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Myocyte membrane and microdomain 
modifications in diabetes: determinants 
of ischemic tolerance and cardioprotection
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Abstract 

Cardiovascular disease, predominantly ischemic heart disease (IHD), is the leading cause of death in diabetes mellitus 
(DM). In addition to eliciting cardiomyopathy, DM induces a ‘wicked triumvirate’: (i) increasing the risk and incidence of 
IHD and myocardial ischemia; (ii) decreasing myocardial tolerance to ischemia–reperfusion (I–R) injury; and (iii) inhibit-
ing or eliminating responses to cardioprotective stimuli. Changes in ischemic tolerance and cardioprotective signal-
ing may contribute to substantially higher mortality and morbidity following ischemic insult in DM patients. Among 
the diverse mechanisms implicated in diabetic impairment of ischemic tolerance and cardioprotection, changes in 
sarcolemmal makeup may play an overarching role and are considered in detail in the current review. Observations 
predominantly in animal models reveal DM-dependent changes in membrane lipid composition (cholesterol and 
triglyceride accumulation, fatty acid saturation vs. reduced desaturation, phospholipid remodeling) that contribute to 
modulation of caveolar domains, gap junctions and T-tubules. These modifications influence sarcolemmal biophysical 
properties, receptor and phospholipid signaling, ion channel and transporter functions, contributing to contractile 
and electrophysiological dysfunction, cardiomyopathy, ischemic intolerance and suppression of protective signaling. 
A better understanding of these sarcolemmal abnormalities in types I and II DM (T1DM, T2DM) can inform approaches 
to limiting cardiomyopathy, associated IHD and their consequences. Key knowledge gaps include details of sarcolem-
mal changes in models of T2DM, temporal patterns of lipid, microdomain and T-tubule changes during disease devel-
opment, and the precise impacts of these diverse sarcolemmal modifications. Importantly, exercise, dietary, pharma-
cological and gene approaches have potential for improving sarcolemmal makeup, and thus myocyte function and 
stress-resistance in this ubiquitous metabolic disorder.
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Diabetes impacts myocardial ischemic tolerance 
and cardioprotection
Clinical evidence indicates DM sensitizes human hearts 
to I–R injury [1, 2], which is generally consistent with 
experimental findings in animal models, though con-
flicting observations arise. Compounding the problem of 
infarct intolerance, DM may also render hearts broadly 
refractory to established cardioprotective stimuli that 
include ischemic pre- and post-conditioning (direct 

or remote) and protective G protein-coupled receptor 
(GPCR) agonism, together with the anti-infarct effects 
of ATP-gated K+ channel (KATP) openers, anesthetics, 
phosphodiesterase-5 (PDE-5) inhibition and heat shock 
activation [3–6]. Thus, while elusive cardioprotective 
therapies [6–8] are of particular value in the high-risk 
DM population, implementation appears an even greater 
challenge in this cohort. Prevalence of DM and insulin-
resistance in those suffering IHD may in turn contribute 
to poor translation of experimental cardioprotection in 
these patients. Relatively few studies specifically address 
the conundrum of I–R sensitivity and cardioprotective 
insensitivity in DM [6]. Investigations to date implicate 
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a diversity of mechanisms extending beyond fundamen-
tal alterations in glucose and lipid metabolism, including 
associated glycation/glycosylation [9], oxidative stress 
[10, 11], abnormal survival kinase signaling [12–14] and 
exosome dysfunction [15], excessive ubiquitin–proteas-
ome system activity [16], suppression of sirtuin-1 expres-
sion [17], and changes in miRNA expression [18], among 
others. Considerable attention has focused on mito-
chondrial dysfunction, including shifts in quality con-
trol mechanisms (mitophagy, fission/fusion), as a point 
of convergence in the complex pathogenesis of diabetic 
cardiomyopathy [10, 19, 20]. However, the sarcolemma 
is also a critical though under-appreciated nexus, influ-
encing DM progression and its impacts [21]. Indeed, 
transcriptomic profiling indicates that the largest group 
of diabetes-modified cardiac genes encode membrane/
plasma membrane components [22], consistent with 
more recent studies identifying DM-dependent changes 
in transcripts for membrane and structural proteins, sar-
colemmal receptors and ion channels [23]. Transporters 
for glucose and fatty acids, ion channels and exchang-
ers, and receptor systems governing insulin responses, 
inflammation, mitochondrial quality control, and cell 
stress, growth and death are all located within the sar-
colemma, while mitochondrial function is also sensitive 
to sarcolemmal domains and proteins. Perturbations in 
membrane composition and architecture may thus be 
critical to the dysfunctional stress responses characteris-
tic of diabetic myocardium, together with other cardiac 
outcomes including hypertrophy and contractile dys-
function. We herein review the clinical and experimen-
tal evidence of DM-dependent changes in myocardial 
ischemic tolerance and cardioprotection, before focusing 
specifically on sarcolemmal changes and their contribu-
tion to the cardiac sequelae of DM.

Effects of DM in human myocardium
Diabetes induces a spectrum of abnormalities within the 
myocardium and coronary vasculature. Diastolic dys-
function, fibrosis and hypertrophy functionally and struc-
turally underpin diabetic cardiomyopathy [10]. These 
changes are linked to reactive oxygen species (ROS) 
generation, inflammation, mitochondrial dysfunction, 
and abnormalities in molecular quality control, includ-
ing autophagy, fission/fusion, endoplasmic reticulum 
(ER) stress and unfolded protein responses. Coronary 
endothelial dysfunction and vascular remodeling exag-
gerate atherosclerosis and impair vascular control and 
coronary perfusion, potentially contributing to cardiac 
dysfunction. These changes in myocardial and coronary 
phenotypes (and underlying molecular mechanisms) may 
participate in impairment of myocardial stress tolerance, 

hormesis and protective signaling, which may in turn 
further exacerbate these phenotypic changes.

Myocardial ischemic tolerance
The impacts of DM on myocardial ischemic tolerance 
and infarction remain somewhat contentious. Certainly 
DM worsens long-term outcomes from ischemic insult, 
including increased incidence of heart failure and all-
cause mortality [24–26]. There is some evidence these 
poor outcomes may involve diabetic impairment of 
myocardial reperfusion [27, 28], consistent with vascu-
lar dysfunction and reduced coronary reserve [29–31]. 
The contribution of worsened infarction to poor post-
ischemic prognosis awaits further clarification, with 
some contrasting data acquired. Diabetes can signifi-
cantly increase infarct size as assessed via scintigraphy 
[1, 32] and magnetic resonance imaging (MRI) [33]. 
Insulin-treated DM patients also exhibit worsened myo-
cardial infarction, mortality, major adverse cardiac events 
and thrombosis compared with untreated or non-DM 
subjects, potentially reflecting negative impacts of more 
complex and prolonged disease [34–36]. On the other 
hand, some myocardial scintigraphic [37] and MRI analy-
ses [38, 39] report no significant differences in infarction 
in DM vs. non-DM STEMI patients post angioplasty.

Other evidence strongly supports exaggerated myocar-
dial damage and cell death in DM patients: DM markedly 
increases morbidity and mortality (up to 90%) following 
cardioplegic arrest [40–42]; DM promotes pro-apoptotic 
signaling, apoptosis and contractile dysfunction in reper-
fused human myocardium [43–45]; and DM exaggerates 
oxidative damage and anti-oxidant depletion [45, 46], 
transcriptional changes and pro-inflammatory signaling 
[45, 47]. Analysis of I–R injury in ex  vivo tissue reveals 
significantly impaired resistance of myocardium from T1 
and T2DM patients, including increased apoptosis (par-
tially caspase- and PARP-dependent) and oncosis [48]. 
Anderson et  al. [49] more recently provided evidence 
that myocardium from DM patients has a greater pro-
pensity for mitochondria-dependent cell death. There is 
also evidence of exaggeration of post-ischemic contrac-
tile dysfunction in DM: the studies of Hoogslag et al. [50] 
and Dimitriu-Leen et al. [51] reveal worsened myocardial 
longitudinal strain independently of infarct size, support-
ing greater mechanical disruption in DM. Hyperglycemia 
itself has been shown to increase infarct size and mortal-
ity in infarct patients [1, 28, 52–54]. This may also involve 
impaired reperfusion, though there is evidence hypergly-
cemia exaggerates infarction by increasing the area at risk 
[55]. Use of insulin and sulfonylureas to manage hyper-
glycemia may additionally worsen ischemic injury, mor-
bidity and mortality [34–36, 56, 57].
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Conversely, there is some limited evidence myo-
cyte ischemic tolerance might be increased in T1DM 
patients, though for skeletal and not cardiac tissue [58]. 
This is consistent with some rodent studies in acute 
T1DM models (see below). Nonetheless, the weight of 
experimental evidence supports reduced myocardial 
I–R tolerance in DM, encompassing exaggerated apop-
tosis, oncosis and infarction, contractile dysfunction and 
markers of oxidative damage. It remains unclear to what 
extent poor post-ischemic prognosis reflects exaggerated 
ischemic insult, impaired reperfusion, and increased pro-
pensity to cell death. The roles of individual metabolic 
disturbances (hyperglycemia, hyperinsulinemia, insu-
lin-resistance, dyslipidemia), coronary dysfunction and 
compromised reflow, together with intrinsic myocardial 
stress-resistance, thus require further detailed analysis.

Cardioprotection
Studies broadly support the desensitization or elimina-
tion of diverse cardioprotective responses in DM myo-
cardium, though again this is not universal. There are 
relatively few studies of diabetic impacts on cardiopro-
tective responses in human myocardium. Ishihara et  al. 
[59] reported that DM inhibits ischemic precondition-
ing in anterior wall infarct patients, while Lee et  al. [4] 
present evidence of impaired preconditioning responses 
in DM patients undergoing angioplasty. Galiñanes and 
colleagues found that ex  vivo myocardium from DM 
patients was insensitive to ischemic preconditioning [3], 
and subsequently identified loss of responsiveness not 
only to preconditioning but to phenylephrine, adenosine 
and diazoxide (implicating signal dysfunction proximal 
to protein kinase C (PKC) and p38 mitogen-activated 
protein kinase (MAPK) [5]. More recent studies support 
desensitization of DM myocardium to hypoxic precon-
ditioning in association with impaired phosphatidylino-
sitol 3 kinase (PI3K) and Akt signaling [60], and failure 
of ischemic preconditioning in myocardium from DM 
patients [61]. On the other hand, some studies confirm 
protective efficacies of anesthetic post-conditioning in 
ex  vivo myocardium [62, 63] and of ischemic precondi-
tioning in vivo [64] in DM patients. Additionally, a meta-
analysis assessing influences of risk factor across ten trials 
of post-conditioning in STEMI [65] verified significant 
interactions with age and sex (reduced efficacy in older 
and/or female patients) yet not with DM. The authors 
concede analytical limitations may lead to an under-esti-
mation of the influences of co-morbidities such as DM. A 
subsequent focused albeit smaller analysis also failed to 
identify interaction between DM and post-conditioning 
in STEMI patients [66], though also failed to detect the 
sex and age effects revealed by Zhou et al., highlighting 

limited power to detect effects in small sample sizes via 
posteriori statistical analysis.

Complicating effects of anti‑hyperglycemia therapies
In addition to the underlying DM cardio-pathology, there 
is evidence clinical approaches to managing hyperglyce-
mia may impair cardioprotective signaling and worsen 
ischemic outcomes. Sulfonylurea use is associated with 
greater ischemic injury and infarction in DM [56, 57], 
and inhibition of ischemic preconditioning in both non-
DM and DM patients [67, 68] and ex  vivo myocardium 
from DM patients [69]. Glinide also impairs precondi-
tioning in DM patients [70, 71]. These negative impacts 
are consistent with their ability to inhibit KATP channels 
implicated in transducing or mediating cardiac protec-
tion [72].

In addition, insulin treatment has been linked to a 
paradoxic worsening of complications, all-cause mor-
tality and cardiac outcomes in DM [34, 35]. Concern 
regarding potentially untoward effects of glycemic con-
trol arose from epidemiological evidence of increased 
mortality in insulin-treated vs. untreated T2DM patients 
[73, 74], together with observations of insulin effects 
on cardiac events [75, 76] and mortality in heart failure 
complicated by T2DM [77]. Evidence of worsened out-
comes with insulin and sulfonylureas over metformin 
[34] suggests direct insulin- and KATP channel dependent 
actions rather than simple glucose-lowering. However, 
whether involving direct effects of insulin, influences of 
acutely reduced glucose (or overt hypoglycemia) follow-
ing chronic hyperglycemia, or the fact insulin-treated 
patients often exhibit greater comorbidities and suf-
fer more protracted disease, awaits further clarification. 
There are potential mechanisms by which insulin might 
worsen cardiovascular outcomes despite normalization 
of glucose. For example, insulin can induce weight gain 
which can exaggerate cardiovascular (and also cancer) 
risks, while atherogenic and mitogenic effects may accel-
erate atherosclerosis/IHD. Moreover, there is evidence 
insulin treatment up-regulates pro-inflammatory tumor 
necrosis factor α and interleukin-1 to a greater extent 
in T1DM vs. healthy animals [78], and insulin-depend-
ent NO generation may promote oxidative stress [79], 
together with vascular damage through increased circu-
latory pulsatility [80]. Hypoglycemia as a result of poor 
glycemic control may also increase arrhythmogenesis, 
cardiac events and mortality [81], though whether this 
reflects a causal relationship is unclear, with other stud-
ies reporting no association between hypoglycemia and 
cardiac or all-cause mortality in T2DM [82]. Conversely, 
there is evidence hyperglycemia can promote com-
pensatory mechanisms that protect against I–R injury, 
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including improvements in anti- vs. pro-oxidant balance 
and protein integrity [83], which might be countered 
by reductions in glucose levels. The hearts of diabetic 
patients do appear desensitized to the injurious effects of 
elevated glucose [38]. However, further work is needed in 
disentangling these complexities.

