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Exercise mediated protection of diabetic 
heart through modulation of microRNA 
mediated molecular pathways
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Abstract 

Hyperglycaemia, hypertension, dyslipidemia and insulin resistance collectively impact on the myocardium of people 
with diabetes, triggering molecular, structural and myocardial abnormalities. These have been suggested to aggra-
vate oxidative stress, systemic inflammation, myocardial lipotoxicity and impaired myocardial substrate utilization. As 
a consequence, this leads to the development of a spectrum of cardiovascular diseases, which may include but not 
limited to coronary endothelial dysfunction, and left ventricular remodelling and dysfunction. Diabetic heart disease 
(DHD) is the term used to describe the presence of heart disease specifically in diabetic patients. Despite significant 
advances in medical research and long clinical history of anti-diabetic medications, the risk of heart failure in people 
with diabetes never declines. Interestingly, sustainable and long-term exercise regimen has emerged as an effec-
tive synergistic therapy to combat the cardiovascular complications in people with diabetes, although the precise 
molecular mechanism(s) underlying this protection remain unclear. This review provides an overview of the underly-
ing mechanisms of hyperglycaemia- and insulin resistance-mediated DHD with a detailed discussion on the role of 
different intensities of exercise in mitigating these molecular alterations in diabetic heart. In particular, we provide the 
possible role of exercise on microRNAs, the key molecular regulators of several pathophysiological processes.
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Background
Type-2 diabetes mellitus (T2DM) has emerged as one of 
the most serious health problems in modernized society, 
affecting 387 million people world wide [1]. Of concern, 
over 68% of diabetic patients will develop some form of 
heart disease or stroke that will ultimately prove fatal [2].

A link between DM and cardiovascular disease is 
undisputable. Indeed, hyperglycaemia, hypertension, 
dyslipidemia and insulin resistance collectively impact on 
the myocardium of diabetic patients, triggering several 
early pathophysiological molecular, structural and myo-
cardial abnormalities [3–9], which may include but are 

not limited to coronary endothelial and vascular dysfunc-
tion, and left ventricular remodelling and dysfunction. 
Due to these underlying dysfunctions, DM increases the 
risk for the development of a spectrum of cardiovascular 
disease in people with DM as compared to their non-DM 
counterparts. The highly cited Framingham Heart Study 
(FHS) showed that diabetes independently increased the 
risk of coronary heart disease (CHD) in men by 66% and 
in women by 203% when followed up for 20 years, after 
adjusting for the effects of age, smoking, cholesterol and 
blood pressure, respectively [10]. Based on the findings of 
FHS, it was suggested that the duration of diabetes sig-
nificantly increased the risk of developing CHD and mor-
tality [11]. More recently, a prospective study covering 
a 55  year span showed that, while mortality has signifi-
cantly declined over time in both men and women with 
DM, these mortality rates still remained almost twofold 
higher compared to those without DM [12].
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This review provides an overview (a) of the underlying 
mechanisms of hyperglycaemia- and insulin resistance-
mediated diabetic heart disease (DHD), juxtaposing 
these key factors in the pathological setting with current 
knowledge of exercise-induced cardioprotection, and 
(b) of how exercise can prevent DHD through potential 
miR cross-talk effects, and finally (c) on the potential 
roles of miRs as biomarkers to demonstrate the benefit of 
exercise.

Diabetic heart disease
In 1980, the term diabetic heart disease emerged as a var-
iable combination of coronary atheroma, cardiomyopa-
thy, microangiopathy and autonomic neuropathy [13]. It 
was proposed that heart disease in diabetes is not synony-
mous with coronary artery disease because the increased 
incidence of coronary risk factors in diabetes has failed 
to account for the observed cardiovascular mortality [13]. 
In agreement, the National Institute of Health (NIH) also 
defined DHD as the presence of heart disease specifically 
in diabetic patients that encompasses coronary heart dis-
ease, heart failure and/or cardiomyopathy [14]. Of note, 
DHD is a broad definition encapsulating a diverse range 
of myocardial diseases in the diabetic population, due to 
the fact that (a) the aetiology is varying among individu-
als (e.g.: genetic susceptibility, environmental factor etc.) 
and (b) the mechanisms of DHD are poorly understood 
and defined. Hence, DHD can be a distinct clinical entity 
and should not be limited to a particular type of myocar-
dial disease, rather, characterized as a myocardial disease 
in people with T2DM that cannot be ascribed to the indi-
vidual effects of coronary artery disease, hypertension or 
other known cardiac disease [15].

Pathogenesis of DHD
The aetiology of DHD is multifactorial and remains 
unresolved. However, increasing evidence suggests that 
hyperglycaemia and insulin resistance are linked to the 
development of DHD [4, 5, 16–24]. Additional risk fac-
tors such as hypertension, obesity, hypercholesterolemia, 
coronary artery disease, microvascular disease and car-
diac neuropathy are also known to contribute to the 
progression of DHD. Although a complete molecular 
description of DHD is beyond the scope of this review 
(Detailed review in [25]), a basic understanding on 
hyperglycaemia- and insulin resistance-mediated patho-
logical events in the development of DHD is important in 
order to appreciate exercise-mediated protection of DHD 
as shown in Fig. 1.

Hyperglycaemia‑induced cardiovascular dysfunction
Hyperglycaemia induces activation of polyol pathway 
(through the activation of aldose reductase), protein 

kinase-C pathway (PKC), advanced glycation end prod-
ucts (AGEs) pathway and hexosamine pathway, all of 
which have the potential to increase myocardial oxidative 
stress [26, 27] and cardiovascular dysfunction in diabetes.

Increased intracellular glucose concentration increases 
aldose reductase activity, which uses excess nicotinamide 
adenine dinucleotide phosphate (NADPH) as a cofactor 
to convert glucose to sorbitol, resulting in the depletion 
of intracellular NADPH [28]. This eventually reduces the 
generation of reduced glutathione (GSH), an intracellu-
lar antioxidant [29, 30]. As a result, the net production 
of GSH decreases, hindering the antioxidant capacity to 
counteract the augmented intracellular oxidative stress 
caused by high glucose. Altered aldose reductase activ-
ity has been reported to predispose the myocardium to 
ischemic insult [31]. Indeed, inhibition of aldose reduc-
tase was able to protect isolated type-1 diabetic rat hearts 
from ischemia reperfusion injury by preserving high-
energy phosphates and maintaining a lower cytosolic 
NADH/NAD + ratio [31]. In a clinical study, one-year of 
aldose reductase inhibition treatment was able to stabi-
lize and partially reverse left ventricular abnormalities in 
diabetics with neuropathy [32].

