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Abstract 

Recently, the wide application of CuO nanoparticles (NPs) in engineering field inevitably leads to its release into 
various geologic settings, which has aroused great concern about the geochemical behaviors of CuO NPs due to its 
high surface reactivity and impact on the fate of co-existing contaminants. However, the redox transformation of 
pollutants mediated by CuO NPs and the underlying mechanism still remain poorly understood. Here, we studied the 
interaction of CuO NPs with As(III), and explored the reaction pathways using batch experiments and multiple spec-
troscopic techniques. The results of in situ quick scanning X-ray absorption spectroscopy (Q-XAS) analysis verified that 
CuO NPs is capable of catalytically oxidize As(III) under dark conditions efficiently at a wide range of pHs. As(III) was 
firstly adsorbed on CuO NPs surface and then gradually oxidized to As(V) with dissolved O2 as the terminal electron 
acceptor. As(III) adsorption increased to the maximum at a pH close to PZC of CuO NPs (~ pH 9.2), and then sharply 
decreased with increasing pH, while the oxidation capacity monotonically increased with pH. X-ray photoelectron 
spectroscopy and electron paramagnetic resonance characterization of samples from batch experiments indicated 
that two pathways may be involved in As(III) catalytic oxidation: (1) direct electron transfer from As(III) to Cu(II), fol-
lowed by concomitant re-oxidation of the produced Cu(I) by dissolved O2 back to Cu(II) on CuO NPs surface, and (2) 
As(III) oxidation by reactive oxygen species (ROS) produced from the above Cu(I) oxygenation process. These observa-
tions facilitate a better understanding of the surface catalytic property of CuO NPs and its interaction with As(III) and 
other elements with variable valence in geochemical environments.
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Introduction
Compared with its micro or bulk counterparts, CuO nan-
oparticles (NPs) possesses better optical, semiconduc-
tive and surface reactive properties, and is thus widely 
used for the production of ceramics, glass and pigments, 
catalysts, battery anodes, and antimicrobial agents [1–5]. 
Due to the increasing application of CuO NPs in indus-
trial fields, its release and geochemical behaviors in 

the environment have aroused great concern [6–9]. Its 
potential toxicity to the organisms has been studied in 
detail [10–14]. Apart from the direct biotic effects, CuO 
NPs might also impact the mobility, transformation and 
toxicity of the co-existing contaminants through (de)
sorption, redox and catalytic reactions [15–17]. However, 
little is known about the interaction of CuO NPs with 
redox-sensitive contaminants and the underlying reac-
tion mechanism.

Arsenic (As) is the most common heavy metal in nat-
ural waters primarily in the forms of inorganic arsenate 
[As(V)] and arsenite [As(III)] [18]. Redox processes on 
the surface of oxide minerals largely determine the spe-
ciation of As [19–21]. Compared with As(V), As(III) has 
higher toxicity, solubility and mobility [22].
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CuO NPs is an excellent adsorbent to remove As(III) 
from water due to its large specific surface area and high 
point of zero charge (PZC) [17, 23–25]. In addition, X-ray 
photoelectron spectroscopy (XPS) analysis suggested 
that As(III) could be oxidized on CuO NPs surface, which 
remarkably enhances the immobility of As in the form of 
As(V) [17, 24]. A previous study has proposed the direct 
electron transfer from CuO NPs to As(III), which leads 
to As(III) oxidation [24]. Given that XPS measurement 
is performed under a high vacuum condition, more solid 
evidences are needed to verify As(III) oxidation on the 
surface of CuO NPs.

Furthermore, it has been reported that reactive oxy-
gen species (ROS) is involved in the oxidation pathway 
of organic matter [26–28]. For example, remarkable 
amounts of Cu+/Cu2+ and H2O2 were formed in zero-
valent copper (ZVC) acidic system due to the corrosive 
dissolution of ZVC and the concurrent reduction of oxy-
gen, which lead to highly efficient oxidation of diethyl 
phthalate under aerobic atmosphere condition [26]. In 
addition, a synergistic effect of Fe(II) and copper oxide 
(CuO) was observed on the degradation of acetami-
nophen in the presence of O2, and the resulting Cu(I) sig-
nificantly accelerated the destruction of acetaminophen 
by serving as an electron-mediator between the adsorbed 
Fe(II) and O2 to produce ROS [15]. Therefore, it is pos-
sible that ROS might be produced through the activation 
of O2 on the surface of CuO NPs, which leads to the cata-
lytic oxidation of As(III).

