
Pælestik et al. Cardiovasc Diabetol  (2017) 16:148 
DOI 10.1186/s12933-017-0628-1

ORIGINAL INVESTIGATION
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Abstract 

Background:  Hypoglycemia is associated with increased mortality rate in patients with diabetes. The underlying 
mechanisms may involve reduced myocardial tolerance to ischemia and reperfusion (IR) or reduced capacity for 
ischemic preconditioning (IPC). As IPC is associated with increased myocardial glucose uptake (MGU) during reperfu-
sion, cardioprotection is linked to glucose metabolism possibly by O-linked β-N-acetylglucosamine (O-GlcNAc). We 
aimed to investigate the impact of hypoglycemia in hearts from animals with diabetes on myocardial IR tolerance, on 
the efficacy of IPC and whether modulations of MGU and O-GlcNAc levels are involved in the underlying mechanisms.

Methods:  In a Langendorff model using diabetic ZDF (fa/fa) and non-diabetic (fa/+) rats (n = 6–7 in each group) 
infarct size (IS) was evaluated after 40 min of global ischemia and 120 min reperfusion during hypoglycemia [(glu-
cose) = 3 mmol/l] and normoglycemia [(glucose) = 11 mmol/l]. Myocardial glucose uptake and O-GlcNAc levels were 
evaluated during reperfusion. IPC was induced by 2 × 5 min of global ischemia prior to index ischemia.

Results:  IS increased in hearts from animals with (p < 0.01) and without (p < 0.01) diabetes during hypoglycemia 
compared to normoglycemia. IPC reduced IS during normoglycemia in both animals with (p < 0.01) and with-
out (p < 0.01) diabetes. During hypoglycemia, however, IPC only reduced IS in hearts from animals with diabetes 
(p < 0.05). IPC increased MGU during reperfusion and O-GlcNAc levels in animals with diabetes during hypo- (MGU: 
p < 0.05, O-GlcNAc: p < 0.05) and normoglycemia (MGU: p < 0.01, O-GlcNAc: p < 0.05) and in animals without diabe-
tes only during normoglycemia (MGU: p < 0.05, O-GlcNAc: p < 0.01).

Conclusions:  Hypoglycemia increases myocardial susceptibility to IR injury in hearts from animals with and without 
diabetes. In contrast to hearts from animals without diabetes, the hearts from animals with diabetes are amenable 
to cardioprotection during hypoglycemia. In parallel with IPC induced cardioprotection, MGU and O-GlcNAc levels 
increase suggesting that increased MGU and O-GlcNAc levels are involved in the mechanisms of IPC.
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Introduction
Type 2 diabetes mellitus (T2DM) increases morbid-
ity and mortality after myocardial infarction (MI) [1, 2]. 
Albeit controversial, randomized controlled trials have 

suggested that an intensified glycemic control in patients 
with T2DM, with an increased incidence of hypoglyce-
mia, is associated with increased mortality [3–5]. Hypo-
glycemia is a common adverse effect of treatment of 
T2DM with insulin and sulphonylureas [6]. Studies using 
continuous glucose monitoring systems have revealed a 
higher incidence of hypoglycemia than previously appre-
ciated [7, 8]. The mechanistic link between hypoglycemia 
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and increased cardiovascular mortality remains unclear. 
Reduced myocardial tolerance to ischemia and reperfu-
sion (IR) or reduced capacity for activation of cardio-
protection may be underlying mechanisms of increased 
mortality after MI in patients with T2DM. Cardioprotec-
tion can be activated by ischemic preconditioning (IPC), 
by which repetitive sublethal episodes of ischemia induce 
resistance towards myocardial IR injury [9]. Previous 
studies of IPC and myocardial IR susceptibility during 
hyperglycemic conditions have demonstrated attenu-
ated efficacy of IPC compared to normoglycemia [10–12] 
while hyperglycemia per se, does not seem to influence 
on myocardial infarct size [13]. However, glucose fluc-
tuations aggravate cardiac susceptibility to IR injury 
[14] suggesting that hypoglycemia may have impact on 
infarct size. An altered myocardial susceptibility to IR or 
capacity for cardioprotection during hypoglycemia may 
represent a mechanistic link between hypoglycemia and 
impaired outcome in patients with diabetes after MI.