The hyperglycaemia-mediated increase in total dia-
cylglycerol (DAG) from the glycolytic intermediate, 

Fig. 1  Pathogenesis of diabetic heart disease
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glycerol-3-phosphate (G3P), can trigger the activation 
of DAG-protein kinase C (DAG-PKC) [33]. Intracellular 
hyperglycaemia activates PKC-β and -δ isoforms, which 
induce activation of pro-inflammatory genes [e.g. p38 
and nuclear factor kappa-light-chain-enhancer of acti-
vated B cell (NK-κB)] and microvascular matrix remodel-
ling, impair vascular permeability and inhibit endothelial 
nitric oxide synthase (eNOS) [34–38]. In addition, this 
pathway also activates NADPH oxidase, causing an intra-
cellular overproduction of reactive oxygen species (ROS) 
[39, 40]. In support to this notion, transgenic mice with 
cardiac-specific overexpression of PKC-β2 exhibited car-
diac hypertrophy, fibrosis, dystrophic calcification and 
increased cardiomyocytes death [41].

The increased concentration of glycolytic intermediates 
such as G3P, glucose-6-phosphate and fructose acceler-
ate the production of advanced glycation end products 
(AGEs) through a non-enzymatic reaction between pro-
teins, lipids or nucleic acids (reviewed in [42]). Increased 
AGEs have been demonstrated to contribute to the 
pathogenesis of DHD by altering the functional and 
elastic properties of the blood vessels, vascular tone and 
extracellular matrix [43–46]. In fact, binding of AGE to 
its receptor (RAGE) on endothelial cells, smooth mus-
cle cells, and macrophages triggers a series of molecular 
pathways, contributing to the activation of inflammatory 
signalling cascades, oxidative stress, increased vascular 
permeability, atherogenesis and vasoconstriction, leading 
to diverse vascular dysfunction [47–51]. To support this 
notion, in a series of elegant studies conducted by Zit-
man-Gal et al., the treatment of AGE (diabetic-like envi-
ronment) on endothelial cells (ECs) and vascular smooth 
muscle cells was able to induce significant expression 
of various inflammatory markers such as Kruppel-like 
factor, IL-6, IL-8 and thioredoxin-interacting protein 
(TXNIP), suggesting a direct role for the adverse effect 
of AGE in the development of diabetic vascular compli-
cations [52–54]. In addition, the level of circulating AGE 
has been suggested as an independent predictor of the 
prognosis for heart failure patients [55]. Elevated AGE 
level has also been suggested to be highly correlated with 
insulin resistance in T2DM [56].

Glucose metabolism through hexosamine path-
way is relatively low (1-3%) in physiological condi-
tions. In this pathway, fructose-6-phosphate is first 
converted to glucosamine-6-phosphate (GlcN-6-P) 
by glutamine:fructose-6-phosphate amidotransferase 
(GFAT). Subsequently, GlcN-6-P is metabolized to 
form uridine diphosphate (UDP)-N-acetylglucosamine. 
Enzyme O-linked N-acetylglucosamine transferase 
(O-GlcNAc) utilizes UDP-N-acetylglucosamine to mod-
ify serine and threonine on cytosolic and nuclear pro-
teins (reviewed in [57]). Importantly, elevated glucose 

concentration is known to induce O-GlcNAc expres-
sion [26, 58]. Altered O-GlcNAcylation has been shown 
to associate with impaired Ca2+ handling protein [59], 
fibrosis [22], insulin signalling [60, 61], cardiomyocyte 
hypertrophy [62], impaired relaxation and vascular func-
tion [63].

Insulin resistance‑mediated cardiovascular dysfunction
Diabetes impairs the PI3K-mediated pro-survival sig-
nalling cascade, while preserving the mitogenic Ras/
MAPK-dependent pathway [74–76], thereby shifting the 
balance in favour of atherogenic and mitogenic actions 
of insulin. Insulin receptor substrate-1 (IRS) is required 
for the activation of phosphoinositide-3 kinase/phosph-
oinositide-dependent kinase 1/protein kinase B/atypical 
protein kinase C (PI3K/PDK1/Akt/aPKC) cascade, which 
regulates translocation of glucose transporter (GLUT)-1 
and -4 proteins [64, 65], nitric oxide production [66], 
apoptosis [67], autophagy [68] and fat metabolism [69]. 
In contrast, activation of Ras-mitogen-activated pro-
tein kinase-dependent pathway (Ras/MAPK) (reviewed 
in [70]) promotes cellular differentiation, proliferation, 
apoptosis through its downstream effectors: c-Jun N-ter-
minal kinase (JNK), extracellular signal-regulated kinase 
(ERK) and p38 MAPK (reviewed in [71–73]).

Effects of insulin resistance on myocardial lipotoxicity
Excessive FFA and lipid oxidation are often seen in dia-
betic heart, causing them to lose the flexibility to switch 
its source of energy between FFA and glucose [77, 78]. 
This reduction in insulin-mediated glucose uptake forces 
cardiomyocytes to heavily rely on FFA oxidation for their 
energy source. Since myocardial tissue utilizes more oxy-
gen to metabolize a single molecule of FFA compared to 
glucose molecule, the oxygen cost to produce adenosine 
triphosphate (ATP) in FFA oxidation is higher than glu-
cose metabolism [21, 79]. Of importance, increased oxy-
gen cost reduces the cardiac efficiency that is associated 
with the development of dilated cardiomyopathy, heart 
failure and ventricular dysfunction [20, 79–81].

Effects of insulin resistance on oxidative stress
Insulin resistance is also associated with the overpro-
duction of oxidants due to the proportional increase of 
electron donors to the mitochondrial electron trans-
port chain during FFA oxidation, which inactivates two 
important antioxidants: prostacyclin synthase and eNOS 
[82]. In line with this, inhibition of FFA release from adi-
pocytes and inhibition of the rate-limiting enzyme for 
FFA oxidation completely reversed ROS production in 
insulin resistant but not in non-diabetic rodent models 
[82]. Consequently, overproduction of superoxide inhib-
its IRS-1-induced PI3K-dependent pathway activation 
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[83], thereby suppressing the pro-survival pathways 
(reviewed in [84, 85]).

Effects of insulin resistance on systemic inflammation
Adipokines are cytokines that are constantly produced 
by adipocytes, such as tumour necrosis factor- alpha 
(TNF-α), interleukin-6 (IL-6) and angiotensinogen, In 
addition to adipocyte sources, FFA-induced and elec-
tron uncoupling-evoked ROS can also directly stimu-
late proinflammatory cytokine production through the 
activation of nuclear factor kappa B (NFκB) [86]. Even-
tually, overproduction of these cytokines is considered 
to inhibit insulin-mediated metabolic effects through 
several mechanisms. Firstly, TNF-α can attenuate PI3K/
Akt-dependent cell survival signalling through phospho-
rylation of IRS-1 at Serine307 [87] and activation of p38 
MAPK and I-kappaB kinase β (IKKβ) [88]. Secondly, both 
TNF-α and IL-6 can stimulate suppressor of cytokine-
signalling-1 and -3 proteins (SOCS-1, -3) expression [89, 
90]. SOCS protein then inhibit the coupling of IRS-1 and 
PI3K proteins either by ubiquitination of IRS proteins 
for proteasomal degradation [91] or through the inhi-
bition of tyrosine phosphorylation of IRS protein [92]. 
Taken together, inhibition of upstream mediators of PI3K 
protein induced by augmented cytokines and ROS can 
result in the suppression of insulin-mediated metabolic 
regulation.