Thus, the objectives of this study are to (i) in situ con-
firm whether As(III) oxidation occurs on the surface of 
CuO NPs under dark condition; (ii) determine the effects 
of geochemical parameters [such as pH, As(III) concen-
tration and O2] on As(III) adsorption and oxidation by 
CuO NPs; (iii) elucidate the adsorption and oxidation 
pathways of As(III) on the surface of CuO NPs at a wide 
range of pH values under dark condition. To achieve 
these objectives, batch experiments and spectroscopic 
analysis were performed. Time-resolved quick scanning 
X-ray absorption spectroscopy (Q-XAS) and electron 
paramagnetic resonance (EPR) spectroscopy were used 
to in  situ measure the species of As and ROS, respec-
tively. XPS spectroscopy was also used to determine the 
changes in oxidation state of Cu and As on the surface of 
CuO NPs after the reaction.

Experimental
Preparation and characterization of CuO NPs
CuO NPs was prepared via a previously reported method 
[5, 29]. The synthesized CuO NPs contained no impurity 
phases as examined by powder X-ray diffraction (PXRD), 
Fourier-transformed infrared (FTIR) spectroscopy and 
transmission electron microscopy (TEM) analyses. 

The specific surface area was determined by Brunauer–
Emmett–Teller (BET) N2 adsorption method. Additional 
details of analytical procedures and characterization 
results are provided in Additional file  1: Figures  S1, S2, 
S5.

As(III) adsorption and oxidation kinetics
The adsorption-oxidation experiments were conducted 
by the reaction of 0.2  g CuO NPs with 200  mL 10  mg 
L−1 As(III) at pH 6, 9, and 11, respectively. The back-
ground electrolyte was 0.01  M NaCl solution. The CuO 
NPs suspensions were agitated by magnetic stirring 
at 10  Hz. Solution pH was measured using a pH meter 
(FE20, Mettler-Toledo) and manually adjusted to desired 
pH values ± 0.1 using 0.1  M HCl and 0.1  M NaOH. To 
examine the effect of dissolved oxygen (O2) on the oxi-
dation of As(III), the reaction solution was purged by 
N2 before and during the reaction. At the selected reac-
tion time, 5 mL suspension was filtered through 0.22 μm 
Millipore membrane to analyze the concentrations of 
As(III) and As(V) in the supernatant. The wet solids on 
the membrane were dissolved by 1 mL 1 M HCl to ana-
lyze the amount of As(III) and As(V) adsorbed onto CuO 
NPs surface. Another 5 mL suspension was directly dis-
solved by 1  M HCl (1  mL) to analyze the total amount 
of As(III) and As(V) in the suspension. All experiments 
were performed in triplicates. The As(V) concentration 
was measured by the molybdene blue method [30]. The 
total As was determined by hydrate generation atomic 
fluorescence spectrometry (HG-AFS) (AFS-230E) [31]. 
Additionally, the volume of 0.1  M NaOH consumed in 
open system and N2 system at pH 11 was recorded by 
automatic titrator (Metrohm 907 Titrando). All As(III) 
adsorption and oxidation experiments were carried out 
in reactors covered with aluminum foil to avoid the effect 
of light.