A major mechanism involved in the influence of vary-
ing circulating glucose concentration on cardioprotection 
seems to involve the activity of hexosamine biosynthetic 
pathway (HBP), which is sensitive to changes in circulat-
ing glucose and glutamine concentrations [15], accord-
ingly referred to as a “nutrient-sensing” pathway. 
Moreover, elevating O-linked β-N-acetylglucosamine 
(O-GlcNAc) glycocylation, the resultant of the HBP, 
promotes cell survival during cellular stress, whereas 
decreasing the levels of O-GlcNAc reduces cell survival 
[16]. O-GlcNAcylation seems associated with cardiopro-
tection by IPC [17, 18]. We hypothesized that hypoglyce-
mia modifies IR injury and capacity for cardioprotection 
by IPC differently in diabetic and non-diabetic hearts 
through simultaneous changes in myocardial glucose 
uptake and HBP activity during reperfusion.

The aims of the present study were to compare myo-
cardial IR susceptibility, the cardioprotective efficacy of 
IPC and their associated changes in myocardial glucose 
uptake and O-GlcNAc levels in diabetic and non-diabetic 
during normo- and hypoglycemia.

Materials and methods
Animals
Experiments were conducted in 12  weeks old Zucker 
diabetic fatty (ZDF) rats [homozygote (fa/fa)] and their 
age-matched lean controls (fa/+) (Charles River Labo-
ratories). Animals were housed under conditions main-
tained at 23  °C, 12  h light/dark cycles, 30% humidity, 
and allowed access to food (Purina 5008 diet) and water 
ad libitum. Housing was accomplished in dedicated facil-
ities under inspection of animal technicians. The inves-
tigations conformed to Danish law for animal research 
(Act No. 1306 of 23/11/2007, Danish ministry of Justice) 

and the Guide for the Care and Use of Laboratory Ani-
mals published by the National Institute of Health.

Protocols
Preceding the experiments, tail blood was sampled 
after 12  h fasting to validate development of T2DM by 
analyzing circulating blood glucose (OneTouch® Ultra 
Blood Glucose, lifescan Inc., CA, USA) and insulin lev-
els (AlphaLISA® Insulin Kit, PerkinElmer, MA, USA). 
Animals were randomly allocated to eight experimen-
tal groups: I–IV 3 mmol/l glucose (n = 7 in each group) 
(I: DM control, II: DM IPC, III: Non-DM control, IV: 
Non-DM IPC) and V–VIII 11 mmol/l glucose (n = 6 in 
each group) (V: DM control, VI: DM IPC, VII: Non-DM 
control, VIII: Non-DM IPC), Fig.  1. Hypoglycemia at 
a glucose concentration of 3  mmol/l was used because 
baseline left ventricular developed pressure was pre-
served at this concentration. A glucose concentration of 
11  mmol/l was used as normoglycemia because this is 
most commonly used concentration by researchers uti-
lizing the Langendorff perfused heart model [19] and 
not considered hyperglycemic in the absence of free fatty 
acids and other substrates in the experimental model 
because normal postprandial glucose concentration in 
rat is up to 10.4 mmol/l [20]. All hearts were allowed to 
stabilize for 20  min. IPC hearts were subsequently pre-
conditioned by 2 × 5 min of global ischemia. Each period 
of global ischemia was followed by 5 min of reperfusion. 
After 40 min all hearts were subjected to 40 min of global 
ischemia and 2 h of reperfusion.