Effects of DM in animal and in vitro models
There are some conflicting reports regarding impacts of 
DM on myocardial infarction and cardioprotection in 
animal models. Reviewed previously [2, 84, 85], studies in 
different species and models report increases, no change, 
or reductions in infarct size with DM. Similarly, despite 
a substantial body of evidence supporting impaired pro-
tection via pre- or post-conditioning and GPCR ago-
nists, some report preserved responses to similar stimuli 
[86, 87]. Reasons for these discrepancies are debated, 
though disease progression and the presence of dyslipi-
demia appear to be important. While infarct enlarge-
ment is observed across species and models of T1DM 
and T2DM [2], infarct reduction is predominantly iden-
tified in rodent models of acute streptozotocin (STZ) 
dependent hyperglycemia [2, 86, 88–90]. This may reflect 
distinct impacts of acute (0–6 week) vs. established or 
chronic disease. While some also report apparent car-
dioprotection in models of T2DM [91], this may simi-
larly reflect distinct changes on early transition to T2DM 
vs. established disease [12, 92]. Presence or absence of 
dyslipidemia may also be important, with some evi-
dence hypercholesterolemia has opposing effects on 
infarct tolerance compared with hyperglycemia alone 
[93]. Mechanisms implicated in differing ischemic toler-
ance in acute vs. chronic DM include shifts in PI3K/Akt 
[12, 94, 95] and extracellular signal-regulated kinase 1/2 
(ERK1/2) signaling [90], mitochondrial glucose oxidation 
and malate-aspartate shuttle function [92], and capil-
lary density, vascular endothelial growth factor (VEGF) 
expression and endothelial nitric oxide synthase (eNOS) 
signaling [94]. Clinically, the negative impacts of chronic 
disease are most relevant regarding infarction and cardi-
oprotection, with acute effects relevant only during tran-
sition to disease and potentially on cessation of therapy. 
Almost universally, observations support worsened myo-
cardial ischemic tolerance in models of chronic T1DM or 
T2DM, with the weight of evidence supporting associ-
ated failure in diverse cardioprotective responses.

T1DM and infarction
A range of studies report worsened infarction in experi-
mental models of T1DM [96–100] while some report no 
effect on infarct tolerance [6, 13, 101–112], or protec-
tion against both infarction [86, 88, 89, 113] and con-
tractile dysfunction [114]. However, as alluded to above, 

a biphasic pattern may emerge in STZ-dependent rodent 
models with evidence of early protection followed by res-
toration or worsening of infarct tolerance beyond 6–8 
weeks. Protection against infarction evident 1–4  weeks 
after STZ challenge is lost from 8 weeks [115], while 
reduced ischemic tolerance may emerge by 20 weeks 
[90] (in association with impaired ERK1/2 phospho-
activation). Ma et  al. [94] report that protection against 
infarction and caspase-3 activation in T1DM rats is tran-
sient, apparent at 2 weeks and lost by 6 weeks, in asso-
ciation with transient changes in capillary density, VEGF 
expression, Akt phosphorylation, and eNOS expression. 
Similarly, early protection against arrhythmogenesis at 
2 weeks (with improved maintenance of Na+, Ca2+, K+ 
and Mg2+) transitions to worsened outcomes after 8 
weeks in T1DM rats [116]. Acute hyperglycemia itself 
has been shown to worsen myocardial infarction [96, 
102, 117–124], exert no effect [125–128], or less com-
monly to reduce infarction [129]. Reasons for these 
disparate observations are unclear, and together with 
the basis of apparently opposing effects of early vs. late 
hyperglycemia in rat models of T1DM, warrant further 
investigation.

T1DM and cardioprotection
Beyond a transient intrinsic protection in the early stages 
of STZ-induced hyperglycemia [2, 86, 88–90], studies 
report inhibition or complete loss of cardioprotective 
responses in rodent models of T1DM [91, 130–132]. 
Protective ‘conditioning’ responses negated or inhibited 
include ischemic pre- [110, 116, 133] and post-condi-
tioning [102, 104, 106, 108, 134, 135], delayed protection 
with ischemic preconditioning [102], hyperoxic precon-
ditioning [113], and remote post-conditioning [109]. Pro-
tective responses to pharmacological stimuli including 
anesthetic post-conditioning [101, 104, 111], ACE inhi-
bition [108], opioid [103, 107, 112] and adenosine GPCR 
agonism [100], and adiponectin [135] and cytokine [13] 
receptor activation are also lost in T1DM. Przyklenk and 
colleagues [134] present evidence post-conditioning may 
actually exaggerate injury in the context of T1DM. Acute 
hyperglycemia also inhibits cardioprotective responses, 
blocking ischemic pre- [102, 120] and post-conditioning 
[121], remote ischemic perconditioning [127], anesthetic 
pre- [119] and post-conditioning [125, 128], together 
with glucose-insulin-potassium (GIK) protection [118]. 
Nonetheless, there are some reports of preserved pro-
tection in models of T1DM, including exercise [136] 
and ischemic preconditioning [86], while Potier et  al. 
[108] identify a specific shift to protective efficacy of B2 
bradykinin receptors in T2DM hearts (vs. B1 receptors 
in non-DM tissue). Atorvastatin is also reportedly car-
dioprotective in T1DM rats [137], involving a glycogen 
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synthase kinase 3β (GSK3β) dependent protection linked 
to heat shock factor 1 and heat shock protein 70 (HSP70).

T2DM and infarction
Elements of T2DM individually modify infarct tolerance 
and cardioprotective signaling, including dyslipidemia 
[138–140], insulin-resistance and hyperglycemia [102, 
118, 120–122]. Studies identify exaggerated infarction 
and contractile dysfunction in different models of T2DM 
[132, 141–146]. Nonetheless, there are also reports of 
unchanged infarct tolerance [87, 126, 134, 147–150] or 
reduced infarction in models of T2DM. The latter reduc-
tions are observed 5 days post STZ injection in high-fat 
fed rats (a protection negated by hypercholesterolemia) 
[93], and at 16 weeks in Zucker diabetic fatty (ZDF) and 
lean Goto-Kakizaki (GK) T2DM rats [91, 94]. As for 
T1DM, disease progression appears to be key, with evi-
dence of a transient protection during disease onset that 
is lost with T2DM progression in GK rats [90], while 
infarct-intolerance also emerges with chronic T2DM in 
ZDF rats [92]. These latter studies link the evolution of 
infarct tolerance with established T2DM to shifts in Akt 
signaling, suppression of malate-aspartate shuttle pro-
teins and impaired post-ischemic recovery of glucose 
oxidation.

T2DM and cardioprotection
Diverse cardioprotective responses are impaired or 
negated in models of T2DM, including loss of ischemic 
pre- [141] and post-conditioning [134, 142, 145], He-
induced pre- and post-conditioning [147], and protection 
via anesthetic [49], erythropoietin [13, 132], adiponectin 
[151], and β3-adrenergic receptor activation [146]. Inter-
estingly, and consistent with membrane dysfunction, 
T2DM abolishes the cardioprotective potential of human 
and rat exosomes [15]. Exosomes are  ~  100  nm lipid 
bilayer vesicle derivatives of endosomes that play a role in 
transmitting protective signals between cells and tissues 
[152]. Cardioprotection may involve exosomal HSP70-
dependent activation of myocyte toll like receptor 4 
and reperfusion injury salvage kinase (RISK) signaling 
[153]. Failure of exosomes to induce protection in DM 
appears to involve abnormal vesicle structure/function 
rather than impaired protective signaling since exosomes 
from healthy donors are protective [15]. While exosome 
size was unaltered, contents of CD81 and HSP70 were 
increased in DM. Given evidence of exosome involve-
ment in endogenous protection, this dysfunction may 
contribute to impairment of both conditioning responses 
and intrinsic ischemic tolerance.

Conversely, there are reports of preserved cardiopro-
tective responses in T2DM, including efficacy of far red/
near infrared light [126], sphingosine-1-phosphate [87], 

peroxisome proliferator-activated receptor γ (PPARγ) 
activation [150], post-ischemic glutamate [154] and H2S 
preconditioning [155]. Exercise may also retain efficacy, 
improving ischemic tolerance in the hearts of T2DM 
(GK) rats [146, 156], and glycemic state and ischemic tol-
erance in obese mice subjected to 20  weeks of high-fat 
feeding [157]. Those cardioprotective modalities consist-
ently preserved in different models of DM demand fur-
ther focused study as potentially efficacious therapeutic 
candidates.

Summary
While somewhat contentious, studies of human and ani-
mal myocardium generally support detrimental effects 
of both T1 and T2DM on myocardial ischemic tolerance 
and cardioprotection (Table  1). Mechanistic interroga-
tion supports a complex pathogenesis, including signal-
ing dysfunction (e.g. impaired PI3K/Akt signaling) [5, 
12–14, 60, 90, 94], and abnormalities in mitochondrial 
function and quality control [10, 19, 20], ubiquitin–pro-
teasome system activity [16], oxidant/anti-oxidant sys-
tems [10, 11], and gene and miRNA expression [18]. 
Influencing many of these potential effector mechanisms, 
the sarcolemma plays an overarching role in governing 
ischemic tolerance and cardioprotection. Cardiac sar-
colemmal changes arise in DM (see Table  2), reflecting 
altered lipid metabolism and incorporation, modifica-
tion of resident lipids and proteins, and significant struc-
tural and functional remodeling of caveolae [158, 159], 
T-tubules [160, 161] and gap junctions [162]. Detailed 
further below, such changes modify the fundamental 
biophysical properties of the membrane, glucose and 
fatty acid utilization, ion channel function, propensity 
to membrane disruption, and signaling via the insulin 
receptor (InsR) and receptors governing cardiac stress, 
growth and death responses.

Sarcolemmal changes in DM
Though research has largely focused on intracellular and 
metabolic determinants of cardiac stress responses in 
DM, the sarcolemma plays a key role in governing these 
and other changes and warrants further research atten-
tion [21]. The sarcolemma represents the myocytes 
structural bounds, and is the primary environmental and 
inter-cellular interface; a scaffold for ion channel, recep-
tor, transport and mechano-transduction complexes, 
and medium for detection of intra- and extra-cellular 
stressors. It is thus intimately involved in receptor sign-
aling, ion homeostasis, substrate delivery, inflammatory 
and immune function, and detection and transduction 
of physico-chemical changes. As the site of glucose and 
fatty acid uptake and InsR signaling, the sarcolemma and 
its microdomains are a fundamental substrate for the 
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Table 1  Changes in myocardial ischemic tolerance and cardioprotection in animal models of DM

HFD high fat diet, ZDF Zucker diabetic fatty, ZO Zucker obese, GK Goto-Kakizaki, OLETF Otsuka Long-Evans-Tokushima fatty, mtFHH T2D crossbreed with mtDNA 
from fawn hooded hypertensive rats, IPreC ischaemic preconditioning, IPostC ischaemic postconditioning, HOPreC hyperoxic preconditioning, HePreC helium 
preconditioning, LPreC ischaemic late preconditioning, RPreC remote preconditioning, S1P sphingosine-1-phosphate, APN adiponectin, β3-AR β3-adrenergic receptor, 
w weeks

Species—model Duration or age Ischemic tolerance Effect on cardioprotection Ref.

Type 1 DM

 Mouse—STZ 1 week ⇓ ⇓ RPostC [109]

2 week ⇔ ⇓ IPostC [134]

4–5 week ⇔ ⇓ IPostC, ⇓ ACE inhibition [108]

 Rat—STZ 1 week ⇑ ⇓ HOPreC [113]

2 week ⇑ ⇔ IPreC [116]

2 week ⇔ ⇓ Opioid [107]

2 week ⇔ ⇓ Opioid [112]

2 week ⇔ ⇓ Opioid [298]

2 week ⇓ ⇓ Sevoflurane [106]

4 week ⇔ ⇓ Erythropoietin [13]

4 week ⇓ ⇓ APN, ⇓ IPostC [135]

4–5 week ⇓ ⇓ IPostC, ⇓ Sevoflurane [104]

6 week ⇓ ⇓ IPreC [133]

6 week ⇔ ⇓ IPreC [110]

8 week ⇓ ⇓ IPostC [99]

8 week ⇓ ⇓ APN, ⇓ IPostC [135]

8 week ⇓ ⇓ IPreC [116]

8 week ⇓ ⇓ Adenosine [90]

9 week ⇔ ⇓ Sevoflurane [111]

12 week ⇓ ⇓ IPostC [121]

Unreported ⇔ ⇓ Opioid [103]

 Dog—alloxan/STZ 3 week ⇔ ⇓ Isoflurane [101]

3 week ⇔ ⇓ IPreC [130]

 Rabbit—alloxan 5–6 week ⇔ ⇓ LPreC [102]

TYPE 2 DM

 Mouse—HFD 8 week ⇓ ⇓APN [151]

12 week ⇓ ⇓β3-AR [146]

 Mouse—ob/ob 8–10 week old ⇓ ⇓IPreC [142]

 Mouse—db/db 10–12 week old ⇓ ⇓IPostC [145]

12–14 week old ⇔ ⇓IPostC [134]

Unreported ⇔ ⇔Infra-red light [126]

12 week old Not tested ⇔H2S PreC [155]

 Rat—STZ/HFD 6 week ⇔ ⇔S1P [87]

 Rat—HFD 4 week ⇔ ⇔Erythropoietin [13]

8 week ⇑ ⇓Sevoflurane [496]

 Rat—ZDF 12 week old ⇔ ⇔Glutamate [154]

16 week old ⇑ ⇓IPreC [91]

 Rat—ZO 10–12 week old ⇓ ⇓IPreC, ⇓Diazoxide, ⇓HePreC [141]

 Rat—GK 12 week old ⇔ ⇓PPAR [150]

 Rat—OLETF 25–30 week old ⇓ ⇓Erythropoietin [132]

 Rat—mtFHH 12–14 week old ⇔ ⇓Isoflurane [149]
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metabolic dysregulation in DM. Molecular modification 
and disruption of the sarcolemma can thus contribute to 
multiple aspects of myocardial dysfunction and pathol-
ogy in DM.