Effect of pH and initial As(III) concentration on As(III) 
adsorption and oxidation
To investigate the effect of pH values on the species dis-
tributions of As(III) and As(V) in solution and on CuO 
NPs surface, As(III) adsorption and oxidation were 
evaluated at pH 5, 6, 7, 8, 9, 10 and 11 by adjusting to 
the desired pH values ± 0.1 using 0.1 M HCl and 0.1 M 
NaOH. The experiments were carried out in 50-mL poly-
ethylene centrifuge tubes by mixing 0.025 g of CuO NPs 
with 25 mL of 0.01 M NaCl containing fresh 10 mg L−1 
As(III). To investigate the effect of initial As(III) concen-
tration on As(III) adsorption and oxidation, the experi-
ments were performed at initial As(III) concentrations 
ranging from 0.5 to 80 mg L−1 at pH 8 and 11. The reac-
tion suspensions were equilibrated by shaking at 200 rpm 
and at 25 °C for 48 h. During the reaction, the pH of each 
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batch sample was adjusted to the designed pH ± 0.05 at 1, 
6, 12, 24, 36 and 48 h, respectively. After 48 h of reaction, 
the species distributions of As(III) and As(V) in solution 
and on CuO NPs surface were analyzed with the same 
procedures as described in “As(III) adsorption and oxi-
dation kinetics”.

Quick Scanning K‑edge X‑ray absorption spectroscopy 
(Q‑XAS) of As
Q-XAS was used to in  situ investigate the changes in 
oxidation state of As with increasing reaction time. The 
Q-XAS spectra were measured at room temperature on 
the 1W2Bbeamline at the Beijing Synchrotron Radia-
tion Facility(BSRF). Considering the detect limitations 
(≥ 100 mg L−1 for As) of Lytle prober, higher concentra-
tions of AS(III) (150 mg L−1) and CuO NPs (5 g L−1) were 
used for the in  situ Q-XAS measurement. The reaction 
was performed in 50-mL polypropylene reaction vessels 
(see Additional file 1: Scheme S1), into which a 1 × 3 cm 
slit was cut and sealed with Kapton tape, backed with 
Kapton film to prevent the interaction between the tape 
and suspension. The As K-edge XAS spectra was col-
lected immediately when As(III) solution was added into 
the suspension. The measurement time for each XAS 
spectrum is 1 min and the total time for the in situ XAS 
experiment is 8  h. Additional experimental details are 
described in Additional file 1: S3.

X‑ray photoelectron spectroscopic (XPS) analysis
To determine the oxidation state of As and Cu on the 
surface of CuO NPs, the samples prepared from the reac-
tion of 0.05 g CuO with 50 mL of 10 mg L−1 As(III) for 
12 h were measured with XPS using a monochromatic Al 
Kα X-ray source (VG Multilab 2000 X-ray photoelectron 
spectrometer). The scans were carried out in an energy 
range of 1100–5 eV to obtain XPS spectra for C1 s, Cu 2p, 
and As 3d. The position of binding energy was corrected 
by fixing the C1 s peak at 284.6 eV using the Advantage 
v6.5 software.

Electron paramagnetic resonance (EPR) spectroscopy
For the EPR experiment, 50 mL reaction suspension was 
prepared to contain 1  g  L−1 CuO NPs and 10  mg  L−1 
As(III) at pH 11 over 2 h under stirring. At the selected 
time, 3 aliquots of 2 mL suspension were sampled for the 
detection of ROS speciation. The detection methods and 
procedures for different ROS species are described in 
Additional file 1: S4.

Results and discussion
As(III) adsorption and oxidation kinetics
Adsorption and oxidation of As(III) occurred while 
the rate of adsorption was relatively higher at the 

initial reaction stage (Fig.  1). The sum of surface-
adsorbed As(III) and As(V) could indicate the adsorp-
tion capacity of CuO NPs, which was about 8.39 mg g−1 
and 7.95  mg  g−1 respectively at pH 6 and 9 and much 
lower at pH 11 (2.73  mg  g−1). Surface adsorption of 
As(III) reached the maximum within 2 h at all three pHs, 
and then gradually decreased. In contrast, both surface-
adsorbed and solution As(V) gradually increased at all 
pHs, except for solution As(V) at pH 6, which remained 
consistently low over time. Although the surface adsorp-
tion of As(V) was consistent among all three pHs, the 
amount of solution As(V) increased with increasing 
pH, suggesting a higher oxidation efficiency at high pH 
(please also refer to “Effect of pH and initial As(III) con-
centration on As(III) adsorption and oxidation”. In addi-
tion, both adsorbed and solution As(III) decreased as pH 
increased, revealing a high oxidation efficiency and low 
adsorption affinity of As(III) at high pH.