Isolated heart
An isolated perfused rat heart preparation was used 
as previously described [21]. Rats were anaesthetized 
by subcutaneous injection of Dormicum® (0.5  mg of 
midazolam/kg of body weight; Matrix Pharmaceuticals, 
Herlev, Denmark) and Hypnorm® (0.158  mg of fenta-
nyl citrate/kg of body weight and 5  mg of fluanisone/
kg of body weight, Vetapharma Ltd., Leeds, UK). A tra-
cheotomy was performed and the rats were connected 
to a ventilation apparatus (Ugo Basile 7025 rodent ven-
tilator, Comerio, Italy). The beating hearts were exposed 
through a thoracotomy and dissected from surrounding 
structures. The femoral vein was exposed by blunt dis-
section and a bolus of heparin 1.000 IU/kg (Leo Pharma, 
Copenhagen, Denmark) was injected. The hearts were 
cannulated in  situ and retrograde perfusion was estab-
lished with Krebs–Henseleit buffer (NaCl2 118.5 mmol/l, 
KCl 4.7  mmol/l, NaHCO3 25.0  mmol/l, glucosemono-
hydrate 3.0 or 11.0  mmol/l, MgSO4·7H2O 1.2  mmol/l, 
CaCl2 2.4  mmol/l and KH2PO4 1.2  mmol/l) at pH 7.4 
and oxygenated with 5% CO2 and 95% O2. The perfu-
sion buffer did not contain insulin as insulin per se exerts 
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cardioprotection [22]. The hearts were rapidly excised, 
transferred to a Langendorff perfusion apparatus (IH-SR 
type 844/1; Hugo Sachs Electronik, Harvard Apparatus, 
March-Hugstetten, Germany) and perfused at constant 
pressure of 80 mmHg at 37 °C. A fluid-filled pressure bal-
loon, connected to a pressure transducer, was placed in 
the left ventricle through the mitral valve. Coronary flow 
was measured using an in-line flow probe (Type 2.5SB, 
Transonic Systems Inc., Ithaca, NY, USA). Hemodynamic 
data were acquired and analyzed using dedicated soft-
ware (Notocord Hem-v3.5, Croissy sur Seine, France).

Myocardial infarct size
At the end of reperfusion hearts were frozen at − 80 °C 
for 15  min, sliced (≈  1.5  mm), and stained with 1% 
2.3.5-triphenyltetrazolium chloride, for 3  min at 37  °C 
and pH 7.4 as previously described [23]. After each 
slice was weighed and scanned (Epson Perfection V600, 
Epson, Nagano, Japan) the area of whole slice minus cavi-
ties, area at risk (AAR) and area of infarction (IS) were 
assessed by computer planimetry (UTHSCA ImageTool, 
San Antonio, TX, USA). IS/AAR was subsequently calcu-
lated and weighted with the weight of each slice weight. 
All measurements were done in a blinded fashion.

Glucose uptake rate
Glucose uptake was assessed from rates of 3H2O produc-
tion from D-[2-3H]-glucose (5 μCi/100 ml perfusate) [24]. 
Hearts were tracer perfused in the ion buffer from peri-
ods 10–40 and 80–110 min. Samples were collected as a 
baseline arterial sample (1 ml) and multiple effluent sam-
ples (1 ml), and immediately placed on ice and stored at 
− 80 °C. Glucose uptake rate was calculated as previously 

described [25] and presented as μmol × min−1 × g−1 dry 
weight.

O‑GlcNAc western blot
The heart apex was snap-frozen in liquid nitrogen imme-
diately after end of reperfusion and weighed. Samples 
were thawed and homogenized in ice-cold extraction 
buffer added enzyme activity inhibitors (PIC2, PIC3, KF, 
B-glycerophosphate, TSA 1, Thiamet-G and PMSF). Pro-
tein concentration of the supernatant was determined 
using Pierce 660  nm Protein Assay (Thermo Scientific). 
Western blotting was performed by priming with anti-
bodies: anti-O-GlcNAc antibody (CDT 110.6, Gift—
CoreC4) and anti-actin antibody (Sigma). Densitometry 
was calculated relatively to densitometry of the corre-
sponding actin blot bands. Results were presented as per-
centage of 3 mmol/l non-DM control (set at 100%).

