ogen) in T2DM 
has an amyloid structure which contributes to the 
hypercoagulable nature of PPP in T2DM (see Fig. 6—
unpublished raw data from [16, 38]). We have also pre-
viously shown that in T2D, the erythrocytes are more 
prone to be eryptotic (programmed cell death specific 
to erythrocytes) [37, 39]. The current results further 
confirm the presence of upregulated pro-inflammatory 
biomarkers, the presence of activated platelets, and 

Fig. 1 Graphs of circulating inflammatory markers: soluble P-selectin, IL-1β, IL-6, IL-8 (pg mL−1) in 25 µL of platelet-poor plasma of control (n = 21) 
and diabetic (n = 24) individuals using Invitrogen’s Inflammation 20-Plex Human ProcartaPlex Panel. Data expressed as mean ± SEM with *p < 0.05; 
***p < 0.001 and ****p < 0.0001. Values in controls that were lower than detectable ranges were allocated ‘0’
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Fig. 2 Scanning electron micrographs of platelets from healthy volunteers prepared from platelet-rich plasma depict rounded, slightly activated 
platelets with pseudopodia formations. A, C and D high magnification and B low magnification

Fig. 3 Scanning electron micrographs of platelets from diabetic volunteers prepared from platelet-rich plasma depicting platelet hyperactivation, 
membrane spreading, platelet-derived microparticle formation (see white arrows) and agglutination. A, C and D high magnification and B low 
magnification
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increased presence of platelet receptors, resulting in 
a chronic systemic inflammatory profile that can be 
detected by analysis of both cellular and circulating 
biomarkers.

Discussion
Analysis of the seven viscoelastic parameters with WB 
thromboelastography proved that significant differences 
in coagulation parameters exist between diabetic and 
healthy individuals (Table  2). A decreased clot reaction 
time (R-value) indicates accelerated clot initiation sug-
gesting thrombus formation is more rapid in diabetic 
individuals. Decreased clot kinetics (K) would result in 
upregulated clot amplification; hence the forming clot 

will reach the specified strength (20  mm) quicker than 
a healthy individual. A decreased time to maximum rate 
of thrombus generation leads to a shorter time interval 
between clot initiation and maximum clot formation. 
Furthermore, an increased angle is generated from an 
increased thrombin burst, which results in upregulated 
fibrin cross-linking. Similarly, an increased maximum 
clot amplitude indicates that diabetic individuals dis-
play increased platelet and/or fibrinogen interaction, 
thus a denser, more rigid clot is formed. The increase 
in maximum rate of thrombus generation indicates 
increased clot growth in diabetic individuals compared 
to healthy individuals. Lastly, the increase in total throm-
bus generation shows increased total clot strength. The 

Fig. 4 Confocal microscopy where platelets where incubated with CD41 (magenta) and PAC-1 (green). a, c Representative micrograph of platelets 
from healthy individuals with HbA1c values of 5.0% and 5.2% respectively. Both individuals also reported with CRP levels of < 1.00, indicative of no 
inflammation. b, d Representative micrographs of platelets from individuals diagnosed with type 2 diabetes mellitus. These individuals had HbA1c 
levels of 7.0% and 7.2% respectively
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Fig. 5 a Comparing the median fluorescent intensity per number of platelets positive for PAC-1 in healthy (n = 15) and diabetic (n = 20) samples 
using flow cytometry. This is representative of GPIIb/IIIa receptor expression. Data is expressed as medians and IQR; *significance (p = 0.0225). b 
Identification of PAC-1-positive platelets; platelets were gated for CD41. Note example of a control sample expressed 43.9% PAC-1 positive signal 
while the sample from a diabetic individual shows only 17.3% PAC-1 positive signal
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cumulative effect of these aberrant parameter measures 
in diabetic individuals is a hypercoagulable state. That is, 
the increased tendency to develop a clot i.e. larger, denser 
clots form quicker.

The dysregulated clotting system in diabetic individu-
als can be attributed to the dysregulated inflammatory 
milieu characteristic of the T2DM diseased state and 
has previously also been noted as characteristic of the 
amyloid state found in T2DM [15, 16]. The inflamma-
tory biomarker analyses confirmed a pathological circu-
lating inflammatory profile, where IL-1β, IL-6, IL-8 and 
sP-selectin were significantly higher in the T2DM group. 
Platelets will therefore be circulating in a procoagulant 
and amyloid environment in diabetic individuals. Previ-
ously, it was reported that platelets that individuals with 
T2DM show increased spreading and microparticle for-
mation [40–42]. This agrees with our SEM ultrastructural 
analysis, which shows activated platelets with signifi-
cantly increased spreading, and microparticle forma-
tion. This was noted in both PRP and WB smears (WB 
not shown). In addition, confocal microscopy confirmed 
platelet-derived microparticle formation and shedding 
of these particles around the actual platelets. Confocal 
microscopy of T2DM platelets also showed pronounced 

spreading, activation and aggregation similar to the 
observation noted in the SEM analyses.

In conclusion, we therefore present evidence that in 
T2DM there is a comprehensive, systemic and chronic 
blood hypercoagulability present; and that this is due 
to the presence of amyloid fibrin(ogen), together with 
increased circulating inflammatory biomarkers, and 
a hyperglycaemic state. Platelets undergo structural 
changes and upregulated receptor expression, along 
with increased platelet-derived microparticle forma-
tion (visible with microscopy techniques). Platelets 
therefore are excellent, sensitive cellular indicators of 
the co-occurrence and comorbidity of T2DM and CVD. 
As microparticles are small in size (less than 200  nm), 
the size limitation of our flow cytometer excludes them 
from being measured. We recognize that this as a limi-
tation of our study, and in future studies platelet-derived 
microparticles can be quantified using nanotrack-
ing analysis (Nanosite), which can measure particles 
as small as 10  nm in diameter [43]. Cumulatively, this 
provides some mechanistic evidence that pathologi-
cal states of platelets together with amyloid fibrin(ogen) 
in T2DM, might underpin the fact that such individuals 
are at increased risk for cardiovascular events related to 

Fig. 6 Fluorescent signals from platelet-poor plasma clots from a representative healthy and type 2 diabetic individual. Amyloid signal was 
detected with a Zeiss LSM 780 with ELYRA PS1 confocal microscope, using three fluorescent amyloid markers (Raw data from previously published 
papers [16, 38])
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increased morbidity and mortality. Furthermore, these 
results confirm that medical practitioners should not 
only use the basic pathology tests when diagnosing and 
treating T2DM individuals, but should also include com-
prehensive cytokine analyses, thromboelastography as 
well as platelet function tests. Finally, these novel obser-
vations may have good diagnostic potential, particularly 
if used in a personalized-patient orientated approach, 
and might even in future have a place in precision 
medicine, to predict drug/pharmacogenomics/platelet 
functioning-outcomes.
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