Pharmacological Intervention for DHD
The current clinical treatment for diabetes-associated 
myocardial dysfunction is solely dependent on a ‘cock-
tail’ of drugs and ‘symptomatic treatment’ approaches 
[93–95]. For instance, patients with diabetes are often 
prescribed a plethora of drugs, which include multiple 
glucose lowering agents, antihypertensive drugs, anti-
cholesterol and/or aspirin for cardiac health [93–95]. 
The use of glucose lowering agents may decrease the risk 
of microvascular complications such as nephropathy, 
retinopathy and neuropathy [96, 97]. However, despite 
their long clinical treatment for diabetes, their efficacies 
in the improvement of DHD still remain speculative. In 
essence, there is still no single drug that specifically and 
effectively treats DHD, primarily due to the fact that the 
mechanism(s) underpinning DHD are poorly understood 
and are multi-factorial. Table 1 summarizes the common 
medications used in combination to alleviate the symp-
toms of DHD. These medications primarily target DHD 
symptoms and sometimes act as secondarily to reduce 
the risk of diabetes complications.

According to the United Kingdom Prospective Dia-
betes Study (UKPDS), intensive blood glucose control 
(with fasting blood glucose <6  mmol/L) in people with 
T2DM over a period of 10-years significantly reduced 

microvascular complications, as well as the deaths asso-
ciated with diabetes-related complications such as hyper-
glycaemia, angina and heart failure [96]. In contrast, 
large-scale clinical studies such as Action in Diabetes 
and Vascular Disease (ADVANCE) [97], Action to Con-
trol Cardiovascular Risk in Diabetes (ACCORD) [98] and 
Veterans Affairs Diabetes Trial (VADT) [99] have failed 
to replicate the cardioprotective results as reported in 
UKPDS [96], even with a well-controlled HbA1c of <7% 
in T2DM. It is noteworthy, that the ACCORD study was 
prematurely terminated due to the unacceptably high 
mortality rate observed in T2DM individuals subjected 
to intensive glycaemic control [98]. Consistent with this 
finding, a recent meta-analysis revealed that intensive 
diabetic care enhance the risk of developing heart fail-
ure by 14% in diabetic patients when compared to those 
who received standard care [100]. Ultimately, an effective 
therapeutic regime for preventing the onset of DHD is 
clinically imperative, yet remains to be identified.

Physical exercise as an intervention
Increased physical activity or active lifestyle has emerged 
as an effective therapeutic regimen to synergize the 
effects of pharmacotherapy in diabetic management and 
significantly reduce the risks of cardiovascular events 
[101–109], although the precise molecular mechanism(s) 
of action remain unclear. The American Diabetes Associ-
ation (ADA) and the Diabetes Prevention Program (DPP) 
have advocated physical exercise as a non-pharmacologi-
cal adjuvant to bolster the conventional management and 
prevention of DHD [110, 111]. A series of clinical and 
experimental studies has demonstrated that an appro-
priate volume and intensity of exercise can ameliorate 
myocardial dysfunction through the improvement of 
maximum oxygen consumption (VO2max), left ventricu-
lar ejection fraction (LVEF), LV diastolic and systolic vol-
umes, ventilatory threshold, cardiac output and diastolic 
function (E/A ratio) [106, 108, 112–119].

Exercise‑mediated cardioprotection
Exercise has been suggested to restore myocardial func-
tion through the improvement of VO2max, endothelial 
function, left ventricular systolic and diastolic function 
and blood pressure (Fig.  2) [106, 108, 109, 115, 120]. 
VO2max, a strong indicator for cardiorespiratory fitness 
and an independent predictor of cardiovascular mortality 
[121], was improved by 12–16% in obese postmenopausal 
women and obese individuals with T2DM in response to 
moderate-intensity exercise [122, 123]. Tjonna et al. [108] 
demonstrated that both moderate- and high-intensity 
exercise regimes were able to improve VO2max of meta-
bolic syndrome patients. Data on cardioprotective effects 
of low-intensity exercise is sparse. This could be due to 
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the fact that low-intensity exercise may not meet the rec-
ommended minimum threshold of exercise intensity (e.g. 
>50% of VO2max) for improving cardiorespiratory endur-
ance [124].

Cardiac tissue has an extremely high metabolic 
demand and, consequently, cardiac function is highly 
dependent on adequate coronary blood flow. Thus, cor-
onary artery dysfunction directly impacts on optimal 

Fig. 2  Exercise-induced cardioprotection through the modulation of (1) systemic risk factors, (2) endothelial and vascular functions and (3) cardiac 
performance directly
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myocardial function. An eight-week moderate-intensity 
exercise regime in individuals with T2DM significantly 
improved endothelial function in the brachial artery as 
indicated by the improved flow-mediated dilation [125]. 
In another study, a 14-month moderate-intensity resist-
ant training in adults with T2DM was able to improve the 
endothelial-dependent and -independent vasodilation 
in response to acetylcholine and sodium nitroprusside, 
respectively [126]. Of note, assessment of endothelial 
function in these studies was purely based on the bra-
chial artery but not directly on the coronary endothe-
lium, even though peripheral endothelial function has 
been suggested to correlate with function of the coronary 
endothelium [127, 128]. However, direct evidence of the 
beneficial effect of exercise on coronary artery function 
has been demonstrated in diabetic rodent models [113, 
129, 130].

Exercise mediated improvement 
of hyperglycaemia‑induced cardiovascular dysfunction
As mentioned above, strict control of blood glucose with 
pharmacological intervention alone is not sufficient to 
reduce the risk of major cardiovascular events in people 
with T2DM. Indeed, intensive diabetic pharmacotherapy 
can even exacerbate cardiovascular events in diabetes 
patients [98, 100, 131]. Yet, exercise as an adjunct with 
anti-diabetic treatment (either with insulin or oral hypo-
glycaemic drugs) reduced the incidence of cardiovascu-
lar events [101–103], and improved VO2max in T2DM 
patients [132]. Meta-analyses on the association between 
physical exercise with the risk of all-cause mortality 
and cardiovascular disease further demonstrated that 
increased physical activity was inversely correlated with 
cardiovascular risk and mortality in T2DM [133, 134]. 
Together, this evidence strongly advocates that active 
physical activity synergizes the effects of anti-hypergly-
caemic drugs in the management of diabetic complica-
tions, in particular, cardiovascular dysfunction. The exact 
mechanism(s) that underpin this intriguing synergistic 
effect remain unclear.