Statistical analysis
Analyses were blinded. Values are presented as 
mean  ±  SEM. Infarct-size, stabilization hemodynam-
ics and glucose uptake, western blotting densitometry, 
blood-insulin, -glucose level, and rat weights were ana-
lyzed using one-way analysis of variance (ANOVA) with 
post-test when appropriate. Reperfusion hemodynamics 
was presented as left ventricular developing pressure 
(LVDP; LV systolic pressure—LV diastolic pressure) 
and rate pressure product (RPP; LVDP  ×  rate) and 
compared using two-way ANOVA with repeated meas-
urements. Calculations and artwork were performed 
using GraphPad Prism (GraphPad Software, LA Jolla, 
CA, USA). Two-sided p value  <  0.05 was considered 
significant.

Fig. 1  Experimental protocols. After stabilization (Stabil) ischemic preconditioning (IPC) was induced by two periods of 5 min of global ischemia 
followed by 5 min of reperfusion prior to ischemia in diabetic (DM) control, Non-DM control, DM IPC and Non-DM IPC hearts
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Results
Animal characteristics
Bodyweight was higher in animals with (366 ± 8 g) than 
without diabetes (303 ±  5  g) (p  <  0.001). Overall, heart 
weight was higher in rats with than in rats without dia-
betes (p  <  0.05) while heart weight/body weight ratio 
was smaller (p < 0.01). Most importantly hearts weights 
did not differ between compared groups (p  =  0.08). 
Animals with diabetes had higher fasting blood glu-
cose (9.9 ± 0.6 mmol/l vs. 4.6 ± 0.3 mmol/l, p < 0.001) 
and higher insulin concentrations (7.7  ±  1.6 μIU/ml 
vs. 0.7 ±  0.3 μIU/ml, p  <  0.001) than animals without 
diabetes.

Infarct size
Infarct size was smaller in animals with than without dia-
betes during normo- (p < 0.05) but not during hypogly-
cemia. Hypoglycemia increased myocardial infarct size 
in animals with (p < 0.01) and without diabetes (p < 0.01) 
compared with normoglycemia, Fig.  2. IPC reduced 
myocardial infarct size in animals with diabetes dur-
ing normo- (p  <  0.01) and hypoglycemia (p  <  0.05) and 

in animals without diabetes during normo- (p  <  0.01) 
but not during hypoglycemia. Area-at-risk did not differ 
between groups (p = 0.38).

Hemodynamics
Whereas LVDP did not differ between animals with and 
without diabetes during stabilization and reperfusion at 
both glucose levels, RPP was decreased in hearts from 
animals with diabetes compared to without diabetes 
during stabilization at hypoglycemia (p  <  0.01), Fig.  3, 
Table  1. Hypoglycemia reduced RPP in diabetic con-
trols during reperfusion (p  <  0.05 vs. normoglycemia) 
(Table 1). IPC increased LVDP and RPP during reperfu-
sion at normoglycemia in both hearts from animals with 
(LVDP: p  <  0.05, RPP: p  <  0.01) and without diabetes 
(LVDP: p < 0.05, RPP: p < 0.05) animals. IPC increased 
LVDP and RPP during hypoglycemia only in animals with 
diabetes (LVDP: p < 0.01, RPP: p < 0.05). Coronary flow 
was increased by IPC during reperfusion in animals with 
diabetes during hypoglycemia (p < 0.05) and in animals 
without diabetes during normoglycemia (p < 0.01) com-
pared to controls, Table 1.

Fig. 2  a Infarct-size/area at risk (%) at the end of 40 min of global ischemia and 120 min of reperfusion in diabetic (DM) control, Non-DM control, 
DM ischemic preconditioned (IPC) and Non-DM-IPC hearts. b Representative triphenyl tetrazolium chloride (TTC) stained sections for evaluation of 
infarct size in each group. Perfusion glucose level was 3 and 11 mmol/l. *p < 0.05; **p < 0.01. Mean ± SEM
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Myocardial glucose uptake
Myocardial glucose uptake was lower in animals with 
diabetes than without diabetes during hypo- and nor-
moglycemia at both stabilization and reperfusion, Fig. 4. 
Hypoglycemia reduced myocardial glucose uptake in 
animals with (p  <  0.01 vs. normoglycemia) and without 
diabetes (p  <  0.01 vs. normoglycemia) during reperfu-
sion. IPC increased myocardial glucose uptake in nor-
moglycemic animals with (p < 0.01) and without diabetes 
(p < 0.05) during reperfusion while a similar increase was 
only seen in animals with diabetes during hypoglycemia 
(p < 0.05).