To determine the rate of As(III) oxidation by CuO NPs, 
the concentration of As(III) remaining in the system was 
fitted using first-order kinetic equation (Additional file 1: 
Fig. S2). The fitted rate constants were 0.013, 0.014, and 
0.14  h−1 at pH 6, 9, and 11, respectively (Table  1). The 
oxidation rates at pH 6 and 9 were very close to each 
other, but were about an order of magnitude smaller than 
that at pH 11. The oxidation kinetics under N2 atmos-
phere at pH 11 were also measured to investigate the 
influence of O2 level. The oxidation rate (0.012 h−1) and 
oxidation extent were both lower under N2 than under O2 
(Fig. 1d and Additional file 1: Fig. S2d), implying that O2 
could be the terminal electron acceptor for As(III) oxida-
tion (for details refer to “XPS analyses”). The lower rate 
and extent of As(III) oxidation under N2 condition could 
be ascribed to the direct electron transfer from a small 
amount of As(III) to surface Cu(II) sites on CuO NPs.

Effects of pH and initial As(III) concentration on As(III) 
adsorption and oxidation
The phase distributions of As(III) and As(V) at different 
pHs over 48 h are shown in Fig. 2. The total amount of 
As(III) oxidized by CuO NPs increased with increasing 
pH, particularly under alkaline condition. More specifi-
cally, the total amount of oxidized As(III) increased from 
1.13 to 2.37  mg  L−1 as pH increased from 5 to 8, and 
sharply rose from 3.94 to 9.98 mg L−1 with pH increas-
ing from 9 to 11. In addition, most As(V) was partitioned 
on CuO NPs surface at pH below the PZC (9.2), but 
migrated into the aqueous phase at pH above the PZC, 
due to electrostatic repulsion between As(V) and nega-
tively charged surface.

The effects of initial As(III) concentration on As(III) 
adsorption and oxidation were investigated at pH 
8 and 11 over 24  h, and the results were shown in 
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Fig.  3. Dramatic differences were observed between 
the two tested pHs: (1) at pH 8, although adsorption 
of As(III) increased almost linearly with initial As(III) 
(to 20 mg L−1), total oxidized As(III) plateaued rapidly 

(1.31 mg L−1), resulting in a rapid decrease in the per-
centage of oxidized As(III); and most of the formed 
As(V) remained on NPs surface; (2) at pH 11, much 
more As(III) was oxidized and plateaued only when 
the initial As(III) concentration was above 40  mg  L−1, 
and the percentage of oxidized As(III) just decreased 
gradually; (3) although the oxidation amount increased 
with initial As(III) concentration, the total amount of 
adsorbed As(III) and As(V) was much smaller at pH 11 
than at pH 8 under the same initial As(III) concentra-
tion. These results again suggest the remarkable oxida-
tion capacity of CuO NPs at high pH.

The pH-dependent distribution of As species is most 
likely related to the species transformation of aqueous 
As(III) and As(V) and the surface charge of CuO NPs. 
At pH below 9, the main species of aqueous As(III) 
is H3AsO3, but As(V) mainly exists in the forms of 

Fig. 1  Kinetics of As(III) oxidation on CuO NPs surface at pH 6 (a), pH 9 (b), and pH 11 (c) in the open system, and pH 11 in the N2 atmosphere (d). 
These figures showed the concentration distribution of As(III) and As(V) species in solution, on CuO NPs surface, and total oxidized As(III) amount 
during the As(III) oxidation reaction

Table 1  Apparent, first-order rate constants determined 
from batch and Q-XAS experiments

The rate constants of As(III) depletion were determined by linear regression 
analysis of the noted time-periods for the plots in Additional file 1: Fig. S2

Experiment type Time 
period 
(h)