Structurally the sarcolemma is a dynamic fluid bilayer 
of phospholipids, comprising complex assemblies of pro-
teins, cholesterol and other lipids (Fig.  1a). Within this 
lipid sea float organized clusters of sphingolipids and 
cholesterol that form distinct microdomains known as 
lipid rafts. An important sub-set of these rafts, the caveo-
lae are small invaginations (50–100 nm in diameter) that 
appear particularly relevant in DM and its cardiac seque-
lae [158, 159, 163]. Among other functions these ‘little 
caves’ serve as structural and regulatory platforms for 
receptor, ion channel and transporter proteins [164–166]; 
participate in mechanotransduction, protection against 
disruption and regulation of membrane repair [167]; 
and govern cardioprotective signaling [168–170]. Lipid 
rafts can also serve as redox signaling platforms that 
recruit and assemble nicotinamide adenine dinucleotide 

(NADPH) oxidase subunits and related proteins [171, 
172]. The functional properties of the sarcolemma and 
its microdomains are governed by molecular composi-
tion, which is sensitive to diet, physical activity, genetic 
makeup and disease, and is significantly disturbed in DM 
(Fig. 1b, Table 2).

Changes in sarcolemmal lipid profiles and function in DM
The biophysical properties of the membrane determine 
resident protein conformation, mobility and function. 
Fluidity or viscosity governs molecular motion and inter-
actions within this lipid bilayer, thereby influencing the 
functionality of receptors, transporters and ion channels 
[173]. Fluidity is determined by lipid makeup, including: 
the tightness of acyl-chain assembly on phospholipid 
molecules; degree of phospholipid saturation; and local 
ratios of cholesterol, lipids and proteins. Membranes 
rich in cholesterol and tightly packed acyl chains possess 
greater rigidity, impacting movement and interaction of 
receptors and other molecules. Changes in sarcolemmal 

Table 2  Cardiac sarcolemmal composition changes in models of T1DM

Changes (up or down) in levels of myocardial or sarcolemmal lipids in models of T1DM are summarized. Sarcolemmal lipid changes are not well defined in models 
of T2DM. Changes in specific saturated and unsaturated fatty acids species are indicated, with shortened numerical descriptions reflecting numbers of carbons and 
double bonds (e.g. palmitic acid, 16:0; stearic acid, 18:0; linoleic acid, 18:2; docosahexaenoic acid, 22:6)

CGP choline glycerophospholipids, EGP ethanolamine glycerophospholipids, IGP inositol glycerophospholipids, Chol cholesterol, CL cardiolipin, FAs fatty acids, 
FFA free fatty acid, LPC lysophosphatidylcholine, LPL lysophospholipid, NEFA non-esterified fatty acid, PC phosphatidylcholine, PE phosphatidylethanolamine, 
PI phosphatidylinositol, PL phospholipid, PMC plasmenylcholine, PME plasmenylethanolamine, PS phosphatidylserine, SGP serine glycerophospholipids, SM 
sphingomyelin, TRI triglyceride

Sample Chol FFA TRI Phospholipid Saturated FAs Unsaturated FAs Ref.

Heart ⇑ ⇔ ∑PL [191]

Ventricle ⇑ ⇑ [192]

Ventricle ⇑ LPC
⇓ PE, CL
⇔ PI, PS

[196]

Heart ⇓ 20:4, 22:4, 22:5
⇑ 18:2, 20:3, 20:5

[197]

Heart ⇑ ⇔ PC
⇔ PE

(PC) ⇓16:0 ⇑18:0 (PC) ⇓ 20:4, ⇑ 18:2
(PE) ⇓ 20:4

[193]

Heart (PE) ⇓ 18:0
(PC) ⇓ 16:0

⇓ 22:4 (PE) [201]

Heart ⇔ CGP
⇔ EGP

(CGP) ⇓ 16:0 (CGP) ⇓ 20:4, ⇑ 18:2
(EGP) ⇑ 18:2

[200]

Ventricle ⇑ EGP (CGP, EGP) ⇓ 16:0
(EGP) ⇓ 18:0

(CGP, EGP)
⇓ 22:6, 20:4
⇑ 18:2

[360]

Heart ⇑ EGP, PME, PI (EGP) ⇑ 18:0, 16:0
(TRI, NEFA) ⇑ 16:0

(EGP) ⇑ 18:2
(TRI) ⇑ 18:1, ⇓ 18:2

[202]

Sarcol-emma ⇑ ⇑ ∑PL, CGP, EGP, SGP
⇓ SM

(PC) ⇑ 16:0
(PMC) ⇑ 18:0
(PE) ⇓ 16:0
(PME) ⇓ 18:0, ⇑ 16:0
(PS) ⇑ 16:0, ⇓ 18:0

(PC) ⇓ 20:4, ⇑ 18:2, 18:3
(PMC) ⇑ 18:2, ⇓ 20:4
(PE) ⇓ 20:4
(PME) ⇑ 18:2, ⇓ 20:4
(PS) ⇓ 22:6, 20:4, ⇑ C18:1

[199]

Heart ⇑ ⇑ ⇑ ⇑ ∑PL [194]

Heart ⇑ ⇑ ⇑ ⇑ PE, SM, LPL
⇓ PC, PI + PS

⇑ ∑Sat FA ⇓ ∑Unsat FA, ⇓ ∑n − 3, ⇓ ∑n − 6 [195]
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biophysics as a result of altered lipid metabolism do 
appear causally important in DM [174]: InsR signaling is 
inhibited by reductions in membrane fluidity, and both 
glucose transporter type 4 (GLUT-4) transport to the 
membrane [21, 174] and glucose uptake [175–177] par-
allel membrane fluidity changes. Analysis of hepatic cells 
supports causal involvement of sphingomyelin-depend-
ent lipid microdomain changes in insulin-resistance and 
T2DM [178]. Inflammation, important in DM and car-
diovascular dysfunction, is also promoted by abnormali-
ties in membrane phospholipid and polyunsaturated fatty 
acid (PUFA) composition [179–181]. Positive feedbacks 
arise, whereby effects of DM and dyslipidemia on sar-
colemmal signaling evoke further lipid accumulation and 
membrane dysfunction. For example, up-regulation of G 
protein-coupled receptor kinase 2 (GRK-2) with DM or 
high-fat feeding inhibits GPCR and InsR signaling, pro-
moting further lipid accumulation, insulin-resistance and 
hypertrophy [182], with recent evidence these changes 
in GRK-2 also inhibits cardioprotective opioid receptor 
signaling [183]. The fundamental biophysical properties 
of the membrane can thus strongly influence the develop-
ment and pathological impacts of DM across cell types.

Initial studies in DM identified reduced erythrocytes 
membrane fluidity [184, 185], a change evident even in 
newly formed cells [186] and subsequently confirmed 
via different approaches in multiple cell types [21, 187, 
188], including cardiomyocytes [189]. Reduced fluidity 
is broadly consistent with increased membrane content 
of lipids promoting rigidity, including cholesterol, sphin-
gomyelin and saturated fatty acids [187, 190] (Table 2). It 
is nonetheless interesting to note that erythrocytes nor-
mally possess relatively little cholesterol and lack caveo-
lins. Specific myocardial analyses support increased 
levels of cholesterol and fatty acid saturation vs. desatu-
ration and differential changes in phospholipids and 
PUFAs, though studies are limited to models of T1DM/
hyperglycemia.

In early work, Denton and Randle [191] found a two-
fold increase in myocardial glycerides (predominantly 
triglycerides) in alloxan-induced T1DM in rats with-
out significant changes in phospholipid content, though 

sarcolemmal fractions were not specifically examined. 
Increased cardiac triglyceride were confirmed in T1DM 
rat hearts, together with elevations in free fatty acid levels 
[192–195]. Early study of phospholipid content revealed 
reductions in sarcolemmal cardiolipin and phosphatidy-
lethanolamine (PE) vs. elevated lysophosphatidylcholine 
levels in T1DM hearts, while phosphatidylinositol (PI) 
and phosphatidylserine (PS) were unchanged [196]. Later 
analysis of phospholipid makeup in hearts from T1DM 
rats revealed phospholipid depletion of n-6 arachidonic 
acid (AA; C20:4), docosatetraenoic acid (C22:4) and doc-
osapentaenoic acid (C22:5) species, whereas contents of 
n-6 linoleic (C18:2) and dihomo-γ-linolenic acids (C20:3) 
and n-3 eicosapentaenoic acid (C20:5) were increased 
[197]. Subsequent studies confirm phospholipid deple-
tion of AA and also palmitic acid (16:0) vs. enrichment 
with linoleic and dihomo-γ-linolenic acids [193, 198–
200] (Table 2), though Black et al. [201] found no change 
in phospholipid AA content in T1DM rat hearts (while 
phospholipid stearic acid and palmitate levels fell). Han 
et al. [202] reported three major sarcolemmal changes in 
T1DM rats: a reduced ratio of saturated:unsaturated PE 
species; increased PI and plasmenylethanolamine; and 
remodeling of triacylglycerol species. More recent analy-
sis in alloxan-induced T1DM in rats confirms increased 
cardiac cholesterol, free fatty acids, triglycerides and lipid 
saturation, reduced de-saturation and n-3 and n-6 PUFA 
levels, and differential changes in phospholipids includ-
ing increased PE, sphingomyelin and lysophospholipid 
vs. reduced phosphatidylcholine (PC) and PI + PS [194, 
195]. Collectively, these studies support cholesterol, tri-
glyceride and free fatty acid accumulation, increased 
saturation vs. desaturation, and remodeling of the major 
choline and ethanolamine phospholipids, with loss of AA 
and accumulation of linoleic acid and dihomo-γ-linolenic 
species (Table 2).

Shifts in cholesterol and fatty acid saturation are impor-
tant to changes in membrane biophysics. Membrane flu-
idity is particularly dependent upon cholesterol content, 
which is consistently increased in models of T1DM [194, 
195], in association with reduced fluidity and Ca2+ influx 
[173, 203]. Indeed, membrane cholesterol changes are 

(See figure on previous page.) 
Fig. 1  a Sarcolemmal makeup and caveolar domains. Planar lipid rafts are more ordered elements of the sarcolemma, containing greater sphin-
golipid and cholesterol levels and forming signaling microdomain platforms. A subset of rafts, caveolae, localize signaling integral to ischemic toler-
ance and cardioprotection, including NOS, GPCRs, RTKs and coupled effector molecules. Caveolins are critical to caveolae formation and function 
and protective signaling. b Modulation of caveolae/caveolins and related cardioprotective signaling in DM. Diabetes may exaggerate mitochondrial 
dysfunction and associated death, while individual elements of DM may disrupt caveolar control and caveolin expression: (i) hyperglycemia-
dependent PKCβ2 activation may suppress caveolin-3 expression/localization; (ii) saturated fats (e.g. palmitate) may displace or depress caveolin-3. 
Disruption of caveolar control and caveolins will limit protective signaling to mitochondria, including caveolin-3 translocation/modulation. Potential 
determinants of caveolin-3 expression and caveolar function include PKCβ2, saturated fats vs. n-3 PUFAs, AC (adenylate cyclase) and FAK (focal 
adhesion kinase) signaling, myocardin activity and physical activity
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likely to contribute in multiple cardiovascular disorders 
[204]. Cholesterol molecules provide structural support, 
function as molecular ‘glue’ for lipid raft assembly, pro-
mote curvature of the membrane [205], and are impor-
tant to caveolae formation [206]. Control of cholesterol 
is therefore essential to maintenance of membrane archi-
tecture, fluidity and microdomain formation. Shifts in the 
degree of fatty acid saturation also influence fluidity, with 
DM consistently increasing cardiac fatty acid levels and 
saturation vs. desaturation [193, 198]. Changes in phos-
pholipid profiles additionally alter fundamental biophysi-
cal properties [207], together with protein activity [208, 
209], recruitment of signal proteins [210], propensity for 
fusion [211] and production of lipid second messengers 
[209, 212]. Sarcolemmal phospholipids may also undergo 
relevant post-translation modification in DM, for exam-
ple altered N-methylation [213] may alter cardiac sar-
colemmal Ca2+ fluxes [214, 215].

Polyunsaturated fatty acids exert complex effects on 
membrane structure and function [216]. For example, 
n-3 PUFAs such as eicosapentaenoic (EPA) and doco-
sahexaenoic acid (DHA) remodel cholesterol-enriched 
lipid microdomains, with evidence their incorporation 
increases molecular order (despite their high disorder). 
Differences in lipid microdomain interactions of EPA 
and DHA may lead to differential changes in ‘bioactiv-
ity’ [216]. Both in  vitro [217, 218] and in  vivo studies 
[219, 220] indicate n-3 PUFAs incorporate into mem-
brane fractions corresponding to rafts, generally within 
the most abundant and DM-sensitive phospholipids (PE 
and PC), and magnetic resonance studies show differ-
ential changes in membrane structure when n-3 PUFAs 
are incorporated into PE vs. PC, the phospholipid frac-
tions predominantly modified in DM [193, 195, 198, 
199]. Lipid raft incorporation of n-3 PUFAs is accom-
panied by reduced levels of the highly disordered n-6 
PUFA AA [179], consistent with declining sarcolemmal 
AA species in DM [193, 198, 199]. Several studies show 
n-3 PUFAs can lower raft cholesterol levels, which may 
underlie effects on protein lateral organization and sign-
aling [221]. Impacts on cholesterol may include shunt-
ing from raft to detergent-soluble membrane fractions 
in some cell types [221, 222], potentially reflecting the 
poor affinity of n-3 PUFAs for cholesterol [223]. How-
ever, in some cell types reductions in raft cholesterol are 
not matched by changes in the detergent-soluble frac-
tion [224], which may be related to the ability of n-3 
PUFA to promote internalization of lipid microdomains 
(including raft cholesterol) [225]. An area of interest 
has been the influence of PUFAs on ion channel func-
tion, electrical stability and arrhythmogenesis, though 
mechanisms underlying such effects are yet to be fully 
detailed [226, 227].

Membrane dynamics are also influenced by glycation 
and associated free radical production [173, 203]. Treat-
ment with the anti-glycation and anti-oxidant com-
pound resorcylidene aminoguanidine (RAG) reverses 
DM-dependent reductions in cell membrane fluidity 
[173]. Profoundly reduced sensitivity to Ca2+ overload in 
myocardium from DM rats is also inhibited [173], addi-
tionally highlighting the importance of fluidity to ion 
homeostasis in DM hearts. Roles of such post-transla-
tional changes are discussed in more detail further below.