Myocardial O‑GlcNAc concentrations
Myocardial levels of O-GlcNAc were similar in animals 
with and without diabetes during hypo- and normoglyce-
mia, Fig. 5. Hypoglycemia induced no changes compared 
to normoglycemia in animals with or without diabetes 
(Fig. 5). IPC increased O-GlcNAc levels in animals with 
diabetes during both normoglycemia (p  <  0.05) and 

hypoglycemia (p < 0.05) but only during normoglycemia 
(p < 0.01) in animals without diabetes.

Discussion
The present study demonstrates that myocardial suscep-
tibility to IR is augmented during hypoglycemia in both 
rats with and rats without diabetes. However, the cardio-
protective effect of IPC is preserved during hypoglyce-
mia in rats with diabetes hearts contrary to rats without 
diabetes. The underlying mechanisms of IPC induced 
cardioprotection are associated with increased myocar-
dial glucose uptake and O-GlcNAc levels in animals with 
diabetes as well as without diabetes. Increased myocar-
dial susceptibility to IR during hypoglycemia may be a 
mechanistic link between hypoglycemia and impaired 
outcome after MI in patients with diabetes.

Myocardial susceptibility to IR in diabetic hearts 
remains controversial because studies in animal mod-
els of type 1 and 2 diabetes have yielded conflicting 
results [21, 26–32]. The discrepancy may be explained by 

Fig. 3  Left ventricular developed pressure (LVDP) in diabetic (DM) control ( ), DM ischemic preconditioned (IPC) ( ), Non-DM control 
( ) and Non-DM IPC ( ) hearts during stabilization and reperfusion. Perfusion glucose level was 3 and 11 mmol/l. *p < 0.05; **p < 0.01 
compared to control. Mean ± SEM
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different species and models and also by the age of ani-
mals and duration of diabetes [25]. In the present study, 
we confirm our previous findings of reduced susceptibil-
ity to IR during normoglycemia in a T2DM animal model 
with recent onset of diabetes [21, 25]. Our findings, that 
infarct size was increased in both hearts from animals 
with and without diabetes during hypoglycemia and 
that no difference in infarct size was observed between 
animals with and without diabetes, are supported by 
previous findings of increased IR susceptibility in ani-
mals without diabetes during hypoglycemia in the brain 
[33] and heart [34]. We now extended these findings to 
a clinically more relevant model of hypoglycemia in ani-
mals with diabetes. The absent difference in infarct size 
between animals with and without diabetes during hypo-
glycemia indicates that the endogenous cardioprotection 
observed in hearts from animals with diabetes during 
normoglycemia at onset of diabetes [25, 35] seems to be 
lost during hypoglycemia. Together, our findings empha-
size the importance of glucose concentration during IR, 
when evaluating myocardial susceptibility to IR in hearts 
from animals with or without diabetes. Myocardial sus-
ceptibility to IR during hypoglycemia is of particular 

importance in diabetic hearts because patients with dia-
betes frequently suffer episodes of hypoglycemia due to 
treatment with glucose lowering drugs.

In contrast to our previous findings [21], IPC reduced 
myocardial infarct size and improved post ischemic left 
ventricular function in both animals with and without 
diabetes during normoglycemia. The diabetic heart may 
still be amenable to protection by IPC with an intensified 
stimulus that overcomes the increased threshold for the 
necessary activation of pro-survival kinases [30]. Con-
sequently, we used a more aggressive stimulus by two 
cycles of 5-min ischemia and 5-min reperfusion in con-
trast to four cycles of 2-min ischemia followed by 3-min 
reperfusion as used previously [21]. IPC retained car-
dioprotection during hypoglycemia in diabetic hearts by 
reducing infarct size, albeit to a lesser extent than during 
normoglycemia. In contrast, the cardioprotective effect 
of IPC in non-diabetic animals during hypoglycemia was 
abolished.