Interestingly, the reported improvements of glycaemic 
control and myocardial function appear to be linked to 
a reduction in adiposity and an improvement in insulin 
sensitivity [122, 135–138]. Two recent randomized con-
trolled trials reported that obese T2DM participants in 
weight loss programs showed improved glycaemic sta-
tus and lowered triglycerides level, which was associ-
ated with a decreased risk of cardiovascular disease [139, 
140]. Indeed, decreased visceral fat is associated with 
lower levels of adipokines that are crucial determinants 
in metabolic and vascular homeostasis (reviewed in [73]). 
Adipokines are known to negatively modulate SOCS3-
mediated phosphorylation of IRS-1 protein. Therefore, 

exercise-mediated reduction in adipokines may restore 
activation of IRS-1 mediated PI3K-dependent signalling.

Moreover, improved insulin sensitivity can effectively 
elicit glucose disposal and reduce the amount of insulin 
required to maintain normal glucose levels [122, 135, 
136]. Improved muscular strength [114, 141] and muscle 
density [122] following exercise can also facilitate glucose 
uptake independent of insulin action due to increased 
muscular contractions, which enhance translocation of 
GLUT-4 proteins to the skeletal muscle and sarcolemma 
(Fig. 2) [142]. Oguri and colleagues [143] demonstrated a 
significant increase of systemic glucose uptake in T2DM 
individuals and enhanced GLUT-4 membrane transloca-
tion in individuals after a single bout of moderate-inten-
sity exercise Collectively, the evidence in the literature 
advocates that diabetic pharmacotherapy alone does not 
reduce the risks of cardiovascular events; rather the addi-
tion of routine physical exercise can synergise with the 
treatment through the improvement of insulin sensitivity 
and enhancement of glucose utilization.

Exercise mediated improvement of insulin 
resistance‑induced lipotoxicity
Using proton magnetic resonance spectroscopy (1H-
MRS), Sai et  al. [144] demonstrated a marked reduc-
tion in myocardial triglyceride content and a significant 
improvement in cardiac function in endurance ath-
letes who were exercising for 5 days a week. In contrast, 
Schrauwen-Hinderling et  al. [145] showed that com-
bined endurance and strength training 3 times per week 
for 12 weeks improved insulin sensitivity, VO2max, LVEF 
and cardiac output in obese T2DM individuals without 
altering the cardiac lipid content. Although the design 
of the exercise training protocol would certainly impact 
on cardiac lipid content, it is also possible that improve-
ment of cardiac function is independent of cardiac lipid 
content. Several other studies have also confirmed that a 
cardioprotective effect of exercise in diabetes is primarily 
through the improvement of myocardial substrate utili-
zation by correcting the mismatch between myocardial 
FFA uptake and oxidative metabolism (Fig. 2) [112, 117, 
146].

Hafstad et  al. [112] reported an increase in myocar-
dial glucose oxidation and a concomitant reduction in 
FFA oxidation in the hearts of db/db mice following a 
high-intensity treadmill exercise. This effect was accom-
panied by improved cardiac efficiency and cardiac mito-
chondrial respiratory capacity. Similarly, Broderick et al. 
[117] reported higher myocardial glucose oxidation and 
enhanced cardiac function after myocardial ischemia 
in diabetic rats subjected to high-intensity exercise. 
This might be attributable to an increase in sarcolem-
mal GLUT-4 proteins [147]. The increase in myocardial 
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glucose uptake protects the heart by shifting away from 
over reliance on FFA oxidation.

Although it remains uncertain as to whether this 
experimental data can be translated into the clinical set-
ting, due to limited clinical studies, there have been some 
studies that have provided important insight concern-
ing the effect of exercise on cardiac function and glucose 
utilization in diabetic patients. For instance, endurance 
exercise in elderly men with impaired glucose tolerance 
improved total GLUT-4 protein expression, reduced 
intramuscular lipid content and increased FFA oxidation 
capacity in the vastus lateralis muscle [148]. With respect 
to myocardial substrate utilization, moderate-intensity 
exercise substantially increased myocardial lactate and 
glucose uptake and oxidation in young healthy subjects 
[149]. Sato et  al. [150] suggested that exercise could 
reduce myocardial uptake rate of FFA and glutamate and 
enhance myocardial uptake of glucose, lactate and gluta-
mate in ischemic heart disease patients.

Exercise‑mediated improvement of oxidative stress
There is an unambiguous relationship between oxidative 
stress and cardiac function (reviewed in [151, 152]). A con-
siderable number of clinical studies have demonstrated 
the favourable effect of exercise on the systemic level of 
oxidative stress in diabetic individuals (Fig. 2) [153–159]. 
A recent randomized controlled trial on T2DM indi-
viduals who were subjected to 12-month of supervised 
aerobic, resistance and flexibility training demonstrated 
a reduction in plasma oxidative stress markers, 1-palmi-
toyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphorylcholine 
(POVPC) and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phos-
phorylcholine (PGPC) compared to those who received 
only standard medical care. Exercise also improved low-
density lipoprotein (LDL) cholesterol, VO2max, insulin 
sensitivity and waist circumference [155]. Concomitantly, 
T2DM individuals who received 3 months of yoga therapy 
achieved a 20% reduction in malondialdehyde (MDA), 
a lipid peroxidation oxidative marker, compared to the 
non-exercise group. A decrease in oxidative stress was 
accompanied by enhanced glutathione and vitamin C and 
reduction in glycated haemoglobin (HbA1c) and fasting 
plasma glucose [156]. Again, this data strongly supports 
the notion that exercise has a synergistic effect as an adju-
vant to further bolster the conventional therapeutic inter-
vention in the management of diabetes.

Animal models of exercise have also consistently 
revealed significant improvements in cardiac antioxidant 
capacity and reduced oxidative stress (Fig.  2). Lee et  al. 
[113] demonstrated an increase in the levels of antioxi-
dants superoxide dismutase-1 and -2 (SOD-1 and SOD-
2) and eNOS in the diabetic heart following a 10-week 
moderate-intensity aerobic exercise. This was associated 

with the improvement of coronary endothelial function 
in diabetic mice. Moreover, Moien-Afshari et  al. [130] 
demonstrated a significant increase in mitochondrial 
SOD (MnSOD) and extracellular SOD (SOD-3) in the 
diabetic mice heart after an 8-week exercise regime.

The underlying mechanisms of how induction of anti-
oxidants and restoration of redox status may benefit DHD 
are diverse. Some reports suggest that exercise is able to 
upregulate heat shock protein expressions to increase 
the antioxidant capacity in diabetes [160]. Exercise has 
also been shown to activate the antioxidant mediator, 
nuclear erythroid 2 p45-related factor 2 (Nrf2), a redox-
sensitive transcription factor, to increase the expression 
of myocardial glutathione to buffer diabetes-induced 
oxidative stress. Depletion of Nrf2 abolished the expres-
sion of myocardial antioxidant genes such as catalase, 
glucose-6-phosphate dehydrogenase (G6pd), γ-glutamyl 
cysteine ligase-modulatory (Gclm), γ-glutamyl cysteine 
ligase-catalytic (Gclc), glutathione reductase (Gsr), and 
NAD(P)H-quinone oxydase-1(Nqo1) [161], thereby com-
promising the redox status in the myocardium. Further-
more, several studies have demonstrated an increase of 
ischemia-modified albumin (IMA) in T2DM individuals. 
IMA has been reported as an indicator of ischemic index, 
oxidative stress and peripheral arterial disease [162–164].