No. 
of data 
points

k (h−1) R2

In air As(III)—Batch-pH 6 36 14 0.013 0.96

As(III)—Batch-pH 9 48 14 0.014 0.93

As(III)—Batch-pH 11 36 12 0.14 0.99

In N2 As(III)—Batch-pH 11 10 11 0.012 0.96

In air As(III)—Q-XAS-pH11 8 376 0.030 0.66
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H2AsO4
−and HAsO4

2−. At pH above 9, As(III) exists 
in the forms of H2AsO3

− and HAsO3
2−, and aque-

ous As(V) as HAsO4
2− and AsO4

3− [18]. As(III) (in 
form of H3AsO3) is adsorbed on CuO NPs via Van der 
Waals force at pH 6–9 [32]. The adsorption percent-
age of As(V) was observed to be obviously higher than 
that of As(III) under the same initial As concentration 
at pHs ranging from 6 to 11 [25]. The aqueous As(V) 
in forms of H2AsO3

− and HAsO3
2− may have a higher 

affinity than As(III) to the positively charged surface 
of CuO NPs and tend to form inner-sphere complexes. 
In this study, a large number of surface reactive sites 
were occupied by the formed As(V), resulting in the 
low oxidation rate of As(III) by CuO NPs at low pHs. 

Due to the strongly negative surface charge of CuO NPs 
at high pHs, the formed As(V) (mainly in the forms 
of HAsO4

2− and AsO4
3−) is electrostatically repulsed 

from CuO NPs surface. Furthermore, redox poten-
tial of As(V)/As(III) would increase with decreasing 
pH, indicating that As(III) is more readily oxidized at 
higher pH. For instance, in acid medium, the standard 
potential for the half reaction (H3AsO4+H+)/H3AsO3 
is 0.56  V; but in alkaline medium, that of AsO4

3−/
(AsO2

−+OH−) is − 0.71  V [33]. Therefore, CuO NPs 
surface remains highly reactive and can continuously 
oxidize As(III) at pH above the PZC.

Q‑XAS test results
In situ Q-XAS was conducted to directly monitor the 
oxidation of As(III) [34]. To obtain an optimal signal-to-
noise ratio, we employed higher concentrations of AS(III) 
and CuO NPs for the in situ Q-XAS measurement than 
for batch experiments. The in  situ As K-edge XANES 
spectra as a function of time and their LCF results are 
shown in Fig. 4 and Additional file 1: Fig. S7, respectively. 
Some data point truncations in Additional file 1: Fig. S7 
were caused by the pause of synchrotron radiation facil-
ity for photon injection. In situ Q-XAS spectra over 8 h 
revealed that As(III) was oxidized to As(V) in CuO NPs 
suspension at pH 11, which is consistent with the results 
of batch experiments (Fig.  1c). With increasing reac-
tion time, more As(III) was oxidized to As(V) and about 
36% As(III) was oxidized after 470  min. The results of 
in  situ Q-XAS measurement suggested that more than 
10 mg As(III) could be oxidized by 1 g CuO NPs at pH 
11. However, the rate constant (0.14 h−1) determined in 
batch experiments at this pH was much higher than that 

Fig. 2  The concentration distribution of As(V) and As(III) in solution, 
on CuO NPs surface and total oxidized As(III) amount during the As(III) 
oxidation reaction at various pHs

Fig. 3  Effect of initial As(III) concentrations added on adsorption and oxidation of As(III) onto CuO NPs surfaces at pH 8 (a) and 11 (b) with 1 g L−1 
CuO NPs
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determined in Q-XAS experiment (0.03  h−1), which is 
probably due to the difference in the initial As(III) con-
centrations used in the two experiments. It is also pos-
sible that aggregation of CuO NPs at higher solute 
concentration may inhibit the oxidation of As(III) [35].