Because osmolarity changes with variations in circu-
lating glucose concentrations, changes in osmolarity 
may influence infarct size. A change in plasma glucose 
from 11 to 3  mmol/l would lead to a 2.5% reduction in 

Table 1  Rate pressure product and coronary flow before and after ischemia

Data are mean ± SEM

Non-DM non diabetic rats, DM diabetic rats, RPP rate pressure product
a  p < 0.05 compared to corresponding control
b  p < 0.01 compared to corresponding control
c  p < 0.05 compared to corresponding normoglycemic control
d  p < 0.01 compared to Non DM control

Stabilization Ischemia Reperfusion

20 min 1 min 2 min 5 min 10 min 20 min 30 min 60 min 120 min

RPP (mmHg × min × 100)

 3 mM DM control 164 ± 18d – 7 ± 2 12 ± 4 20 ± 4 26 ± 7 33 ± 7 46 ± 9 82 ± 20 60 ± 13c

 3 mM DM IPC 178 ± 17 – 7 ± 2 19 ± 6 45 ± 15 60 ± 18 77 ± 15 90 ± 22 123 ± 19 127 ± 17a

 3 mM Non-DM control 302 ± 24 – 4 ± 1 9 ± 4 30 ± 7 31 ± 7 73 ± 17 86 ± 13 106 ± 13 85 ± 13

 3 mM Non-DM IPC 267 ± 10 – 4 ± 1 14 ± 10 44 ± 17 57 ± 9 72 ± 5 90 ± 7 89 ± 8 89 ± 12

 11 mM DM control 210 ± 34 – 27 ± 4 21 ± 7 45 ± 12 20 ± 6 39 ± 9 91 ± 22 109 ± 12 87 ± 14

 11 mM DM IPC 249 ± 42 – 19 ± 5 14 ± 2 59 ± 9 75 ± 18 134 ± 21 142 ± 23 200 ± 19 145 ± 14b

 11 mM Non-DM control 289 ± 32 – 18 ± 2 18 ± 6 36 ± 6 31 ± 9 42 ± 9 72 ± 20 93 ± 16 86 ± 10

 11 mM Non-DM IPC 270 ± 31 – 12 ± 4 33 ± 15 94 ± 30 41 ± 14 127 ± 24 152 ± 28 173 ± 27 176 ± 27a

Flow (ml/min)

 3 mM DM Control 14 ± 1 – 16 ± 1 15 ± 1 14 ± 1 16 ± 1 17 ± 1 16 ± 1 14 ± 1 13 ± 1

 3 mM DM IPC 15 ± 1 – 21 ± 1 18 ± 2 19 ± 1 20 ± 1 20 ± 1 19 ± 2 18 ± 2 15 ± 1a

 3 mM Non-DM Control 18 ± 1 – 14 ± 1 13 ± 1 14 ± 1 16 ± 1 17 ± 1 17 ± 1 15 ± 1 12 ± 2

 3 mM Non-DM IPC 15 ± 1 – 15 ± 2 14 ± 1 15 ± 2 16 ± 2 15 ± 1 15 ± 1 13 ± 1 11 ± 1

 11 mM DM Control 16 ± 1 – 18 ± 2 16 ± 2 17 ± 2 17 ± 2 17 ± 1 16 ± 2 14 ± 2 12 ± 1

 11 mM DM IPC 18 ± 1 – 22 ± 3 19 ± 2 20 ± 2 20 ± 3 20 ± 2 20 ± 3 19 ± 3 15 ± 3

 11 mM Non-DM Control 18 ± 1 – 15 ± 2 13 ± 1 14 ± 1 15 ± 1 14 ± 1 13 ± 1 13 ± 1 10 ± 1