Unfortunately, studies of sarcolemmal changes in DM 
have focused to date on models of T1DM, with little to 
no information regarding changes in T2DM (Table  2). 
Moreover, investigations have yet to detail temporal pat-
terns of sarcolemmal change during DM development and 
progression. It would be of great value to undertake such 
time-course analyses across what appears the critical range 
for variable shifts in ischemic tolerance (i.e. no effects or 
improved tolerance from weeks 1–6; reduced tolerance at 
later times), permitting correlation of membrane makeup 
and ischemic tolerance changes. Membrane lipid analyses 
have been undertaken within yet not across these differing 
time periods (Table 2), with broadly similar lipid changes 
reported at 2–6 weeks [195, 201, 202] and 8–9 weeks [197, 
199, 200]. No distinguishing feature is evident in later 
membrane profiles, though there is only a single study 
at ≥ 12 weeks [193]. There is also no information on the 
time-course of changes in caveolae and caveolin proteins, 
another knowledge gap deserving attention.

Remodeling of sarcolemmal microdomains
Membrane proteins and signaling are compartmentalized 
between specialized microdomains rich in cholesterol 
and sphingolipids vs. other membrane regions [228]. 
Though a simplified model given the true complexity of 
the plasma membrane [229], sarcolemmal assemblies of 
lipids and proteins may be divided into either lipid rafts 
or planar platforms (loosely corresponding to detergent 
insoluble membrane fractions) and non-raft domains 
(corresponding to detergent soluble membrane). These 
domains differ markedly in their ion channel, transporter, 
receptor and signaling protein profiles [230–232]. Altered 
membrane composition can thus disrupt signaling, ion 
movement and substrate transport through differential 
changes in lipid raft/caveolar vs. non-raft domains. How-
ever, the compartmentation of proteins between raft and 
non-raft regions remains a controversial topic, reflecting 
in part varying outcomes with different membrane frac-
tionation methodologies.

Lipid raft vs. non‑raft proteins
These distinct regions may be differentially modified 
in DM, although studies of the cardiac sarcolemma are 
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limited. For example T2DM db/db mice exhibit  ~  ten-
fold elevations in the area of raft clusters in aortic 
endothelium, confirming that increased cellular lipid 
content can drive raft cluster formation [233]. Both 
horizontal and vertical clustering of rafts is observed, 
increasing the height of these aggregates [233]. Such 
changes will modify resident protein integration and 
function. Sequestration of specific ion channel, recep-
tor and transporter proteins within raft microdomains 
is an important means of compartmentalizing and 
specifying downstream signal transduction by the sar-
colemma. For example, caveolar localization ensures 
signaling specificity of cardiomyocyte β-adrenoceptors, 
limiting non-selective effects on sarcoplasmic reticulum 
(SR) and myofilament function [234]. A sub-population 
of L-type Ca2+ channels (LTCCs) has also been identi-
fied in caveolae domains that appears critical in regulat-
ing β-adrenoceptor [235] and hypertrophic calcineurin/
nuclear factor of activated T-cells (NFAT) signaling 
[236]. Evidence also supports functional localization of 
LTCCs to caveolae in human and rodent atrial myocytes, 
with a caveolae-targeted LTCC antagonist inhibiting 
Ca2+ fluxes [237]. In contrast, a recent report concludes 
that neither a caveolae targeted LTCC activator or inhib-
itor modifies function or hypertrophic responses in 
murine hearts [238].

Regulation of other important channels and pumps 
may be dependent upon caveolae domains. For exam-
ple, despite evidence cardiac Na+-K+-ATPase local-
izes to non-raft regions [239], there is also evidence 
for caveolae/caveolin association and control [240]. 
Almost half of the Na+-K+-ATPase α1-subunit and 
nearly all of the glycosylated β1-subunit reportedly 
localizes to cardiac caveolae [241], and caveolin-1 dele-
tion inhibits interactions between Na+-K+-ATPase, 
caveolin-3 and PI3K in cardiomyocytes [242]. Thus, 
inhibition of sarcolemmal Na+-K+-ATPase sub-unit 
expression and activity in STZ-dependent T1DM mod-
els [243, 244] may reflect a caveolae specific response. 
Such an effect is consistent with predicted outcomes 
of cholesterol accumulation [245]. Indeed, high dietary 
cholesterol also reduces Na+-K+-ATPase [246], and 
cholesterol may render sarcolemmal penetration of 
the ATPase complex energetically unfavorable, while 
reducing surface charge density is chemically unfavora-
ble [245]. Similarly, the cardiac Na+/Ca2+ exchanger is 
suppressed in DM [247], and despite some evidence it 
does not localize to rafts or caveolae [239], there is also 
evidence the exchanger interacts with caveolin-3 in sar-
colemmal vesicles [248], and its activity is depressed 
with cholesterol depletion [249]. Further work may 
clarify the impacts of DM on cardiac raft and non-raft 
ion channels and pumps.

Caveolar membrane microdomains
Evidence accumulated over the past decade highlights 
a particular importance of caveolae in protection of 
myocardium against metabolic (ischemia, hypoxia) and 
mechanical stressors [167–170], together with perturba-
tions and potential involvement in cardiac disease [159, 
163]. Few studies have examined effects of DM on caveo-
lar structure and density, although constituent caveolin 
proteins are significantly modified [135, 250–253] and 
caveolar localization of signaling molecules altered [250, 
251, 254]. Evidence implicates abnormal caveolar control 
in the development and cardiac-specific effects of DM 
[158, 159].

Caveolae have at least four major functions: (i) as sign-
aling platforms in the membrane, for example for recep-
tor tyrosine kinases (RTKs) including the InsR [131], 
GPCRs [165], eNOS [255], other signaling proteins [256] 
and ion channels [166]; (ii) regulating fatty acid trans-
port [257, 258] and glucose handling [158]; (iii) partici-
pating in mechanotransduction and acting as membrane 
‘reservoirs’ to limit damage with mechanical stress [167, 
259]; and (iv) functioning as membrane transport vesi-
cles, budding from the membrane in response to spe-
cific cues and participating in membrane repair [260]. 
Abnormalities within these regulatory domains will thus 
influence ion and substrate movement, protective signal-
ing and myocyte responses to mechanical perturbation, 
impairing cardiac responses to both pathologic insult and 
potential therapies.

As for lipid rafts in general, caveolae formation and 
function are dependent upon lipid composition, particu-
larly cholesterol and sphingolipid content [228, 261, 262]. 
A key distinguishing feature is the presence of choles-
terol-associated caveolin proteins, involved in stabilizing 
the physical architecture of these flasks and regulating 
signaling and transport processes [228]. Depletion of 
membrane cholesterol [263] or caveolins [264] inhibits 
caveolae formation and negates myocardial responses to 
diverse protective stimuli [265, 266]. Cholesterol deple-
tion also disrupts the Z-band localization of caveolin-3 
in cardiomyocytes, and alters cytoskeletal architecture 
[267]. Highly abundant PS and phosphatidylinositol 
(4,5)-bisphosphate [PIP2] may also be important, con-
centrating within caveolae and functionally compart-
mentalizing lipid pools [268–270]. Caveolae depletion 
with caveolin-1 knockout or depletion leads to re-organ-
ization of plasma membrane PS domains [271], and con-
sistently down-regulates pathways of lipid metabolism 
across cells [272]. There is evidence the caveolin scaffold-
ing domain—a 20-amino acid sequence initially impli-
cated in controlling signal molecules—has an intrinsic 
capacity to concentrate local cholesterol, PS and PIP2 
[273]. Effectively enriching caveolar oligomers in PS and 
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PIP2, this process is proposed as a means of attracting 
membrane-sensing cavin proteins to initiate a cascade of 
further caveolin, PIP2 and PS recruitment to membrane 
rafts [274]. Cholesterol concentration around caveolin 
oligomers may modify biophysical properties to favor 
membrane bending by the cavin-caveolin coat complex. 
These inter-dependencies provide a basis for the sensitiv-
ity of caveolae formation and function to cholesterol and 
phospholipids, the levels of which are perturbed in DM 
[195, 196, 199–202]. Given evidence of cholesterol accu-
mulation in the sarcolemma of DM hearts, a scenario of 
both caveolar disruption via caveolin suppression and 
reduced membrane fluidity via cholesterol accumulation 
could arise. How accumulated cholesterol is distributed 
between microdomains in DM is not clear, however it is 
possible fluidity within depleted caveolae populations is 
compromised.

Caveolar “coat proteins”—the caveolins and cavin families
While there are few analyses of cardiac caveolar architec-
ture and density in DM, significant changes in constitu-
ent caveolins and cavins are observed and likely disrupt 
caveolae function and formation. Hyperglycemia may 
suppress myocardial caveolin-3 in a PKCβ2 dependent 
manner [250] and H9c2 cardiomyoblast caveolin-3 in 
an oxidant-dependent manner [275], while hyperinsu-
linemia also depresses caveolar caveolin-3 in H9c2 cells 
[254]. Moreover, saturated fats reduce cardiac caveolin-3 
[276], as does aging [277], whereas PUFA supplementa-
tion can up-regulate caveolin-3 expression [278]. Caveo-
lin-1, in contrast, may be significantly up-regulated in 
DM [252, 279].

The caveolin proteins are primary structural and reg-
ulatory elements of caveolae [168], though also play 
important non-caveolar roles [259]. For example, seques-
tration of active caspase-3 by extra-caveolar caveolins 
may underlie protective effects of β-receptor antagonism 
in DM hearts [253]. Three caveolin isoforms have been 
identified with differing functions and tissue distribu-
tions [158, 164, 206, 264]. All are expressed in the central 
nervous system, with ubiquitous caveolin-1 most highly 
expressed in endothelium, fibroblasts and pneumo-
cytes, where it appears structurally supported by caveo-
lin-2 hetero-oligomerization. In contrast, caveolin-3 is 
highly specific to striated muscle and plays crucial roles 
in cardiac stress sensing/responses and cardioprotection 
[167–170, 256, 259, 264]. Caveolins preferentially arrange 
in homo-oligomers of 2 to  ~  16 monomers, forming 
caveolar assembly units, and may require cholesterol 
for effective insertion into the membrane [264]. A com-
mon feature of all isoforms are scaffold domains where 
signal molecules including G proteins, PKC and eNOS 
are proposed to physically interact. However, the basis of 

regulatory molecular interactions with caveolins remains 
to be defined [280]. Noted above, these domains also 
appear important in locally concentrating cholesterol 
and phospholipids [273]. Caveolin-3 is not only essen-
tial to myocardial caveolae formation but is particularly 
important to stress tolerance and cardioprotection. Myo-
cardial [266] and mitochondrial [281] stress responses 
are strongly caveolin-3 dependent, as is cardiac protec-
tion via ischemic and anesthetic preconditioning [169, 
265] and opioid GPCRs [266]. Caveolin-3 also influences 
cholesterol transport [282], ion handling [235, 283, 284], 
GLUT4 and glucose metabolism [252, 285, 286], and 
hypertrophic remodeling [287, 288].

Despite these key roles, the control of myocardial cave-
olin expression remains to be detailed, though studies in 
other cells support transcriptional regulation by myocar-
din. A member of a family of transcriptional co-activators 
responsive to stress, myocardin up-regulates caveolins and 
caveolae in smooth muscle cells [289]. Specific cardiac 
studies are lacking, however human expression data sup-
port a close association between Myocd and Cav1 gene 
levels across tissues, including heart [289]. Myocardin con-
trol of caveolin-1 and -2 and cavin-2 appears independ-
ent of serum response factor whereas control of cavin-1 is 
dependent on this transcription factor, providing for dif-
ferential control of cavin-1 vs. caveolins [289]. Myocyte 
myocardin may be up-regulated by hyperinsulinemia [290], 
and in other muscle cell types myocardin is up-regulated 
by oxidative stress sensitive miR-145 [291]. Importantly, 
emerging evidence reveals new roles for myocardins in glu-
cose and lipid homeostasis (including via caveolins) [292].

The few studies analyzing myocardial caveolins 
in T1DM have employed relatively acute models 
(0–6  weeks), and report a hyperglycemic depression of 
caveolin-3 [135, 250–253] that may contribute to dias-
tolic dysfunction [250], impaired GLUT4 transloca-
tion [252] and I–R intolerance [251]. Nonetheless, the 
acuteness of STZ-induced hyperglycemia and variable 
ischemic tolerance in these T1DM models raise ques-
tions regarding relevance: paradoxical cardioprotection 
in the initial weeks in rat T1DM models [2, 84, 293] is not 
relevant to the ischemic intolerance observed in chronic 
disease and T2DM. Hyperglycemia also acutely depresses 
caveolin-3 expression in cardiac myoblasts [275], and 
hyperinsulinemia suppresses caveolar levels of caveolin-3 
in H9c2 myoblasts, which may dysregulate Akt-depend-
ent InsR signaling [254]. No study has comprehensively 
assessed mechanistic involvement of caveolin-3 in the 
cardiac sequelae of T2DM, with only a single report of an 
insignificant fall in cardiac Cav3 mRNA in the non-obese 
GK rat model [294].

Inhibitory effects of saturated fatty acids [276, 295] 
and glucose [250] on cardiac caveolin-3 expression and 
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caveolin-dependent eNOS signaling present plausi-
ble mechanisms for reduced cardioprotection in DM. 
Impaired PI3K/Akt/NOS signaling is characteristic in 
DM myocardium [12, 90, 94, 95, 146, 250], and these sig-
nal elements cluster in caveolae [164–166] where eNOS 
is regulated by caveolin-1 and -3 [250, 275, 296–298], and 
Akt signaling is promoted by caveolin-3 [250–252, 299]. 
Studies in rodent models indicate that DM dysregula-
tion of RISK signaling, including PI3K/Akt and glyco-
gen synthase kinase-3β, underlies impaired protection 
via cytokine receptors [13], GPCRs [14] and progestin 
and adiponectin receptors [35]; and RISK-dependent 
pre- and post-conditioning responses are also inhibited 
in DM [2, 116, 117, 130]. Inhibition of Akt signaling and 
ischemic tolerance in T1DM has been linked to caveo-
lin-3 depletion [251], as has disruption of adiponectin 
receptor cardioprotection [135]. Recent work also impli-
cates oxidant-mediated dysregulation of caveolin-3/
eNOS signaling in the ischemic intolerance in T1DM 
hearts [275]. An increase in caveolin-1, reported by 
Penumathsa et al. [252] in hearts of T1DM rats and Bucci 
et  al. [279] in aortic tissue, may also inhibit protective 
signaling, suppressing eNOS activity [296–298, 300] and 
promoting dephosphorylation of sarcolemma-associated 
Akt [301]. In support of this, Ajmani et  al. [300] report 
that a ‘caveolin inhibitor’ and sodium nitrite both restore 
preconditioning in T1DM rat hearts, however signifi-
cant limitations include multiple non-specific biological 
actions of the inhibitor employed, and failure to measure 
caveolin-1 expression or establish diabetic inhibition of 
preconditioning.