The long-term and regular incorporation of moderate-
intensity exercise (e.g. walking) in T2DM individuals was 
able to prevent the increase in IMA and oxidative stress 
and hence reduce the risk of ischemia through induction 
antioxidants [154]. Once again, collectively, these data 
strongly suggested that a consistent and regular moder-
ate-exercise regime is capable of buffering the hypergly-
caemic- and insulin resistant-mediated oxidative stress 
in both the myocardium and systemic circulation, which 
could eventually prevent the development of diabetic car-
diac dysfunction.

Exercise‑mediated protection against pro‑inflammatory 
cytokines
It has been reported that exercise can reduce systemic 
inflammation in T2DM. An 18-year follow up study 
in middle-aged T2DM individuals who were highly 
involved in at least moderate-intensity physical exercise 
or greater reported a marked reduction in high-sensitiv-
ity C-reactive protein (hs-CRP), which was significantly 
associated with a reduction in total cardiovascular and 
coronary heart disease mortality [165]. Interestingly, 
exercise induced reduction in hs-CRP has been demon-
strated to be related to an improved homeostatic model 
assessment-insulin resistance (HOMA-IR) index [123], 
an independent predictor of cardiovascular disease in 
T2DM [18] and also a measure of insulin resistance and 
β-cell function [166]. Obese T2DM individuals who 



Page 9 of 20Lew et al. Cardiovasc Diabetol  (2017) 16:10 

underwent 16-week aerobic exercise training achieved a 
substantial reduction in resistin [123], a pro-inflamma-
tory adipokine that is suggested to be associated with 
atherosclerosis and heart failure [167, 168]. This change 
was coupled with reductions in hs-CRP and IL-18 and 
improved VO2max.

As discussed above, proinflammatory cytokines sup-
press IRS-mediate insulin metabolic actions, which in 
turn are attributed to the cardiometabolic dysfunction. 
Therefore, improvement of the persistent low-grade sys-
temic inflammation in the diabetic condition with exer-
cise is believed to result from an improvement in insulin 
sensitivity by restoring the IRS-induced phosphorylation 
of PI3K-dependent pathway, thereby ameliorating the 
cardiovascular events.

Exercise‑mediated improvement of pro‑survival signalling 
cascade
Restoration of altered pro-survival signalling cascade 
could play a major role in exercise-induced cardioprotec-
tion. As discussed above, impairment in insulin-medi-
ated PI3K-dependent pathway alters the cell-signalling 
cascade. Therefore, restoration of this pathway can sig-
nificantly improve insulin sensitivity and elicit insulin-
associated metabolic effects by modulating glucose 
disposal, gluconeogenesis, lipogenesis and FFA oxida-
tion (reviewed in [70, 73]). In animal models, endur-
ance exercise has been shown to substantially improve 
insulin responsiveness through the phosphorylation of 
IRS-associated PI3K pathway, particularly IRS-1 and 
-2 proteins, Akt and its downstream substrate AS160 
[169–173]. Other signalling pathways such as liver-
kinase B1 (LKB1)-mediated phosphorylation of adeno-
sine monophosphate-activated protein kinase (AMPK) 
pathway in skeletal muscle [174], adaptor protein phos-
photyrosine interaction PH domain and leucine zipper 
containing 1 (APPL1)-mediated Akt pathway in liver 
[175] have also been reported to potentiate the metabolic 
actions of insulin.

Recently, Kjøbsted et  al. [176] highlighted the physi-
ological role of AMPK-Tre-2/BUB2/CDC16 domain fam-
ily member 4 (TBC1D4) signalling axis in mediating the 
improvement of muscle insulin sensitivity after exercise. 
AMPK has also been suggested to play critical roles in 
regulating microvascular blood flow, glucose uptake and 
hence is considered to be a potential therapeutic insulin 
sensitizer [177].

Emerging evidence indicates the importance of per-
oxisome proliferator-activated receptor gamma coacti-
vator 1-alpha (PGC-1α), a transcriptional coactivator, in 
exercise-mediated cardioprotection. PGC-1α is predomi-
nantly expressed in tissues with high oxidative capac-
ity such as the heart, skeletal muscle, liver and brown 

adipose tissue, which has profound effects on mito-
chondrial biogenesis and energy metabolism [178–180]. 
Attenuated PGC-1α level leads to metabolic disorders. 
Adipose-specific PGC-1α deficiency in mice manifested 
the characteristics of T2DM, such as insulin resist-
ance, impaired glucose tolerance and lipid metabolism, 
resulting in suppressed mitochondrial and thermogenic 
gene expressions in adipocytes [181]. Interestingly, the 
combined effects of enhanced PGC-1α expression and 
exercise training in mice improved glucose and insu-
lin tolerance, suggesting a promising role for exercise-
induced PGC-1α in treating metabolic disorders [182].

In addition to its effect on metabolism, Chinsom-
boon et  al. [183] demonstrated the beneficial effects 
of exercise induced PGC-1α on angiogenesis. Using a 
genetic knockdown mouse model, they demonstrated 
that β-adrenergic stimulation during exercise is essen-
tial to induce activation of the PGC-1α/estrogen related 
receptor-α (ERRα) axis, which in turn upregulates vas-
cular endothelial growth factor (VEGF) and platelet-
derived growth factor (PDGF) expressions to markedly 
increase the capillary density in skeletal muscle [183]. 
Moreover, 15  weeks of moderate intensity treadmill 
exercise was also shown to attenuate diabetes-induced 
cardiac dysfunction and remodelling via PGC-1α and 
Akt activation in db/db mice, which possibly reduced 
myocardial apoptosis and fibrosis [173]. Taken together, 
induction of PGC-1α activation by exercise has various 
positive outcomes such as increasing insulin sensitiv-
ity, glucose transporters, as well as improving glucose 
homeostasis and fatty acid oxidation, [182, 184–187], all 
of which are important for the amelioration of the pro-
gression of DHD (Fig. 2).