 11 mM Non-DM IPC 20 ± 2 – 23 ± 1 20 ± 1 22 ± 1 23 ± 1 23 ± 1 21 ± 1 17 ± 2 15 ± 1b
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osmolarity of the perfusion buffer. The influence of 
osmolarity on infarct size has varied in previous studies. 
Kersten et al. [36] demonstrated that increases in serum 
osmolarity obtained by administration of raffinose did 
not influence infarct size or interfere with the ability of 
IPC to protect against infarction. In contrast, Zalesak 
et  al. showed that a hyperosmotic environment blunted 
the efficiency of IPC against IR injury and improved 
ischemic tolerance in non-preconditioned isolated rat 
hearts suggesting that increased osmolarity, similar to 
that in the hyperglycemic conditions, may play a piv-
otal role in a failure of IPC to induce cardioprotection 
in the diabetic myocardium [37]. Since glycemic levels 
and osmolarity were altered similarly by hypoglycemia 
and infarct size was equally increased in animals with 
and without diabetes, we cannot establish whether the 
increment was caused by hypoglycemia or a reduction in 
osmolarity. However, an increment in infarct size due to 
reduced osmolarity would be discrepant to previous find-
ings. The different responses to IPC in animals with and 
without diabetes during hypoglycemia cannot be related 
to the minor reductions in osmolarity as the reductions 
were identical in the two groups.

Consistent with previous findings during non-ischemic 
conditions [25, 38], we report reduced myocardial glu-
cose uptake during reperfusion and stabilization in 
hearts from animals with diabetes. Stimulation of glyco-
lysis and glucose oxidation during reperfusion improves 
post-ischemic left ventricular functional recovery 
[39–41]. Cardioprotection by IPC is associated with 
increased myocardial glucose uptake during reperfusion 
in non-diabetic hearts [41, 42] as confirmed in hearts 
from animals without diabetes during normoglycemia 
in the present study. However, the absent infarct spar-
ring effect of IPC in hearts from animals without diabe-
tes during hypoglycemia was associated with an absent 
modulation of myocardial glucose uptake during reperfu-
sion by IPC in animals without diabetes. In contrast, IPC 
increased myocardial glucose uptake during reperfusion 
in hearts from animals with diabetes at normo- as well 
as hypoglycemia. These findings parallel cardioprotec-
tion afforded by IPC in hearts from animals with diabetes 
during normo- and hypoglycemia. Together, our findings 
support the notion that an underlying mechanism of the 
effects behind IPC involves myocardial glucose uptake 
as only IPC generated increments in myocardial glucose 

Fig. 4  Tracer-estimated exogenous glucose uptake in diabetic (DM) control ( ), DM ischemic preconditioned (IPC) ( ), Non-DM control 
( ) and Non-DM IPC ( ) hearts during stabilization and reperfusion. Perfusion glucose level was 3 and 11 mmol/l. †p < 0.05; ††p < 0.01; 
*p < 0.05 compared to control; **p < 0.01 compared to control. Mean ± SEM
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uptake translated into cardioprotection. This notion is 
further supported by findings of increased myocardial 
glucose uptake associated with improved functional 
recovery after ischemia in animals with diabetes treated 
with rosiglitazone [43].