Less is known regarding potential roles of more 
recently identified cavin proteins [206, 302]. These coat 
proteins homo- and heteroligomerize (independently of 
membrane and caveolins) to form specific caveolar sub-
complexes, and are involved in orchestrating the cell-
specific formation, caveolin/cavin incorporation and 
structural modeling of caveolae [206, 302]. They may also 
be released intracellularly with different stressors/stimuli 
to regulate gene expression and non-caveolar processes. 
Depletion of cavin-1 (with attendant loss of caveolae) 
results in elevations in circulating triglycerides, glucose 
intolerance and hyperinsulinemia [303], and inhibits 
cardiac ischemic tolerance and stretch responses while 
exaggerating cellular permeability (potentially via NOS 
overactivity) [304]. Perturbation of the caveolar system 
via caveolin-1 depletion or knockout also dysregulates 
cardiac stress responses [305, 306]. Whether these gene 
deletion effects reflect distinct roles and influences of 
cavins and caveolins, or highlight the broader importance 
of caveolae is presently unclear. However, differences 
do emerge in the cardiac effects of cavin-1 vs. caveo-
lin knockout [304]. Intriguingly, effects of cavin-1 and 

caveolin-1 knockout suggest the diastolic dysfunction 
in DM could involve disruption of sarcolemmal cave-
olae: caveolar depletion in both cavin-1 [304] and caveo-
lin-1 [307] knockout hearts is associated with significant 
diastolic dysfunction or stiffening. Caveolae provide an 
effective membrane reserve to accommodate physical 
deformation or stretch [167], potentially influencing the 
compliance of cardiac cells. Although diabetic diastolic 
dysfunction is attributed to fibrosis/hypertrophy [20], 
sarcolemmal makeup and specifically caveolae and asso-
ciated signaling may contribute to this dysfunction [304, 
307].

Changes in sarcolemmal caveolae influence substrate 
handling
Glucose transport
Caveolar domains are important in glucose and lipid 
transport, and InsR receptor signaling [158, 274]. Myo-
cardial glucose transport via GLUT4 is spatially confined 
to caveolar domains [158, 308], where InsRs are also 
localized [309]. Cardiac insulin-resistance and impaired 
GLUT4 expression and transport in T2DM [310] may 
involve disruption of caveolae and caveolin-3 with DM 
[135, 250–253] and high-fat feeding [276, 295]. Indeed, 
Penumathsa et  al. [252] report reduced expression and 
association of GLUT4 and caveolin-3 in lipid-rafts of 
T1DM rat hearts.

Activation of the InsR normally leads to a cascade 
of Akt phospho-activation and phosphorylation of the 
Rab-GTPase activating TBC1D4/AS160 protein, a distal 
effector maintaining GLUT4 vesicles within an inactive 
intracellular pool [311]. This initiates pathways mediating 
docking and diffusion of GLUT4 vesicles at the plasma 
membrane [311]. This path not only increases GLUT4 
exocytosis but can limit endocytosis to re-distribute 
plasma membrane GLUT4. However, in cardiac [312] 
and skeletal myocytes [313] insulin does not influence 
endocytosis. Nonetheless, GLUT4 endocytosis in skel-
etal myoblasts is sensitive to energy state (inhibited by 
mitochondrial uncoupling), and both clathrin-depend-
ent and clathrin/caveolae-independent (yet cholesterol-
dependent) endocytosis paths are involved [313]. This 
energy-sensitive endocytosis reveals non-caveolae effects 
of cholesterol, for example promoting negative mem-
brane curvature [205]. This not only further highlights 
the importance of membrane cholesterol, but shows that 
distinct membrane changes may independently modify 
GLUT4 exocytosis and GLUT4 endocytosis.

Not only is GLUT4 movement influenced by cave-
olae and caveolins, but signaling via the InsR is strongly 
dependent upon these raft elements. Yamamoto et  al. 
[314] first demonstrated positive control of InsR signal-
ing via caveolin-1 and -3, including evidence of direct 
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caveolin interaction with the InsR kinase domain to 
promote insulin receptor substrate 1 phosphorylation. 
Caveolin-3, caveolin-1 and the InsR all interact in cardiac 
myoblasts, and caveolin-3 depletion renders myocytes 
insulin-resistant while caveolin-3 haplo-insufficiency 
increases susceptibility to fatty acid induced insulin-
resistance [286]. Disruption of caveolae or caveolin-3 
expression in DM [135, 250–253] is thus predicted to 
limit cardiac InsR signaling, although a parallel elevation 
in caveolin-1 as reported in a rat T1DM model [252] may 
modulate such effects. Supporting the value of targeting 
caveolins, insulin-resistance in obese and DM mice is 
reversed by hepatic overexpression of caveolin-3, which 
substantially enhances InsR signaling [315]. Nonethe-
less, basal glucose metabolism appears largely unaltered 
in hearts lacking either caveolin-3 [288] or caveolin-1 
[316], and thus also devoid of caveolae, although skele-
tal muscle insulin-resistance arises in both models [308, 
317]. While suggesting distinct caveolin/caveolar control 
of substrate metabolism in cardiac vs. skeletal muscle, 
cardiac InsR signaling and insulin-resistance have yet to 
be detailed in these knockout models. Lifelong absence 
of both caveolae and caveolins in these models may also 
limit their relevance to more moderate and progressive 
changes in DM. Other analyses confirm that reductions 
in caveolin-3 inhibit insulin-stimulated glucose uptake in 
cardiac myoblasts and myocytes [286], and that hyper-
insulinemia in cardiac myoblasts reduces caveolar lev-
els of caveolin-3 and insulin-dependent phospho-Akt 
[254]. Insulin-dependent myocardial glucose uptake is 
thus predicted to be impaired with reductions in caveo-
lin-3 expression in DM hearts, though this has yet to be 
directly assessed.

Ubiquitously expressed caveolin-1 may additionally 
modulate InsR signaling in DM, and cardiac expres-
sion is reportedly increased in T1DM rat hearts [252]. 
Caveolin-1 is also induced by micro-RNAs up-reg-
ulated in obesity (miR103, miR107), and their over-
expression induces insulin-resistance in an entirely 
caveolin-1 dependent manner [318]. However, changes 
in caveolin-1 are not universal in obesity, some dietary 
interventions may also augment caveolin-1 [319], and 
distinct from caveolin-3, cardiac expression of caveo-
lin-1 appears repressed with medium-chain triglycer-
ide but not palmitate supplementation [276]. Further 
work is needed to clarify effects of caveolin-3 and -1 
on insulin-dependent glucose uptake and metabolism 
in myocardium and cardiac myocytes, identifying spe-
cific roles of the caveolins themselves vs. caveolae as 
regulatory platforms, and the effects of moderate and 
acute vs. prolonged changes in expression (modeling 
changes in DM, and avoiding limitations of lifelong 
gene deletion).

Fatty acid uptake
Fatty acid transport is also compartmentalized within 
lipid rafts and caveolae [320], with the regulatory InsR 
[309]. Accumulation of long-chain fatty acid metabo-
lites is important in development of myocardial insu-
lin-resistance [321, 322], with more prolonged changes 
involved in later development of heart failure. The major 
cardiac fatty acid transporters CD36 and fatty acid bind-
ing protein (FABP) normally relocate to the sarcolemma 
from intracellular stores in response to insulin or con-
traction [322, 323]. Active CD36 specifically localizes to 
lipid rafts and caveolae where fatty acid uptake activity 
is promoted, while inactive intracellular CD36 is asso-
ciated with non-raft fractions [320]. Overexpression of 
CD36 enhances skeletal muscle fatty acid oxidation and 
decreases plasma lipids [324], while deletion impairs car-
diac fatty acid uptake, though this may be metabolically 
compensated by increased glucose oxidation [325]. Sar-
colemmal CD36 not only governs uptake but targets fatty 
acids to specific metabolic sites including mitochondria 
[326], and plays roles in promoting 5′-AMP activated 
protein kinase (AMPK) signaling, regulating Ca2+ sign-
aling and levels, and acting as co-receptor for toll-like 
receptors [327]. Permanent sarcolemmal relocation of 
transporters in obesity and DM thus greatly promotes 
cardiac lipid and lipid metabolite accumulation to impair 
insulin signaling and glucose utilization [322, 323]. As 
critical sites of control, sarcolemmal CD36 and FABP are 
important therapeutic targets for countering myocardial 
insulin-resistance and cardiomyopathy.

Changes to caveolae and caveolin-1 and -3 in DM are 
predicted to impact CD36-dependent uptake given func-
tionally relevant caveolar localization and caveolin con-
trol. Hearts from caveolin-3 haplo-insufficient mice do 
express less CD36 in line with differing caveolin-3 levels, 
though a twofold rise in caveolin-1 suggests potentially 
complicating adaptation [286]. Lipid raft targeting of 
CD36 may involve interaction with caveolin-1 based on 
effects in non-muscle cells [328], and cardiac lipids and 
fatty acid uptake are also reduced with caveolin-1 knock-
out [316]. Diabetic up-regulation of caveolin-1 [252] 
could thus promote lipid uptake, though myocardial 
CD36 and caveolin-1 are not always linked: for exam-
ple, cardioprotective isoflurane increases caveolin-1 and 
caveolae [305] while reducing caveolar CD36 levels [329]. 
Although lifelong absence of caveolin-3 does not reduce 
cardiac fatty acid uptake [288], a halving of cholesterol 
levels and a 40–50% increase in triglycerides confirm 
major perturbations of fatty acid handling. Importantly, 
and as noted above, this model reflects a complex phe-
notype encompassing lifelong absence of caveolin-3 and 
caveolae (thus caveolae-localized transporters), which 
likely disrupts potential caveolin-1 control.
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Membrane cholesterol—beyond fluidity and caveolar 
domains
Changes in membrane cholesterol do not only influence 
membrane fluidity [189], curvature [205], and caveolar 
endowment [223, 262, 267], but also govern T-tubule sys-
tem integrity and excitation–contraction (E–C) coupling 
[330, 331], contractile function [267, 332], glucose and 
fatty acid transport [320, 331, 333–336], and functional-
ity of membrane ion channels, receptors and transporters 
[337–339]. These diverse effects of cholesterol on sar-
colemmal architecture and the functionality of associated 
proteins may contribute to impairment of cardioprotec-
tion and ischemic tolerance with hypercholesterolemia 
[138, 140, 340] and are relevant to the DM myocardium.

For example, there is evidence that increased mem-
brane cholesterol is key to impaired GLUT4 traffic 
in insulin-resistance and T2DM, though studies have 
focused on skeletal muscle given its contribution to 
systemic insulin sensitivity and glucose homeostasis: 
glucose-intolerant animal models and humans accu-
mulate cholesterol in skeletal muscle membranes [331, 
335]; high-fat diets also increase skeletal muscle choles-
terol [332]; DM also increases cardiac cholesterol levels 
[195]; cholesterol depletion with methyl-β-cyclodextrin 
reversibly and dose-dependently increases plasma mem-
brane GLUT4 incorporation in myotubes [334]; and 
cholesterol depletion improves glucose homeostasis in 
high-fat fed animals, together with insulin-dependent 
GLUT4 translocation and glucose uptake in muscle fib-
ers [335]. The cholesterol depleting agent chromium also 
improves glycemic control in T2DM patients [341], and 
activates GLUT4 trafficking and insulin-stimulated glu-
cose transport in a cholesterol- and AMPK-dependent 
manner [342]. This is consistent with evidence AMPK 
improves insulin-stimulated GLUT4 control by lowering 
membrane cholesterol [335]. These observations support 
regulation of insulin-stimulated GLUT4 translocation 
via tissue cholesterol content, and suggest cholesterol 
removal may be useful in countering myocyte insulin-
resistance, although cardiac studies are lacking.

Additional to indirect influences on protein confirma-
tion and function, cholesterol recognition/interaction 
amino acid consensus (CRAC) and more recently CARC 
(similar to CRAC, with an opposite orientation—hence 
“CARC”) domains have been identified in transmem-
brane proteins, including receptors regulating cellular 
stress responses [337, 343]. Sometimes located within 
the same transmembrane segment, these CRAC and 
CARC domains can directly interact with cholesterol in 
the cytoplasmic leaflet of the plasma membrane. Modu-
lating multiple ion channels [284, 338] and receptors 
[339, 343–345], the cardiac significance of sarcolem-
mal cholesterol:protein interactions awaits further 

study, particularly in the context of DM and metabolic 
syndrome.

Potential influences of DM on cardiac phospholipid 
signaling
Membrane lipids not only serve structural roles but are 
substrates in cell signaling (Fig.  2). Sarcolemmal phos-
pholipids are targeted by three primary phospholipase 
groups to generate lipid signaling molecules: phospholi-
pases A2, C and D (PLA2, PLC and PLD, respectively). 
Phospholipid signaling is implicated in cardiac hypertro-
phy/cardiomyopathy and is perturbed in cardiovascular 
disease states including DM [346]. Changes observed in 
sarcolemmal glycerol-phospholipid species in DM rat 
hearts likely contribute to membrane and contractile dys-
function [195, 199, 202]. In terms of ischemic tolerance, 
phospholipases are implicated both in mediating and 
protecting against ischemia–reperfusion injury [347–
349]. This may reflect isoform specific effects, includ-
ing protection via PLCγ1 and injury via PLCδ1. Shifts in 
membrane phospholipase signaling may thus contribute 
to alterations in both infarct tolerance and cardioprotec-
tion in DM.