Several clinical studies also support the notion that 
exercise training is able to enhance IRS-mediated PI3K-
signalling in diabetic patients [188, 189]. Kirwan et  al. 
[188] reported an enhancement of insulin-induced IRS-
1-associated PI3K activation in vastus lateralis muscle of 
healthy aerobic exercise trained individuals compared to 
sedentary or untrained participants. The VO2max was also 
26% higher in trained individuals, reflecting a positive 
correlation between VO2max and PI3K activation

Jorge et al. [190] compared the effects of aerobic, resist-
ance and combined exercise on insulin signalling in 
T2DM individuals, and demonstrated 65 and 90% induc-
tion of IRS-1 expression in the skeletal muscles of resist-
ance group and combined exercise group, respectively. 
Of importance, plasma glucose, blood pressure, systemic 
inflammatory cytokine and lipid profiles have improved 
in all groups of exercise [190]. Based on this evidence, 
restoration of IRS-mediated PI3K-dependent pathway 
could be one of the determining factors in mediating 
exercise-induced protection of the diabetic heart.
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Exercise‑mediated differential expression 
of cardiovascular microRNAs
As stated above, metabolic dysregulation adversely trig-
gers uncoupling of key cellular pathways from the very 
early stage of diabetes, which ultimately manifest as the 
functional and structural cardiac changes with the evo-
lution of diabetes. These pathological changes appear to 
be closely associated with changes in the expression of 
microRNA (miR).

MiRs are small non-coding RNA molecules which are 
~22 nucleotides long and regulate transcriptional and 
post-transcriptional gene expression (reviewed in [191]). 
A single miR can modulate complex pathological pro-
cesses through their pleiotropic effects on multiple tar-
gets in disease development. The modulation of miRs in 
exercise-induced cardioprotection has received very little 
attention, yet it is an intriguing line of research that war-
rants urgent investigation. In the following section, we 
provide evidence to demonstrate that dynamic changes 
in miRs in response to exercise are able to induce sig-
nificant cardioprotection. Table 2 summarizes the role of 
miRs in the development of cardiovascular disease and 
the following section will describe the role of each miR 
in detail.

Exercise and muscle‑specific miRs (miR‑1, ‑133 and ‑499)
Several studies have proposed a potential role of miR-133 
in the pathogenesis of heart disease [192–195], although 
its specific role in DHD still remains to be elucidated. 
Interestingly, the functional targets of miR-133, which 
include but are not limited to connective tissue growth 
factor (CTGF) [192, 195], B-cell lymphoma-2 like 11 
(Bim), B-cell lymphoma-2 modifying factor (Bmf) [196] 
and Caspase-9 [197], have been extensively implicated in 
cardiac pathological remodelling and cell death. Hence, 
down-regulation of miR-133 has been associated with 

cardiac apoptosis, hypertrophy and myocardial matrix 
remodelling [192, 193, 197], all of which are known to 
induce adverse cardiac dysfunction in cardiovascular dis-
ease, possibly in DHD as well.

In a streptozotocin-induced diabetic cardiomyopathy 
mouse model, Chen et al. [195] reported an apparent link 
between a reduced myocardial expression of miR-133 
and an augmented expression of fibrosis markers. More-
over, transgenic overexpression of miR-133 reversed dia-
betes-induced cardiac remodelling by attenuating these 
fibrotic markers. Concomitantly, in  vitro induction of 
hypertrophy in cardiomyocytes by high glucose resulted 
in altered expression of miR-133 with enhanced expres-
sion of atrial natriuretic peptide (Anp) and brain natriu-
retic peptide (Bnp) mRNAs, indicators of pathological 
cardiac hypertrophy. The overexpression of miR-133 in 
neonatal rat cardiomyocytes attenuated the hypertrophic 
change via inhibition of serum and glucocorticoid-reg-
ulated kinase 1 (SGK1) and insulin-like growth factor 1 
receptor (IGF1R) proteins [193].

Although it is not clear whether exercise can normal-
ize miR-133 expression in the myocardium, it is excit-
ing to consider that exercise might be able to restore the 
expression of miR-133 by acting through a cross-talk 
effect. For example, both acute endurance and resist-
ance exercise training in healthy male volunteers were 
able to enhance miR-133 expression in the vastus later-
alis muscles [198, 199]. In addition, an increased level 
of miR-133 following marathon training appeared to 
be associated with improved VO2max [200]. Moreover, 
endurance exercise elevated circulating levels of miR-133 
in healthy individuals after either an acute bout of aero-
bic exercise, or endurance training [201, 202]. Similarly, 
subjecting T2DM mice to a 10-week swimming exercise 
regime increased the expression of miR-133 in cardiac 
tissue with improved contractile function and decreased 

Table 2  Summary of the known roles of miRs in the development of cardiovascular diseases [221]

Junctin, JCN; Fibulin-2, Fbln2; Connective tissue growth factor, CTGF; B-cell lymphoma-2 like 11, Bim; B-cell lymphoma-2 modifying factor, Bmf; Programmed cell 
death 4, Pdcd4; Phosphofurin acidic cluster sorting protein 2, Pacs2; Dual specificity tyrosine phosphorylation regulated kinase 2, Dyrk2; Homeodomain interacting 
protein kinase, HIPK; Homeobox containing 1, Hmbox1; Sprout related EVH1 domain containing 1, SPRED; Phosphoinositide-3-kinase regulatory subunit 2, PIK3R2

MicroRNA Expression in cardiovascular 
disease

Direct target(s) Pathophysiological effect(s) Reference(s)

MiR-1 Downregulated JCN, Fbln2 Cardiac hypertrophy, remodelling, 
arrhythmias, cardiomyocyte apop-
tosis

[197, 207–209, 237]

MiR-133 Downregulated CTGF, Bim, Bmf, Caspase-9 Cardiac remodelling, cardiomyocyte 
apoptosis

[192, 195–197]

MiR-499 Downregulated Pdcd4, Pacs2, Dyrk2 Cardiomyocyte apoptosis [210]

MiR-222 Downregulated Hmbox-1, HIPK-1, HIPK-2, p27, p57 Cardiomyocyte apoptosis, cellular 
senescence, coronary artery disease, 
atherosclerosis

[211–214]

MiR-126 Downregulated SPRED1, PIK3R2 Coronary artery disease, atherosclero-
sis, endothelial cell apoptosis

[215–217]
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matrix metallopeptidase-9 (MMP-9), an extracellular 
matrix regulator protein [203]. Since miR-133 is reported 
to be expressed and enriched in both cardiac and skeletal 
muscles (review in [191]), it is possible that miR-133 is 
secreted into the circulation from skeletal muscle after 
a bout of exercise, which then travels to the cardiomyo-
cytes to suppress fibrotic markers and reduce cardiac 
hypertrophy (Fig. 3).