XPS analyses
High-resolution Cu2p and As3d spectra of pure and 
reacted CuO NPs are shown in Fig. 5, Additional file  1: 
Figures  S5, S6. The peak at 933.0  eV could be assigned 
to the binding energy of Cu(I) species, and the peaks at 
934.8, 941.1, and 943.4  eV might belong to the binding 
energy of Cu(II) species [17, 36]. The surface Cu compo-
sitions of these selected samples determined by XPS fit-
ting are presented in Additional file 1: Table S1. At higher 
pH, the proportion of Cu(I) tended to increase, implying 
that some Cu(II) was transformed to Cu(I) at the near-
surface of CuO NPs. Given that CuO is likely reduced 
during XPS measurement [17, 36], the measured content 
of Cu(I) can only reflect its relative composition on the 
surface. Moreover, another reason for the presence of 
Cu(I) species might be the reduction of a small amount of 
Cu(II) by glacial acetic acid added during the synthesis of 
CuO NPs [37]. A large amount of Cu(II) was present on 
the surface, indicating that Cu(I) might not be the final 
stable form during As(III) oxidation, but an intermedi-
ate phase involved in As(III) oxidation. Due to the rela-
tively low initial As(III) concentration, the amount of As 
on CuO NPs surface was not sufficient for the collection 

of As3d spectra with a good noise-signal ratio Additional 
file 1: Fig. S6. However, the results showed that the inten-
sity of As3d spectra at pH below PZC was higher than 
that at pH above PZC, which further confirms the nega-
tive effect of pH on As adsorption. The binding energy 
of As3d for As(V) was about 1  eV greater than that for 
As(III) [38, 39], which can help to distinguish As(III) 
and As(V). As3d spectra in the tested samples of pH 6, 
7 and 8 showed no clear energy shift, and exhibited a 
slight energy shift at pH 9 (Additional file 1: Fig. S6). The 
spectral intensity was too weak for the observation of any 
change in energy shift in pH 10 and 11 samples, probably 
due to the small adsorption amounts of As at these pHs.

EPR analysis for ROS
In systems containing CuO NPs, ROS is commonly gen-
erated by Fenton-like heterogeneous reactions through 
the Cu(II)/Cu(I) redox couple at the interfaces [40]. EPR 
experiments were conducted to reveal the production 
and speciation of ROS in both pure and reaction sys-
tems at the selected reaction intervals. As a spin trap, 
TEMP can specifically capture 1O2 to form TEMPONE, a 
nitroxide radical with a stable EPR signal [41]. Figure 6a, 
b show the EPR spectra of TEMPONE in the absence 
and presence of As(III) for different reaction time peri-
ods. The EPR spectra clearly reveal that 1O2 was consist-
ently produced in all pure CuO NPs suspensions (Fig. 6a). 
The EPR signal intensity of TEMPONE did not vary 
temporally (Fig.  6a), suggesting a stable generation and 
accumulation of 1O2 in the suspension during the whole 
process. The addition of 10  mM NaN3, a 1O2 quencher, 
substantially decreased the 1O2 EPR signal (Fig. 6c), fur-
ther verifying the production of 1O2 species in CuO NPs 
suspensions at pH 11. After the addition of As(III) into 
CuO NPs suspension, the EPR signal intensity of TEM-
PONE was decreased at 10  min, and then restored to 
the normal level at 30  min. At 120  min, the EPR signal 
intensity dropped again (Fig.  6b). The instability of 1O2 
EPR signal was possibly caused by the reaction between 
As(III) and 1O2 species, and continuous production of 
1O2 in the reaction (which will be discussed below). No 
DMPO-OOH, DMPO-OH, BMPO-OOH and BMPO-
OH adducts were detected in EPR measurements of the 
CuO NPs suspension (Fig. 6d). In combination with mac-
roscopic analyses, 1O2 might play a crucial role in the 
oxidation of As(III) by CuO NPs. Additionally, the pres-
ence and impacts of other ROS species, such as ·OH and 
O2·−, could not be determined, though they may also be 
involved in the reaction.