Cardiac PLC activities are reduced in STZ-induced 
T1DM rats, and basal and phosphatidic acid induced 
IP3 generation are reduced in cardiomyocytes from DM 
rats [350]. In contrast, increased PLC activity is impli-
cated in exaggerated α1-adrenergic receptor mediated 
inotropy with acute (3 day) hyperglycemia [351]. Distinct 
outcomes with acute vs. chronic DM may be relevant to 
patterns of early protection and later ischemic intoler-
ance in models of STZ dependent T1DM [2]. A reduced 
rather than increased PLC activity may contribute to 
abnormalities in contractility and α1-adrenergic receptor 
responses with more protracted disease [352]. Reduced 
PLC generation of 1,2-diacylglycerol (DAG) may impact 
other cellular processes [353, 354], although myocardial 

Fig. 2  Sarcolemmal phospholipid signaling via phospholipases. AA 
arachidonic acid, DAG 1,2-diacylglycerol, IP3 inositol 1,4,5-triphos-
phate, PA phosphatidic acid, PC phosphatidylcholine, PIP2 phos-
phatidylinositol-4,5-bisphosphate, PLA2 phospholipase A2, PLC 
phospholipase C, PLD phospholipase D
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DAG levels are increased with more acute STZ-depend-
ent T1DM and in autoimmune DM (biobreeding) rats 
[355, 356], which could destabilize the membrane [357, 
358].

Phospholipase D activity reportedly declines in DM 
cardiomyopathy [359], which may limit PA generation 
and thereby PLC activation. Alterations in AA content 
of sarcolemmal phospholipids could also reflect dys-
functional PLC signaling [346]. Relatively little is known 
regarding cardiac PLA2 signaling in DM, however car-
diac membrane associated PLA2 activity is increased in 
rat models of DM [360]. The local environment of cave-
olae is also important to phospholipid signaling. Up 
to half of cellular PIP2 is located in caveolin-enriched 
membrane fractions [268, 361, 362], and this pool is spe-
cifically sensitive to GPCR and RTK activation [268] in 
a cholesterol-dependent manner [263]. For example, the 
α1 adrenergic receptor (AR) and its Gq effector protein 
are caveolae localized in adult cardiomyocytes [363, 364], 
and analysis in neonatal cells possessing both caveolar 
and non-caveolar PIP2 fractions supports select caveolar 
depletion upon α1-AR stimulation [365]. Coupled with 
localized PLC-dependent hydrolysis to DAG, this com-
partmentation provides for select regulation of caveolar 
populations of PIP2- and DAG-sensitive ion channels 
and exchangers [366, 367]. Shifts in caveolar makeup and 
localized phospholipids thus have capacity to selectively 
disturb cardiomyocyte receptor signaling and ion chan-
nel function.

Critical to cellular growth, substrate metabolism, 
stress responses and cardioprotection, PI3K iso-
forms catalyze production of the 3-phosphorylated 
phosphoinositides phosphatidylinositol 3-phosphate, 
phosphatidylinositol (3,4)-bisphosphate, and phosphati-
dylinositol (3,4,5)-triphosphate. While membrane phos-
pholipid pools are modified in DM, it is unclear whether 
changes are sufficient to influence PI3K signaling. Cer-
tainly, dysfunctional PI3K/Akt signaling is implicated 
in altered InsR control and impaired cardioprotection, 
among other cardiac changes.

Membrane glycation, glycosylation, palmitoylation 
and oxidation in DM
Glycation and enzymatic glycosylation are major fac-
tors in the cardiac abnormalities arising in DM [9], as 
is oxidative stress [10, 11]. Palmitoylation is also an 
important determinant of sarcolemmal protein function 
[368–370] and is highly relevant in metabolic disorders 
such as DM [371, 372], however, diabetic perturbations 
have been largely studied in non-cardiac tissues. Other 
modifications may also be relevant in DM, for exam-
ple reductions in phospholipid N-methylation [213] 
depress Na+-dependent Ca2+ uptake [214] and enhance 

ATP-dependent Ca2+ efflux [215] in the cardiac sarco-
lemma of STZ-dependent T1DM models. Such effects 
may be mechanistically relevant to paradoxical resistance 
to external Ca2+ overload in DM hearts [189].

Advanced glycation end‑products (AGEs) and the receptor 
for AGE (RAGE)
Chronic hyperglycemia promotes glycation, the non-
enzymatic covalent bonding of carbohydrates to pro-
teins and lipids. Glycation products in turn can form 
cross-linked structures known as AGEs. These modi-
fied proteins/lipids activate cell surface RAGE to trigger 
ROS generation, activation of nuclear factor kappa-light-
chain-enhancer of activated B cells (NFκB) and pro-
inflammatory cytokine production. Positive feedback 
between NFκB and RAGE expression exaggerates ROS 
and cytokine generation. These processes are implicated 
in vascular dysfunction in DM, and have been shown 
to contribute to myocardial changes and dysfunction 
[373, 374]. Targeting AGE accumulation has also been 
shown to improve myocardial ischemic tolerance in dif-
ferent models of DM. For example, cardioprotection in 
rat T1DM models with natural xanthonoid and flavo-
noids [375, 376] and anti-hyperglycemic glitazones [377] 
appear to involve inhibition of the AGE-RAGE axis and 
AGE accumulation. However, cytoplasmic AGE accumu-
lation is typically documented in animal and human tis-
sues, and specific sarcolemmal targets of glycation have 
not been investigated in detail.

Glycosylation
Diabetes increases fluxes through accessory paths of 
glucose metabolism, including the hexosamine biosyn-
thetic pathway (HBP) that produces the sugar donor 
for enzyme-mediated β-O-linked-N-acetylglucosamine 
(O-GlcNAc) modification of proteins or lipids. Studies 
confirm that increased protein O-GlcNAc levels contrib-
ute to the cardiac abnormalities of DM. This modulation 
is complex, however, with O-GlcNAc mediating both 
beneficial and detrimental effects [378]. Transient eleva-
tions in O-GlcNAc may provide cytoprotection [379], 
with acutely increased O-GlcNAc prior to ischemia or in 
reperfusion reducing infarction and dysfunction [380]. 
Inhibition of O-linked β-N-acetylglucosamine transferase 
(OGT) can also inhibit cardioprotection [381] while 
inhibition of protein O-GlcNAcase (OGA) may improve 
cardiac ischemic tolerance [380]. Such effects might be 
relevant to observations of acute protection early in STZ-
dependent hyperglycemia. Indeed, Jensen et al. [382] pre-
sent evidence O-GlcNAc signaling participates in remote 
ischemic preconditioning and activates cardioprotec-
tion in DM myocardium from T2DM patients (based on 
functional I–R tolerance of atrial trabeculae).
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Other evidence indicates chronic elevations in 
O-GlcNAc are detrimental to the heart. Hyperglyce-
mia mediated HBP activation increases cardiomyoblast 
death [383], and inhibitors of OGA have been shown 
to improve I–R tolerance in DM hearts, potentially via 
preserved integrity of O-GlcNAc associated Z-line pro-
tein structures [380]. Activation of the HBP and protein 
O-GlcNAcylation modulates hypertrophic and cell sign-
aling pathways in T2DM [378]. Increased protein O-Glc-
NAcylation in non-DM cardiomyocytes also decreased 
hypertrophic signaling responses, while HBP inhibition 
partly restored hypertrophic signaling in DM cardiomyo-
cytes. Cardiac beclin-1 and Bcl-2 have also been recently 
identified as targets for O-GlcNAcylation [384], with 
blunted autophagy in cardiomyocytes from T2DM db/db 
mice partly reversed by inhibiting the HBP. Ramirez-Cor-
rea et al. [385] present evidence that Z-line localization of 
O-GlcNAc and OGT and A-band localization of OGA is 
disrupted, consistent with changes in human DM hearts. 
Their data indicate subcellular redistribution of OGT and 
OGA rather than changes in overall activities are respon-
sible for altered O-GlcNAcylation in DM. On the other 
hand, Dassanayaka et al. [386] show O-GlcNAcylation is 
not involved in inhibition of mitochondrial metabolism 
in hyperglycemic cardiomyocytes.

There is only limited evidence for glycosylation modi-
fications of plasma membrane proteins. In coronary 
endothelium OGA expression is decreased and OGT 
expression and O-GlcNAcylation increased with DM 
[387], with CX40 identified as a potential target of O-Glc-
NAcylation regulating cell function. Effects of glucosa-
mine and OGT blockade on post-ischemic Ca2+ levels 
also implicate modulation of sarcolemmal channels [388]. 
Further studies of cardiac sarcolemmal targets of O-Glc-
NAcylation are required to clarify the role of this process 
in membrane changes and dysfunction in T1 and T2DM.

Palmitoylation
Reversible S-palmitoylation (thioester attachment of 
palmitic acid to cysteine) is an important protein ‘sort-
ing’ signal, governing trafficking and membrane locali-
zation [389]. Palmitoylation enhances membrane 
affinity of many proteins to facilitate membrane accumu-
lation [390]. N-myristoylation (amide bond attachment of 
myristoyl group to N-terminal glycine residues) may also 
facilitate protein localization to membrane palmitoylases 
[390, 391]. Within the membrane, palmitoylated proteins 
have high affinities for cholesterol and sphingolipid-rich 
domains [392], which is important in targeting proteins 
to membrane raft regions [393]. Some GPCRs are palmi-
toylated down-stream of the 7th transmembrane domain 
[394], which may be required for efficient plasma mem-
brane delivery [395, 396]. Palmitoylation may regulate 

internalization of some GPCRs and promote trafficking 
of internalized proteins to the plasma membrane. Ion 
channel and exchanger functions are also modified with 
palmitoylation. For example, the cardiac Na+/K+-ATPase 
is targeted by palmitoylation, though functional out-
comes await detailed study [369]. The inactivation of the 
Na+/Ca2+ exchanger is also strongly dependent on pal-
mitoylation [370].

Recent data support induction of endocytosis via 
membrane protein palmitoylation. Massive endocytosis 
(MEND) is an adapter-independent form of endocyto-
sis that can rapidly internalize up to 70% of the plasma 
membrane in response to stressors such as Ca2+ over-
load [397]. Increased plasma membrane palmitoylation 
promotes MEND in response to mitochondrial stress 
[398], likely due to clustering of palmitoylated proteins in 
lipid-ordered domains as a result of palmitoyl chain affin-
ity for the ordered lipid environment [399]. Reilly et  al. 
[370] show that elevations in palmitoylated Na+/Ca2+ 
exchanger 1 protein in the plasma membrane accelerates 
MEND, mirroring effects of palmitoylated phospholem-
man [397, 398] and suggesting palmitoylated proteins 
promote formation of lipid-protein domains to trigger 
endocytosis. Since acyl groups of palmitoylated pro-
teins insert more readily between the phospholipid head 
groups of curved rather than planar membrane regions 
[400], palmitoylated proteins will cluster in invaginated 
lipid-ordered domains that may include caveolae [401], 
the curved domains formed in endocytosis, and poten-
tially curved junctions between T-tubule and surface 
sarcolemma. Clustering of palmitoylated membrane 
proteins with large cytoplasmic domains (e.g. Na+/K+-
ATPase, Na+/Ca2+ exchanger) may itself promote mem-
brane curvature [402]. Unfortunately, despite such effects 
and the importance of palmitoylation to sarcolemmal 
protein trafficking and function, few studies have exam-
ined potential roles of altered palmitoylation in the car-
diac abnormalities of DM.

Membrane oxidation
It is well established that oxidative stress is involved in 
development and progression of DM and its organ-spe-
cific complications [10, 403, 404], and shifts in cardiac 
stress responses may involve oxidative modification of 
sarcolemmal elements. Oxidative stress may underlie 
changes in caveolae and caveolins: Su et  al. [275] show 
the anti-oxidant N-acetylcysteine (NAC) limits changes 
in caveolin-3 together with phosphorylated eNOS known 
to localize to caveolae. Diabetes reduces association of 
caveolin-3 and eNOS in cardiomyocytes, an effect coun-
tered by antioxidant treatment. Protective effects of 
NAC on hyperglycemic and hypoxic cell injury were also 
abolished by knockdown of either caveolin-3 or eNOS, 
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supporting the notion hyperglycemic inhibition of eNOS 
results from impaired caveolin-3 expression. Membrane 
lipid metabolism also contributes to oxidative stress: 
lipoxygenases oxidatively metabolize AA released from 
the plasma membrane following PC hydrolysis, gener-
ating ROS in the process. Hyperglycemia-induced acti-
vation of 12/15-lipoxygenase is associated with cardiac 
oxidative stress and DM cardiomyopathy [404]. However, 
beyond largely indirect evidence (e.g. preventing caveo-
lar changes with anti-oxidant intervention), there is rela-
tively little information available regarding the specific 
sarcolemmal targets of oxidative modification in DM 
hearts, and their roles in associated ischemic intolerance. 
As for glycation/glycosylation and palmitoylation, further 
studies are needed to clarify modifications to sarcolem-
mal proteins in T1 and T2DM, and their roles in altered 
stress responses.

Remodeling of the T‑tubule system in DM
Despite limited studies, and none in human cardio-
myocytes, evidence supports significant remodeling of 
T-tubules in DM. Studies in skeletal muscle confirm 
the T-tubule system is a functionally important target 
governing glucose handling [336, 405, 406]. In heart, 
McGrath et  al. [160] report a pronounced fall in func-
tionally intact SR/T-tubular junctions together with an 
increased T-tubule area (longitudinal rather than trans-
verse orientation) in rat models of T2DM. A subsequent 
study in db/db mice identified a fall in T-tubule density 
in this model of T2DM [161]. Despite differing morpho-
logical outcomes, both studies highlight diabetic disrup-
tion of T-tubule organization and functionality, likely 
perturbing E–C coupling and contractile function. For 
example, the synchrony of cardiomyocyte Ca2+ release 
(influencing contractile function and arrhythmogen-
esis) depends on T-tubule integrity, and disorganiza-
tion underlies cardiac dyssynchrony in different settings 
[407–409]. Disruption of T-tubule structure and function 
may thus mediate the reduction in synchrony observed in 
DM [161, 410].