Frequently, skeletal muscle is referred as an endocrine 
organ due to its ability to release factors (myokines) 
that communicate with other distant organs or tissues 
through a ‘cross-talk’ effect to maintain homeostasis. For 
example, exercise has been shown to trigger the release 
of IL-6 from skeletal muscle and ultimately contribute 
to glucose metabolism [204, 205]. miRs can be released 
in a similar manner following exercise. Importantly 
our recent studies showed marked downregulation of 
muscle-specific miRs also known as myomiRs such as 
miR-1, -133 and -499 in the human diabetic heart [206]. 
Therefore, it is possible that exercise could activate the 
myomiRs in skeletal muscle which are released into the 

circulation (reviewed in [191]) which thereby restores 
the depleted level of myomiRs in the heart. While it is 
intriguing to speculate this cross-talk between skeletal 
muscle and the heart is one of the key molecular mech-
anisms underlying exercise induced cardioprotection 
(Fig. 3), available evidences support this hypothesis.

Aside from a potential ‘cross-talk’ effect of miRs, exer-
cise could also have direct effects on cardiovascular miRs 
in diabetes. For instance, suppressed expression of miR-
1, miR-133 and miR-499 in the STZ-induced diabetic rat 
heart was associated with augmented myocardial oxida-
tive stress and cardiac dysfunction [207]. In particular, 
the direct target of miR-1: protein junctin, an integral 
protein of ryanodine receptor (RyR) in the endoplasmic/
sarcoplasmic reticulum, was significantly elevated in the 
diabetic rat heart [207]. Previous studies on junctin over-
expression transgenic mice demonstrated impaired cal-
cium handling in cardiomyocytes, resulting in impaired 
cardiac relaxation, hypertrophy and arrhythmia [208, 
209]. In addition, Wang et  al. [210] has also confirmed 
that programmed cell death 4 (Pdcd4), phosphofurin 
acidic cluster sorting protein 2 (Pacs2) and dual specific-
ity tyrosine phosphorylation regulated kinase 2 (Dyrk2) 
are direct targets of miR-499. Of which, Pdcd4 and Pacs2 
are involved in hydrogen peroxide-induced apoptosis in 
H9c2 cells, a commonly used myoblast cell line. Hence, 
these lines of evidence strongly suggest that dysregula-
tion of these miRs in diabetes can have profound adverse 
effects on the cardiac function.

Interestingly, treating diabetic rats with antioxidants for 
4 weeks not only normalized all miRs, but also improved 
cardiac function and ultrastructure of the diabetic heart 
[207]. Since exercise is able to restore antioxidant defence 
and normalize oxidative stress, it is possible that exercise 
mediated normalization of miRs could have prevented 
the increase of their target proteins and oxidative stress 
eventually suppressing apoptosis and cardiac remodel-
ling following exercise training. However, whether exer-
cise protects the diabetic heart through the regulation of 
these miRs remains to be elucidated.

Exercise and miR‑222
MiR-222 is a highly conserved member of a miR clus-
ter which is encoded on the X chromosome along with 
miR-221 and localized in the vascular wall of the vascu-
lar smooth muscle cells [211]. Liu et  al. [211] identified 
the key role of miR-222 in vascular smooth muscle cell 
proliferation through its ability to suppress the inhibition 
of cyclin-dependent kinase. When the ECs and progeni-
tor endothelial cells were challenged with highglucose 
and AGE (diabetes-like environment) in mice, this pre-
vented the initiation of cell cycle and the migration of 
EC towards VEGF stimulation, which coincided with 

Fig. 3  Proposed cross-talk effect between exercised skeletal muscle 
and cardiac muscles through microRNA communication
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the downregulation of miR-221 and -222 [212]. Further, 
Jiang et  al. [213] demonstrated marked downregulation 
of miR-222 along with miR-126 and miR-92a in patients 
with atherosclerosis, suggesting the importance of these 
miRs in the evolution of cardiovascular disease.

The mechanism of action of miR-222 is through inhibi-
tion of its target proteins: p27, homeodomain interacting 
protein kinase 1 (HIPK1), HIPK2 and homeobox contain-
ing 1 (Hmbox1) [214]. In addition, Togliatto et al. [212] 
validated p57 as another direct target protein of miR-222. 
p27 and p57 are inhibitors of cell cycle, therefore upregu-
lation of these proteins indicate cellular senescence.

Liu et al. [214] are the first to demonstrate the role of 
miR-222 in exercise induced cardiac protection. They 
showed significant upregulation of miR-222 in cardio-
myocytes of mice after swimming and voluntary running 
regimes. They further showed that inhibition of miR-222 
resulted in increased cardiomyocyte apoptosis. Interest-
ingly, overexpression of miR-222 in mice stimulated car-
diomyocyte proliferation and growth [214], which was 
associated with an increased α/β myosin heavy chain 
(MHC) ratio as well as a reduction in ANP, BNP and 
α-skeletal actin mRNAs, indicating physiological cardiac 
adaptation. Importantly, cardiac-specific miR-222 trans-
genic mice were able to restore cardiac function, induce 
cardiomyocyte proliferation and reduce cardiac fibrosis 
after ischemia–reperfusion [214]. Taken together, exer-
cise induced activation of miR-222 could be a powerful 
therapeutic strategy to replace the continuous loss of car-
diomyocytes in individuals with diabetes.

Exercise and miR‑126
MiR-126, which is one of the most extensively stud-
ied miRs, is expressed in ECs and is a potent regulator 
of angiogenesis. The presence of miR-126 increases the 
pro-angiogenic VEGF protein through the inhibition of 
phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2) 
and sprout related EVH1 domain containing 1 (SPRED1), 
inhibitors of VEGF. Suppression of the inhibitors by 
miR-126 leads to activation of PI3K and Raf-1 pathways, 
which ultimately promote VEGF activity [215, 216].

The knockdown of miR-126 expression in vivo induces 
leaky vessels, hemorrhage and loss of vascular integ-
rity [215, 216]. Similarly, endothelial microparticles 
derived from high-glucose treated ECs showed limited 
endothelial cell migration and proliferation in  vitro and 
reendothelialization in mice that had undergone carotid 
artery injury [217]. Moreover, a reduced expression of 
miR-126 has been linked to coronary artery disease, ath-
erosclerosis and other vascular diseases [213, 217–220].

Recently we demonstrated that treatment of aortic 
rings from type-2 diabetic db/db mice and high-glu-
cose treated Human Umbilical Vein Endothelial Cells 

(HUVECs) with miR-126 mimic markedly improved 
their impaired angiogenic potential by positively regulat-
ing VEGF protein. Increased cellular proliferation, cell 
migration and reduction of apoptosis were also observed 
as the positive outcomes of miR-126 treatment [221].

Exercise has enormous potential to be used as an 
approach to promote cardiac angiogenesis by stimulating 
the expression of miR-126 and VEGF protein. In support 
of this notion, a 5-day swimming regime for 10  weeks 
significantly increased myocardial capillary density in 
rats [222]. This beneficial effect was attributed to the 
elevation of VEGF/Raf-1/ERK and VEGF/P13  K/Akt 
pathways. Of note, exercise was able to repress SPRED1 
and PIK3R2 proteins by upregulating miR-126 expres-
sion. Therefore, it is intriguing to postulate that exer-
cise could be a cost-effective non-pharmacotherapy to 
potently upregulate angiogenic miR-126, which in turn 
may potentially improve coronary blood flow and func-
tion in DHD patients. More data in this context is needed 
to support our hypothesis.