O-linked β-N-acetylglucosamine glycocylation is 
a recently detected posttranslational modification of 
nuclear, cytoplasmic and mitochondrial proteins [44]. 
O-GlcNAc acts as an intracellular stress sensor, linking 
glucose metabolism to cellular function at a molecular 
level [15, 45]. O-GlcNAcylation is dependent upon sub-
strate synthesis in the HBP [46]. Flux through the HBP 
parallels glucose availability [15, 46] and increased glu-
cose uptake is linked to HBP activation and downstream 
formation of O-GlcNAc [47]. On the molecular level, 
O-GlcNAcylation is implicated as a major mechanism 
of glucose toxicity and insulin resistance in diabetes [48, 
49]. In the present study investigating myocardial O-Glc-
NAc levels during reperfusion, we did not observe differ-
ences between animals with and without diabetes, which 
may be related to the short duration of diabetes in the 
relatively young animals used in the present study. Aug-
mentation of cardiac O-GlcNAc levels by glucosamine 
or salidroside administration affords cardioprotection 
[50, 51]. In addition, O-GlcNAc has been suggested to 
be involved in the underlying mechanism of IPC [17, 18]. 
The mechanisms by which acute elevation of O-GlcNAc 
levels induce cardioprotection seem to remain intact in 
the hearts from animals with diabetes even during hypo-
glycemia as IPC induced reduction in infarct size was 
associated with increased myocardial O-GlcNAc levels in 
animals with diabetes during both normo- and hypogly-
cemia. However, in hearts from animals without diabetes, 
IPC did not reduce infarct size or increase myocardial 
glucose uptake and did not influence O-GlcNAc levels 
during hypoglycemia. Accordingly, increased myocardial 
O-GlcNAc levels and glucose uptake may represent at 
mechanistic link to cardioprotection afforded by IPC.

The clinical implication of our findings is that myo-
cardial infarct size in patients with T2DM may be larger 
during hypoglycemia than during normoglycemia simi-
larly to the animals investigated in the present study. This 
finding may explain the observed increased mortality in 
clinical trials investigating an intensified glycemic control 
in patients with T2DM [3–5], as myocardial infarct size 
is a prognostic factor after MI [52]. However, infarct size 
alone does not seem to be the only determining mech-
anism of the overall higher mortality in patients with 
T2DM suffering an acute MI compared with patients 
without diabetes as infarct size at identical glucose con-
centrations was smaller or equally sized in animals with 
and without T2DM in the present study.

Limitations of the present study primarily relate to the 
use of an isolated perfused heart model but we used this 
to investigate the impact of hypoglycemia on myocar-
dial susceptibility to IR and not the combined effects of 
hypoglycemia and a blood glucose lowering compound. 

Fig. 5  a O-GlcNAc (CTD110.6 antibody) levels in diabetic (DM) con-
trol, Non-DM control, DM ischemic preconditioned (IPC) and Non-DM 
IPC hearts expressed as fold change compared to 3 mmol/l Non-DM 
control and correlated against actin. b Representative O-GlcNAc and 
actin immunoblots. Note the higher intensity of the O-GlcNAc bands 
in the preconditioned compared with corresponding control hearts. 
*p < 0.05, **p < 0.01. Mean ± SEM
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However, in  vivo induction of hypoglycemia by insulin, 
sulphonylureas or other agents may influence findings, 
as these agents per se impacts the effects of IR and IPC 
[53, 54]. Moreover, an uncontrolled systemic response 
to hypoglycemia, including activation of neurogenic and 
humoral components, may constitute important limita-
tions. Importantly, such effects can be excluded in our 
model. We choose specifically to investigate the effects 
of hypoglycemia on infarct size in a glucose dependent 
model in the absence of free fatty acids to specifically 
investigate the impact on MGU without interference 
from other substrates. However, the presence of free 
fatty acids as well as other substrates may potentially 
have influenced our findings. We used a glucose con-
centration of 11 mmol/l as this is most commonly used 
concentration in the Langendorff perfused heart model 
[19]. Because normal postprandial glucose concentration 
in the rat is up to 10.4 mmol/l [20] a glucose concentra-
tion of 11 mmol/l is not considered hyperglycemic in the 
absence of free fatty acids and other substrates in the 
experimental model. We used relatively young animals 
with a short duration of diabetes. This may potentially 
limit the generalizability to patients with long lasting 
T2DM.

In conclusion, hypoglycemia increases myocardial 
infarct size in hearts from animals with and without dia-
betes. In contrast to hearts from animals without diabe-
tes, hearts from animals with diabetes are amenable to 
cardioprotection during hypoglycemia. Increased myo-
cardial glucose uptake and O-GlcNAc levels seem to be 
involved in the cardioprotective mechanisms of IPC irre-
spective of circulating glucose concentrations.
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