Changes specifically within the T-tubule system may 
also be important in altered substrate handling. Magnetic 
resonance spectroscopic [411] and biochemical analyses 
[412] confirm defective GLUT4 translocation in muscle 
of T2DM patients, while studies in animal models con-
firm impaired translocation in skeletal [405] and cardiac 
tissue [413, 414]. Dissociation of T-tubules has been 
shown to reduce basal and abolish insulin-dependent 
glucose transport in skeletal muscle [415], confirming 
a critical role in glucose metabolism and homeostasis. 
Since the majority of GLUT4 translocation occurs spe-
cifically within T-tubules [415, 416] and cholesterol-rich 
microdomains [253], T-tubule disruption and changes in 

cholesterol will modify insulin-stimulated GLUT4 exocy-
tosis in DM.

Changes in both membrane cholesterol and caveolae/
caveolins may contribute to the T-tubule dysfunction in 
DM. In skeletal myocytes, cholesterol is more concen-
trated within T-tubules compared to surface membrane 
regions [417–419], which may contribute to lower fluid-
ity in the lipid phase of T-tubules compared with most 
cell membranes [420]. While data are lacking for car-
diomyocytes, similar compartmentation in T-tubules is 
likely. Cardiac Ca2+ levels and contractility are sensitive 
to membrane cholesterol [267, 332], and Zhu et al. [330] 
recently confirmed cholesterols importance to cardio-
myocyte T-tubule stability and E–C coupling, an effect 
apparently independent of caveolin-3/caveolae. The 
integrity of intercalated disks and intercellular commu-
nication were also sensitive to cholesterol. Caveolae and 
caveolins are also important in T-tubule development 
and maintenance of functional integrity [421], including 
the co-localization and interaction between junctophi-
lin-2 and caveolin-3 in dyadic structures to establish effi-
cient, synchronous EC coupling. Depletion of caveolin-3 
could contribute to loss of dyadic integrity, and junc-
tophilin/caveolin-3 interactions are known to be sup-
pressed in cardiomyopathy [422].

Changes in gap junctions and sarcolemmal ion channels 
in DM
Gap junctions
Abnormal conduction and arrhythmogenesis is evident 
in both DM patients [423, 424] and animal models of 
T1 and T2DM [425–427]. Together with changes to the 
T-tubule system, shifts in gap junctions [162] and sar-
colemmal ion (Ca2+, Na+, K+) channels will disrupt elec-
trophysiology in DM, and influence cardiac responses 
to I–R. Specialized gap junction pores provide effective 
electrical coupling of adjacent cardiomyocytes, and are 
critical not only to conduction and electrical stability but 
responses to ischemia and cardioprotective stimuli [428]. 
Principle connexin (CX) protein components are altered 
in DM, including evidence of modified expression and 
phosphorylation. The latter post-translational changes 
are functionally important: PKC inhibits cardiac gap 
junction conductance [429, 430] via CX-43 phosphoryla-
tion [431, 432]; dephosphorylation of gap junction ele-
ments results in their uncoupling [433] and lateralization 
[432, 434]; and excess phosphorylation of CX-43 by PKCε 
may promote proteolysis to deplete junction channels in 
DM myocardium [435].

In cultured myocytes CX-43 expression is suppressed 
by hyperglycemia [436], potentially involving PKC-
dependent miR-1/206 expression [437]; and by the 
AGE-RAGE system, potentially involving PKC and ERK 
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signaling [438]. In STZ-dependent T1DM in rats an 
increased SA nodal expression of CX-43 (and -40 and 
-45) is associated with nodal conduction delay [439], 
while ventricular expression is reportedly unaltered 
[440], reduced [435] or increased [441, 442]. Olsen et al. 
[426] observe reduced lateralization of CX-43 in hearts 
from ZDF rats exhibiting reduced conduction velocity. 
Phosphorylation of atrial and ventricular CX-43 declines 
in models of DM [439, 442, 443], potentially as a result 
of impaired PKCε expression [444], though these inves-
tigators also report increased PKCε mediated CX-43 
phosphorylation in DM myocardium, which may pro-
mote proteolytic degradation [435]. The extent of car-
diac CX-43 phosphorylation reportedly declines with 
progression of DM while protein nitration increases 
[443]. Zhu et al. [330] also recently found that cholesterol 
depletion not only destabilized cardiomyocyte T-tubules, 
but disrupted the integrity of intercalated disks and 
intercellular communication. Gap junction function and 
inter-cellular communication may therefore be influ-
enced by sarcolemmal cholesterol changes in DM. Sup-
porting mechanistic involvement of gap junction changes 
in the myocardial abnormalities of DM, benefit with 
exercise in T2DM db/db mice is attributed to restora-
tion of CX-43 networks [445], and beneficial effects of 
n-3 PUFA feeding on DM cardiomyopathy are linked to 
increased CX-43 expression and phosphorylation (asso-
ciated with up-regulated PKCε) [414]. In contrast, it has 
also been reported that moderate exercise reduces ven-
tricular CX-43 phosphorylation [446].

Ion channels
Sarcolemmal ion channels fundamental to E–C cou-
pling and relevant to I–R injury are modified in DM 
myocardium, including changes in Ca2+ channels, levels 
and contractile responses [447–451], K+ currents and 
channels [452–454], and Na+ pumps [247, 455]. These 
may participate in enhanced arrhythmogenesis and risk 
of sudden cardiac death [423, 425, 427, 452]. Altered 
membrane lipids and biophysical properties in DM will 
influence ion channel function, and changes in channel 
transcription and expression patterns also arise. There 
is evidence of increased transcription of Ca2+ channels 
(Cacna1c, Cacna1g, Cacnb1) and Gja4 (CX-37), and 
differential changes in K+ channels (Kcnj11 up, Kcnb1 
down) in GK T2DM rat hearts [450]. Sucrose feeding 
induces K+ channels (Kcnj2, Kcnj8) and Gja1 (CX-43) 
and Gja4 in non-DM rats [450]. This group also reports 
up-regulation of ventricular Cacna1h, Scn1b and Hcn2 
vs. down-regulation of Hcn4, Kcna2, Kcna4 and Kcnj2 in 
this model [449], and up-regulation of genes encoding 
cardiac LTCC proteins (Cacna1c, Cacna1g, Cacna1h and 

Cacna2d1) in association with prolongation of Ca2+ tran-
sients in the ZDF rat model of T2DM [448].

These transcriptional changes do translate to altered 
channel expression, with shifts in Ca2+, K+ and Na+ 
channels all potentially contributing to electrophysio-
logical perturbations in DM hearts. Abnormal Ca2+ cur-
rents in cardiomyocytes from T1DM Akita mice involve 
reduced sarcolemmal levels of the LTCC, potentially 
related to impaired PI3K control [456]. The decline in 
sarcolemmal Ca2+ permeability in T2DM db/db mice is 
associated with reduced expression of the pore-forming 
α1C subunit of the LTCC [447]. Though less well studied, 
cardiac T-type Ca2+ channel expression/function may 
also be modified in DM given caveolar localization and 
sensitivity to caveolin-3 [457], and evidence of changes 
in other cell types with chronic DM [458]. Reductions in 
cardiomyocyte K+ current density in models of T1DM 
also involve defective channel expression (potentially 
involving AMPK signaling) [459], and action potential 
prolongation in Otsuka-Long-Evans-Tokushima Fatty 
rats is linked to down-regulation of endocardial Kv4.2 
(voltage-gated K+ channel subfamily D) and transmu-
ral KChIP2 (K+ channel interacting protein) expres-
sion [454]. Impaired insulin signaling has been shown 
to reduce the amplitude of the transient outward K+ 
current fast component in cardiomyocytes in associa-
tion with reduced Kv4.2 and KChIP2 expression [453]. 
Broadened ventricular repolarization and reduced ‘repo-
larization reserve’ in alloxan-induced T1DM in dogs may 
also involve impaired K+ currents as a result of reduced 
Kv4.3 (voltage-gated K+ channel subfamily D) and MinK 
(voltage-gated K+ channel sub-family E subunit) expres-
sion, while Kv1.4 (voltage-gated K+ channel subfamily A), 
KChIP2 and KvLQT1 (voltage-gated K+ channel subfam-
ily D) were increased [452]. Such changes may signifi-
cantly predispose to sudden cardiac death.

Depressed INa may additionally play a role in altered 
electrical activity in DM cardiomyocytes, with less Na+ 
influx during contraction linked to reduced expression of 
both the Na+/K+-ATPase and Na+/Ca2+ exchanger [247]. 
This is consistent with sarcolemmal Na+-K+ pump inhi-
bition in other models of T1DM [455]. Changes in Ca2+, 
K+, and Na+ channels are not only likely to increase sus-
ceptibility to arrhythmias in I–R, but may well modulate 
cell death processes. Moreover, expression of subunits 
for the sarcolemmal KATP channel implicated in multiple 
cardioprotective responses [72] is also disrupted in DM, 
with SUR2A and Kir6.2 decreased both in myocytes from 
T1DM rats and isolated myocytes subjected to hypergly-
cemia [460]. Such a change will not only desensitize car-
diac myocytes to KATP openers, but impair transduction 
of cardioprotective signaling. The impacts of these varied 
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channel expression changes in DM will be exacerbated 
by membrane lipid changes and structural modifications 
to the sarcolemma, including shifts in microdomains 
in which select channels cluster, and T-tubule and gap-
junction remodeling.

Potential ‘membrane‑targeted’ therapies?
Based on the array of detrimental sarcolemmal changes 
evident in DM, a number of therapeutic approaches 
present themselves, including modifications to diet and 
physical activity, cholesterol manipulation, and modula-
tion of caveolins and caveolar biology.

Targeting caveolae and caveolins
Given evidence of abnormal caveolin-3 expression in 
models of DM, this caveolar protein has appeal as a 
therapeutic target [158, 159, 169]. Beneficial anti-dia-
betic effects of hepatic caveolin-3 gene transfer supports 
the therapeutic potential of caveolin-3 in DM [315]. 
Although the regulation of cardiac caveolin-3 expression 
is not well understood, there is evidence from non-car-
diac cells for transcriptional control by myogenin, ID2, 
miR-22 and myocardin [289]. Myocardins are impor-
tant to formation of caveolae, and in glucose and lipid 
homeostasis [292]. Whether transcriptional control 
of caveolins might be targetable is not clear. However, 
hyperinsulinemia does up-regulate myocardin in cardiac 
myoblasts [290], which additional to modulating hyper-
trophy could up-regulate caveolins and caveolae [289]. 
Conversely, insulin-resistance may reduce myocardin 
expression and thereby caveolins and caveolae. Aortic 
myocardin is substantially induced in GK (T2DM) rats, 
which appears to involve a miR-145 dependent response 
to oxidative stress [291].

Interestingly, cardiac caveolin-3 may be differentially 
modifiable via dietary saturated fat [276] and PUFA [278, 
461], and hyperglycemic depression of caveolin-3 may 
also be PKCβ2-dependent, providing a potential phar-
macological target. Lei et  al. [240] show that inhibition 
or knockdown of PKCβ2 counters hyperglycemic depres-
sion of caveolin-3 in hearts and myocytes, and improves 
cardiac Akt phosphorylation and diastolic function. This 
group subsequently showed that PKCβ2 inhibition also 
improved cardiac I–R tolerance together with caveolin-3 
levels and control of Akt signaling in STZ-dependent 
T1DM rats [241]. Supplementation with the anti-oxidant 
NAC also attenuates PKCβ2 expression and hypertrophy 
[462] while enhancing ischemic tolerance [275] in STZ-
dependent T1DM rats. Caveolin-3 levels were not meas-
ured, though a reduction in PKCβ2 activity is predicted 
to improve caveolin-3 based on other work [250].

Other potential targets include adenylyl cyclase (AC) 
and focal adhesion kinase (FAK) signaling paths: in vitro 

studies suggest AC can repress caveolin-3 in cardiac 
myoblasts [463] while FAK up-regulates caveolin-3 in 
skeletal myoblasts [464]. No data are available regarding 
cardiac FAK signaling in DM, however, FAK may be acti-
vated in hyperglycemic conditions [465], and FAK induc-
tion in hypertrophied skeletal muscle is exaggerated in 
T1DM rats [466]. In skeletal myotubes FAK also appears 
important in insulin-dependent GLUT4 translocation 
and glucose uptake [467]. Adenylate cyclase itself appears 
functionally unaltered in DM hearts, while adrenergic 
receptor mediated control is impaired [468]. However, 
vascular AC expression/function may be altered in DM 
[469]. Inhibition of cardiac AC5 activity does protect 
against cardiac abnormalities in T2DM and obesity [470].

Targeting caveolin-3 expression via acute gene therapy 
with adeno-associated virus (AAV) for Cav3 improves 
I–R and Ca2+ tolerance, preserves mitochondrial stabil-
ity and reduces reactive oxygen species [281]. In addi-
tion, cardiac specific caveolin-3 overexpression enhances 
functional outcomes post-I–R and reduces infarct size 
(similar to effects of ischemic preconditioning), which 
may be due to improved mitochondrial Ca2+ tolerance 
and respiratory rates with reduced ROS generation [281]. 
Fridolfsson et al. [281] identified that increased O2 con-
sumption in caveolin-3 overexpressing hearts improved 
energy production without a parallel increase in ROS 
generation. Further experiments targeting caveolin-3 
to mitochondria confirmed improved mitochondrial 
stability during Ca2+ challenge, and delayed mitochon-
drial depolarization and improved respiratory complex 
activity associated with enhanced ischemic tolerance. 
Conversely, deletion results in mitochondrial dysfunc-
tion [281] and hypertrophy [287, 288]. How caveolin-3 
migrates to/communicates with mitochondria and subse-
quently promotes mitochondrial and ischemic tolerance 
remains to be further detailed.

Cholesterol lowering therapies
Reducing membrane cholesterol has capacity to improve 
fluidity and counter some sarcolemmal abnormali-
ties evident in DM hearts. On the other hand, whether 
reductions in cholesterol might adversely impact cave-
olae, caveolins and T-tubules is unclear. Certainly, statins 
are of value in DM, with low-dose treatment significantly 
reducing cardiovascular events in T2DM patients [471]. 
However, while pleiotropic effects of statins include 
‘anti-diabetic’ actions such as reduced inflammation in 
T2DM patients [472], they may also include induction of 
insulin-resistance and promotion of DM [473, 474]. That 
said, such effects appear modest relative to the benefits 
of statins, and may only be a factor in those at particular 
risk of new onset DM [475]. Experimental studies show 
statins do protect against myocardial ischemic injury in 
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hearts from DM and healthy animals, though again this 
reflects pleiotropic effects of the drugs independent of 
cholesterol lowering [476, 477].