As(III) oxidation mechanisms
Based on the first sharp increase and the subsequent 
slow decrease of As(III) on CuO NPs surface (Fig.  1), 

Fig. 4  Data of individual As K-edge XANES spectra in the range from 
11840 eV to 11920 eV as a function of time. Solution As(III) and As(V) 
was used to LCF of XANES spectra that was shown in Additional file 1: 
Fig. S7
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Fig. 5  High-resolution Cu2p spectra and their fits of CuO NPs samples after 48 h reaction with As(III) under the same As(III) concentration (10 mg 
L−1) at pH 6 (a), 7 (b), 8 (c), 9 (d), 10 (e), 11 (f) in the open system
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we propose that As(III) might be firstly adsorbed on the 
surface of CuO NPs and then slowly oxidized to As(V). 
Therefore, at pH below PZC, As(III) and the produced 
As(V) are mainly adsorbed on the surface of CuO NPs; 
at pH above PZC, the adsorbed As(III) can be rapidly 
oxidized to As(V) on the surface and then the produced 
As(V) is abruptly desorbed into the solution from CuO 
NPs surface, which ensures that an active surface is avail-
able for further oxidation of newly adsorbed As(III).

Our XPS data indicated that part of Cu(II) was con-
verted to Cu(I) at the near-surface (Fig.  5). It could be 
inferred that the oxidation of some As(III) was trig-
gered by the conversion of CuO to Cu2O (Eq.  1) at the 
electron donor active sites on CuO NPs [10]. It has been 
suggested that the number of these active sites sharply 
rises when the particle size decreases down to nano-scale 
[42]. The particle size of CuO NPs used in this study was 
around 15 nm in width and 60 nm in length, which could 

contribute to a high surface activity. Generally, Cu2O is 
not stable in open systems and is readily re-oxidized to 
CuO by dissolved O2 [43], resulting in the continuous 
catalytic oxidation of As(III) on the surface of CuO NPs 
(Eqs. 2 and 3), which can be regarded as the first pathway 
of As(III) oxidation (Fig. 7).

In addition, the Cu(I) in CuO NPs could be responsi-
ble for the production of ROS [28]. O2·− could be pro-
duced on the reactive site with electron transfer from 
Cu(I) to O2. However, O2·− was not detected using EPR 
in our study. It is possible that O2·− was not a stable spe-
cies under our experimental conditions, and its con-
centration was too low to be detected. In fact, O2·− is 
readily transformed to 1O2 via disproportionation reac-
tion [44], which was detected in CuO NPs suspension at 
the absence or presence of As(III) (Fig. 6). The standard 
redox potential of 1O2/H2O is 2.204  eV [45], indicating 
that 1O2 is a strong oxidant similar to ·OH, which has a 

Fig. 6  EPR spectra of CuO NPs suspension in the presence of TEMP without As(III) (a) and with the addition of As (III) at pH 11.0 (b); EPR spectra of 
CuO NPs suspension in the presence of TEMP after the reaction with and without NaN3 (c) and in the presence of DMPO and BMPO (d) without 
As(III) at pH 11
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standard redox potential of 2.538 eV (·OH/H2O). There-
fore, we suggest the second reaction pathway: As(III) is 
oxidized by ROS produced via the activation of O2 on 
Cu(I) sites of the CuO NPs surface (Fig. 7). CuO will be 
re-generated from Cu(I) after reaction with O2, and par-
ticipates in the further oxidation of As(III) via the above-
mentioned first reaction pathway. Figure  1d shows that 
dissolved O2 is an essential factor for the high rate of 
As(III) oxidation by CuO NPs. Formation of 1O2 from 
O2 in the presence of CuO NPs might also contribute to 
As(III) oxidation by CuO NPs (Eqs. 3 and 4). The obser-
vation of continuous 1O2 production in the experiments 
(Fig. 6) indicates a close coupling of these two pathways, 
which can explain the cycling of CuO NPs catalyst and 
efficient As(III) oxidation. That is to say, the oxidation of 
As(III) by the re-generated Cu(II) active sites via the first 
pathway yields Cu(I) sites again, which could trigger the 
continuous production of 1O2.