The potential for circulating miRs to determine 
exercise induced cardioprotection
Alterations in the expression of cardiac-specific miR’s 
in the early stage of diabetes may implicate the develop-
ment of DHD. Rawal et  al., demonstrated dysregulated 
expression of cardiac-specific miRs in diabetic individu-
als with normal EF, and further suggested that this early 
dysregulation together with some other clinically detect-
able changes may act as a catalyst for the clinical mani-
festations of DHD [206]. In line with this, several clinical 
and experimental studies have implicated the importance 
of miR dysregulation in cardiovascular diseases [194, 
223–228]. Interestingly, miRs are released into the cir-
culation either packed as microvesicles or bound to lipo-
protein molecules where they remain stable [229, 230]. 
This property of miRs gives them potential as diagnostic 
and prognostic biomarkers for cardiovascular diseases to 
identify the disease in the early stage (reviewed in [191]).

A 15-year follow-up study by Zampetaki et  al. [218] 
revealed that the expression of miRs-15a, -29b, -126 and 
-223 were adversely altered from the early stages of dia-
betes well before the development of clinical manifesta-
tions. Moreover, other studies also demonstrated the 
dynamic changes of miR in response to therapeutic treat-
ment, thereby suggesting the potential role of miR as a 
prognostic marker for the disease [231–233].

As described above, one of the major limitations for 
the sustaining exercise regime is the inability to demon-
strate immediate benefit. However, it is possible to dem-
onstrate the immediate benefit of exercise through serial 
measurement of changes in miRs, which we consider will 
have a strong impact on whether individuals can sustain 



Page 13 of 20Lew et al. Cardiovasc Diabetol  (2017) 16:10 

exercise in the long term. To support this notion, a recent 
study reported that circulating miR-1, -133 and -206 
remained elevated for up to 24  h after running a mara-
thon. The authors demonstrated a positive correlation 
between the miRs and VO2max and individual anaero-
bic lactate threshold (VIAS). Importantly, none of these 
miRs were associated with cardiac injury markers such as 
cardiac troponin T, troponin I and pro-BNP [200].

Therapeutic potential of microRNA in DHD
Since the discovery of miRs, some two decades ago, a 
plethora of studies have investigated the adverse and ben-
eficial effects of miRs in different types of diseases using 
diverse in  vivo and in  vitro models. Ultimately, select 
miR’s have been targeted by pharmaceutical companies 
as potential pathways for treating diseases. For instance, 
miR-15, -208 and -92a are currently undergoing intensive 
pre-clinical trials for preventing the deleterious effects 
associated with myocardial infarction, hypertrophic car-
diomyopathy and heart failure as well as peripheral artery 
disease [234]. Of note, the miR-29b mimic (MRG201-
30-001), which attenuates pathological fibrosis, has now 
entered clinical trial phase I [234], while the miR-122 
antagonist (SPC3649), is now in clinical trial phase II for 
the treatment of hepatitis C [235].

Although miR’s appear as a new and exciting thera-
peutic strategy, only few miRs are currently undergoing 
clinical trials. One important reason for the cautionary 
approach in trialling miRs/anti-miRs in patients is that 
some miR’s have pleiotropic effects so that inhibition or 
overexpression of one particular miR could have other 
off-target effects on non-specific organs. Therefore, it is 
critical to generate toxicology and safety data for miR’s to 
compare with the current standard treatments in order 
to build a solid safety profile of any particular miR. Inter-
estingly, the miR’s that are currently in clinical trials are 
organ- or tissue-specific.

To date, there is no single miR candidate that has 
entered clinical trials for the treatment of DHD. As 
described above miR-1, -133, -222 and -126 are known 
to possess potent cardioprotection properties in animal 
models of diabetes. However, efficacy data, pharmacoki-
netics and toxicology profiles of these miRs are needed 
to justify clinical trials assessing these miRs in DHD. 
Ultimately, the research and clinical communities are 
enthusiastic to unravel the roles of miRs as powerful and 
promising interventions.

Future directions and concluding remarks
Despite significant advances in medical research and 
the long clinical history of anti-diabetic treatments, the 
incidences of diabetes-related cardiovascular complica-
tions are increasing exponentially. Yet, with no specific 

and effective pharmacological treatment, DHD is one 
of the major contributors to increased mortality rate in 
the current diabetic population. Results from clinical tri-
als show that the strict control of glycemic status alone 
is ineffective at preventing diabetes-induced cardiac 
dysfunction and, in contrast, can potentially aggravate 
dysfunction. Surprisingly, a large number of controlled 
clinical trials demonstrated synergistic effects of exer-
cise in conjunction with pharmacological treatments for 
managing glycaemic status in diabetes, and attenuated 
risks of developing cardiac dysfunction.

Although the efficacy of anti-diabetic drug regimes 
might be limited in ability to prevent DHD, exercise 
is emerging as having addictive effects for improving 
hyperglycaemia and insulin sensitivity by normalizing 
myocardial oxidative stress, lipotoxicity and systemic 
inflammation in diabetes. On the basis of strong evidence 
from molecular studies, others and we advocate exercise 
for ameliorating the progression of diabetes-associated 
cardiac dysfunction. However, as the long-term sustain-
ability of a ‘high-intensity’ exercise regime has not been 
reported, it is reasonable to suggest that the ability of a 
diabetic (and often obese) population to sustain excep-
tionally high intensity levels of exercise might be a con-
cern. For instance, supervised short-term high-intensity 
exercise has been suggested to be superior to moderate-
intensity exercise in improving myocardial functions 
[108, 120]. However, given that the diabetic population 
frequently have poor exercise capacity or low VO2max, it 
may not be practical or realistic for diabetics to incorpo-
rate high-intensity exercise as lifestyle change for the pre-
vention of DHD. This is further supported by the fact that 
adherence to exercise is inversely proportional to exercise 
intensity [236].

Yet, the emergence of miR as new and exciting bio-
markers could aid clinicians in identifying those diabetic 
patients who are at higher risk, or predisposed to DHD 
at an early stage of disease. In doing so, it is hoped that 
a relatively modest, and sustainable, level of exercise 
could be prescribed to patients as an effective prophylac-
tic strategy against DHD. Moreover, it is possible to use 
miRs as a marker to demonstrate the immediate benefit 
of exercise on heart, which is currently impossible by 
other means.

Based on our current understanding of the benefits 
of exercise on cardiac function in diabetes, there is a 
sense of urgency that future studies focus on the opti-
mal intensity of exercise in diabetic patients, in the very 
early stages of the disease, that is both sustainable long-
term as a lifestyle adaptation, but also effectively protects 
against the onset of DHD because, ultimately, DHD is a 
chronic condition that will require life-long management 
for ensuring a successful outcome.
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