Dietary intervention
Modifiable diet and physical activity have long been 
appreciated as major determinants of DM severity and 
complications. Dietary modification can alter sarcolem-
mal makeup and function, and inflammatory, glycation/
glycosylation and oxidative processes in the heart and 
vessels. For example, homeostatic control of inflamma-
tion is mediated by eicosanoids (prostaglandins, leukot-
rienes, thromboxanes) whose generation is dependent 
on the n-6 PUFA AA [179]. Shifts in saturated vs. unsat-
urated fat intake can modify fundamental membrane 
properties together with caveolar components, while 
limitations in caloric intake may profoundly influence the 
DM phenotype and promote protective outcomes.

Unsaturated vs. saturated fats
Mammalian species are unable to produce n-3 PUFAs, 
thus must acquire these essential fatty acids via the diet. 
Edible seeds such as flaxseed and chia seeds are rich 
sources of the 18C n-3 PUFA α-linolenic acid, while 
longer chain n-3 PUFAs (EPA, DHA) can be synthesized 
from α-linolenic acid or consumption of fish oils. Once 
acquired, n-3 PUFAs can integrate into the sarcolemma 
to displace membrane AA: dietary n-3 PUFA incorpora-
tion in myocardium and myocytes occurs at the expense 
of n-6 PUFAs [478]. Consumption of n-3 PUFAs thus 
reduces inflammation via disrupting production of AA-
derived eicosanoids [479, 480]. However, it is worth not-
ing that AA-derived eicosanoids (including prostaglandin 
E2) exhibit both pro- and anti-inflammatory capabilities.

Dietary α-linolenic acid is cardioprotective in a rat 
model of T2D [143], with 4  weeks of α-linolenic acid 
supplementation improving ischemic tolerance includ-
ing enhanced functional outcomes and reductions in 
infarction and markers of cell death (whereas no protec-
tion was evident in non-DM rats). Cardioprotection was 
linked to anti-inflammatory (reduced tumor necrosis 
factor-α and interleukin-6) and anti-oxidative (reduced 
superoxide and enhanced anti-oxidant capacity) actions, 
possibly involving PI3K/Akt signaling [143]. Insulin-
resistance, glucose intolerance, dyslipidemia and cardiac 
lipid accumulation after 3–6 months of a high-sugar diet 
are also reversed by transition to a chia seed-rich diet 
[481]. Consumption of n-3 PUFAs improves sarcolemmal 
functions, critical to the management of DM cardiomyo-
pathy. For example, consumption of fish oils: enhances 
EPA and DHA in cardiac membranes while reducing 
AA [479, 480]; prevents translocation of CD36, limiting 
fatty acid uptake and lipid storage [482]; and counters 

abnormal membrane fluidity in T1DM mice [195]. A veg-
etarian diet improvement in linoleic acid content is also 
associated with improved insulin sensitivity in subjects 
with T2DM [483].

Diets containing high ratios of PUFA/mono-unsatu-
rated fatty acid (MUFA) improve insulin-binding and glu-
cose uptake in adipose cells from healthy and T1DM rats 
[484]. Membranous phospholipid content is also altered, 
with enhanced PUFA and reduced MUFA (though no 
effect on total saturated phospholipids) [484]. Inter-
estingly, even at very high insulin levels (1000  ng/mL), 
cells from T1DM rats fed low PUFA/MUFA diets bind 
less insulin than those fed high PUFA/MUFA diets and 
exposed to lower insulin levels. This suggests that insulin 
has greater affinity for cells with more unsaturated mem-
branes, which may be particularly useful in management 
of insulin-resistant T2DM.

Enriched n-3 PUFA diets also modify ion exchange and 
action potential duration, which may limit cardiac pro-
pensity to I–R injury and arrhythmias. Isolated myocytes 
from rabbits fed fish oil for 3  weeks exhibit increased 
sarcolemmal EPA and DHA (vs. decreased MUFAs) and 
20% shorter action potentials compared with myocytes 
from animals on a n-9 MUFA-rich diet [485]. Exposure 
of myocytes to EPA and DHA shortened action poten-
tials in cells from n-9 MUFA and not n-3 PUFA fed rab-
bits. These findings indicate action potential shortening 
likely stems from altered membrane lipid composition 
and not direct ligand-like interaction with ion channels 
[485]. Other studies report inhibitory effects of PUFAs 
on sarcolemmal K+ [486] and Ca2+ channels [487], and 
the Na+/H+ exchanger [488], potentially limiting patho-
logical Ca2+ overload in myocardial cells.

Dietary fats also influence caveolin expression and 
thus caveolae. A palmitate enriched diet significantly 
depresses cardiac caveolin-3 [276], whereas a flaxseed-
enriched diet reverses reductions in cardiac caveolin-3 
in cardiomyopathic hamsters [278], and prevents reduc-
tions in skeletal muscle caveolin-3 in a model of muscular 
dystrophy (also repairing sarcolemmal damage, reducing 
inflammation and cell death) [459]. Effectiveness of such 
diet intervention in a DM animal model awaits testing. 
In addition to n-3 PUFA supplementation, improved car-
diac function in DM may be achievable through calorie 
restriction (CR).

Caloric limitation and time‑restricted feeding
Calorie restriction or intermittent fasting may pro-
vide significant benefit in DM, and such interventions 
modify membrane composition in murine myocardium 
[489]. Though prolonged caloric limitation is a well-
established protective stimulus, effects of brief or mod-
erate fasting await detailed study in DM animals. Severe 
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CR for 11  days generates unique I–R tolerance [490], 
and 24–72  h of fasting enhances cardiac I–R tolerance 
and mitochondrial viability in non-DM hearts [491, 
492]. There are surprisingly few studies of caloric limita-
tion in DM. A 30% limitation in calories for ≥ 2 months 
improves glucose homeostasis and markers of systemic 
or cardiac oxidative-stress in rodent models of T2DM 
[493, 494]. A similar CR regime fails to influence I–R 
tolerance in models of T2DM and metabolic syndrome, 
though benefit via ischemic preconditioning was restored 
[144]. Contrasting reported protection with fasting, one 
recent study suggests 18  h of fasting actually worsens 
ischemic tolerance in T2DM and also non-DM rat hearts 
[495], potentially linked to enhanced glucose vs. fatty 
acid metabolism. Another recent study [496] also found 
that loss of sevoflurane preconditioning with a high calo-
rie western diet was unaltered with 4 week of control diet 
(though an apparently detrimental impact of sevoflurane 
with the western diet was countered).

Whether ischemic tolerance with caloric limitation 
involves membrane changes in either DM or non-DM 
hearts remains to be established. However, modest (12 h) 
fasting does induce membrane remodeling via a reduc-
tion in acyl chains, predominately lost from C22:6 (DHA) 
species [489]. While effects of CR on myocardial caveolar 
domains are unknown, it does prevent age-related reduc-
tions in caveolin-1 in liver tissue [497], and repression of 
caveolin-1 in breast tissue is mediated by a micro-RNA 
(miR-203) that is induced with CR [498].

Circadian biology is extremely important in the influ-
ences of fat and calorie intake on obesity and associated 
metabolic disturbances, and restricted feeding times 
rather than calorie intakes can be highly beneficial in car-
diometabolic disorders [499]. The timing of food intake 
appears a key determinant of circadian rhythm, particu-
larly in metabolic organs, and the impacts of high-fat 
feeding on body weight, insulin levels, glucose tolerance, 
inflammation and hepatic steatosis can be effectively 
countered by time-restricted feeding without caloric 
limitation [500]. Conversely, short-term feeding at the 
wrong time of day can desynchronize peripheral clocks 
and induce obesity and metabolic disorder [501]. Time-
restricted feeding also counters cardiac aging changes in 
the Drosophila model [502], however effects on myocar-
dial ischemic tolerance, or the cardiomyopathy and sar-
colemmal changes in DM, have yet to be tested.

Exercise in DM—membrane involvement?
Physical activity and VO2 have been identified as perhaps 
the most important factors governing chronic disease 
risk, particularly CVD and DM [503]. Up to 50% of coro-
nary artery disease can be prevented by 30 min of mod-
erate exercise daily (assessed in middle-aged women) 

[504–506], and as little as 3 weeks of exercise can reduce 
the clinical impact of metabolic syndrome (a combina-
tion of coronary heart disease, hypertension and T2DM) 
by 50% [507]. Not only substantially reducing risk/inci-
dence, exercise can be applied ‘therapeutically’ in existing 
disease states to alleviate symptoms and counter progres-
sion. Broadly beneficial systemic effects render physical 
activity an effective therapy in disorders including cancer 
[508], depression [509] and cardiovascular disease [510]. 
Exercise induces obvious metabolic advantages, improv-
ing tissue and whole body VO2/oxidative capacity and 
vascularity, cardiac functional reserve and efficiency, 
insulin signaling and sensitivity, glucose and fat handling, 
anti-oxidant status, inflammation and immune function 
[510–512]. Analyses confirm benefits of physical activ-
ity in patients with T2DM, though questions regarding 
effective exercise prescription remain [513, 514]. Not 
only reducing the incidence of infarction, exercise also 
boosts myocardial tolerance to infarction [515] and may 
improve or restore conventional protective responses in 
models of stress, disease and aging [516]. Effects on the 
DM heart revolve around improved glucose and fatty 
acid metabolism, mitochondrial function and oxida-
tive stress, however sarcolemmal abnormalities are also 
influenced. Exercise does modify fatty acid composition 
of phospholipids and triglycerides in cardiac and skeletal 
muscle [517, 518], and beneficial remodeling of plasma 
membrane lipids is reported in other cell types [519]. 
Sarcolemmal effects in DM are less well defined.

Studies confirm exercise-dependent improvements 
in cardiac function, survival signaling and ischemic tol-
erance in models of T1DM [136] and T2DM [146, 520, 
521]. While improvements in substrate metabolism are 
broadly implicated, Pons et  al. [520] report cardiopro-
tection in ob/ob mice independent of hyperglycemia, 
hypercholesterolemia, hyperinsulinemia, fat mass or 
body weight. Schrauwen-Hinderling et  al. [522] found 
that 12 week endurance/strength training improves sys-
temic insulin sensitivity and cardiac function in T2DM 
patients without modifying cardiac lipid content. Altered 
myocardial O-GlcNAcylation may participate, with evi-
dence swimming in T1DM rats increases OGA activ-
ity and reduces cardiac protein O-GlcNAcylation [523]. 
However, this also reduces O-GlcNAcylation in non-
DM hearts [524]. Indeed, Medford et  al. [525] show as 
little as 15  min of exercise can alter myocardial O-Glc-
NAcylation. Exercise protection in models of DM has 
been linked to normalization of nitro-oxidative stress 
and eNOS control [146], and improvements in PPARγ 
coactivator-1α and Akt signaling [521], both effects that 
may arise via restoration of sarcolemmal caveolae and 
caveolin control of eNOS [250, 275, 296–298] and Akt 
signaling [250–252, 299]. Studies in non-DM [526] and 
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DM hearts [294] do support up-regulation of caveolin-3, 
though the contribution of this change to exercise cardio-
protection awaits analysis. Indirectly supporting target-
ing of sarcolemmal elements, da Silva et  al. [449] show 
that altered Ca2+ transients (and mitochondrial uptake) 
in T1DM rat hearts are countered by swimming, which 
also enhanced benefit via insulin.

More directly supporting improved sarcolemmal 
makeup, Hesari et  al. [444] report that exercise reduces 
CX-43 phosphorylation in hearts from T1DM rats, and 
Veeranki et  al. [443] demonstrate beneficial effects of 
exercise on CX-43 levels and gap-junction function in 
db/db mice, associated with preservation of mitochon-
drial function. This is consistent with evidence exercise 
modulates sarcolemmal determinants of signaling and 
E–C coupling in T2DM rats, including transcriptional 
up-regulation of caveolin-3 and CX-43, and differential 
changes in K+ channels (Hcn2, Kcnk3) [294]. Our unpub-
lished findings support up-regulation of cardiac caveo-
lin-3 and protection against I–R with swim training in 
mice, coupled with powerful anti-inflammatory effects of 
exercise (data not shown).

Conclusions and perspectives
A diversity of mechanisms are involved in the cardiac 
and coronary abnormalities arising in DM, and evolu-
tion of DM cardiomyopathy. However, the sarcolemma 
is a nexus for many fundamental mechanistic elements 
and sequelae of DM. The ability of the sarcolemma to 
withstand rupture is fundamentally important to cell 
survival and stress tolerance and is governed by molecu-
lar makeup and caveolar membrane ‘reserve’. The sarco-
lemma is also the seat of glucose and fatty acid transport 
and InsR control, and therefore fundamentally partici-
pates in the pathogenesis of DM complications. Further-
more, the functionality of ion channels and cell surface 
receptors is determined by membrane makeup. Diabetes 
impacts sarcolemmal architecture, remodeling T-tubules, 
caveolar domains and gap junctions, disrupting E–C 
coupling and promoting injury and arrhythmogenesis in 
I–R. Specific molecular changes include increased cho-
lesterol and fatty acid saturation vs. reduced desatura-
tion, and differential shifts in phospholipids and PUFAs. 
Caveolar proteins are a particularly important target in 
DM, with evidence for caveolin-3 depletion and cave-
olae dysfunction in dysregulation of GLUT4 and CD36 
function, survival kinase and eNOS signaling. Impor-
tantly, the sarcolemma is malleable, responsive to dietary 
modification, physical activity and other interventions. A 
further unraveling of the roles of sarcolemmal changes in 
DM and its cardiac complications thus has potential to 
inform approaches to managing these disorders, improv-
ing ischemic tolerance and developing cardioprotective 

therapies for the DM population. This requires further 
focused investigation of sarcolemmal changes in animal 
models and particularly in sufferers of T1 and T2DM, 
though the latter presents a significant experimental 
challenge.
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