In addition, titration experiment was performed to 
compare the differences in the amount of consumed OH− 
between the N2 and open systems at pH 11. In the N2 sys-
tem, only 0.022  mmol OH− was consumed at the very 
beginning, which might result from the surface hydroly-
sis of CuO NPs. However, in the open system, OH− con-
sumption gradually increased from 0.022 mmol at 2 h to 
0.080 mmol at 12 h as the reaction proceeded (Additional 
file 1: Fig. S8). These results suggest that H+ production 
or OH− consumption is associated with As(III) oxidation.

Taking the above results together, we propose the reac-
tion pathways of As(III) oxidation at high pH as the fol-
lowing equations.

In general, ROS is mainly formed in acidic solution, 
and Cu2+ cations in solution play an important role in 
ROS production [26–28]. But the above XPS results 
indicate that the changes of Cu valence mainly occur 
at pH > 9, when Cu2+ could not be present in solu-
tion (Additional file  1: S4). Therefore, ROS is probably 
formed via electron transfer from Cu(I) to O2 on the 
surface of CuO NPs. Even when O2 is absent in the sys-
tem, direct electron transfer from As(III) to Cu(II) can 
occur on the surface of CuO NPs. These findings can 
also facilitate a better understanding about the impact 
of CuO NPs on the mobility and transformation of 
some redox-sensitive substances in various geochemical 
settings.

(1)As(III)+ 2CuO → As(V )+ Cu2O

(2)2Cu2O + O2 → 4CuO

(3)O2

CuO/Cu2O
−→

1
O2

(4)
2CuO ≡ H2AsO3 +

1
O2 + 2OH

−
→ 2CuO

≡ HAsO
−

4
+ 2H2O

Fig. 7  The proposed pathways of arsenite catalytic oxidation on CuO NPs surface
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Conclusions
Our results verify that CuO NPs is capable to catalyti-
cally oxidize As(III) efficiently with dissolved O2 as the 
terminal electron acceptor using in  situ spectroscopic 
techniques (Fig. 4). Therefore, CuO NPs can be a poten-
tial catalyst and adsorbent to affect the geochemical 
behaviors of As, which can help researchers to predict 
the risk of CuO NPs before the application of it in some 
industrial and environmental fields. Also, this study 
provides a new perspective for investigation of As(III) 
oxidation process related to Cu-based NPs.

It can be indicated that the amount and rate of As(III) 
oxidation by CuO NPs are greatly enhanced by increas-
ing pH to a high alkaline range (Fig.  3b). It should be 
noted that the adsorption of produced As(V) decreases 
to a certain degree in alkaline solution. Thus, other 
adsorbents with high As(V) retention ability at alka-
line pHs could be applied simultaneously to enhance 
the removal of aqueous As to meet the environmental 
standard in As contaminated areas. Besides, it will be 
of great environmental significance to further improve 
the catalytic oxidation capacity of CuO NPs at around 
neutral pHs. Actually, our undergoing study has shown 
that the addition of aqueous Mn(II) could remarkably 
enhance the oxidation of As(III) and the adsorption of 
As(V) at near neutral pH (Additional file 1: Fig. S9).

Furthermore, two coupled reaction pathways, i.e. 
direction oxidation by CuO and oxidation by ROS 
produced via O2 activation on Cu(I) surface sites, are 
proposed for As(III) oxidation (Fig.  7). These findings 
further demonstrate the high catalytic activity of CuO 
NPs towards the oxidation reactions in water, implying 
the important role of CuO NPs to affect the fate and 
geochemical behaviors of some reducing pollutants and 
redox-sensitive organic substances in the environment. 
The stability and potential reusability of CuO NPs also 
make it an ideal candidate to be applied in permeable 
reactive barrier (PRB) in ground water purification. 
Actually, some developing countries (e.g., Bangladesh 
and West Bengal of India [46]) suffer from heavy As 
contamination in the groundwater, and usually there 
is a serious lack of water treatment facilities to purify 
the As-contaminated groundwater [47, 48]. System-
atic studies of the adsorption–oxidation mechanisms 
of As(III) on CuO NPs surfaces are significant for a full 
understanding of the potential influence of CuO NPs 
on the reductive pollutants, and for the further devel-
opment of reliable techniques to deal with As contami-
nation efficiently.
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