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[3]. This is a significant increase from the national COPD 
prevalence rate of 8.2% for those aged 40 years and older, 
as reported in 2007 [3].The prevalence of COPD may be 
further affected by continued exposure to environmen-
tal pollution, while the number of smokers worldwide 
remains high. Total COPD deaths are projected to rise 
to 8.3  million in 2030 under baseline scenario [4]. And 
because of the serious disease burden caused by repeated 
acute exacerbations of the disease, end-stage patients 
often lose their workforce, which makes the situation 
of prevention and treatment of COPD still very serious. 
Therefore, it is imperative to enhance the comprehension 
of COPD pathogenesis and pinpoint novel therapeutic 
targets. Extracellular vesicles (EVs) have emerged as a 
novel tool for intercellular communication and involved 
in maintaining normal lung homeostasis or responding 
to pathological developments [5]. EVs have the potential 
to serve as future novel biomarkers and therapeutics in 
various diseases, making them valuable for clinical appli-
cation [6]. The aim of this review is to provide a concise 
summary of the most recent research findings on the 
pathological roles of EVs in the development of COPD, 

Introduction
Chronic Obstructive Pulmonary Disease (COPD) is a 
heterogeneous lung condition characterized by chronic 
respiratory symptoms (dyspnea,cough, sputum produc-
tion) due to abnormalities of the airways (bronchitis, 
bronchiolitis) and/or alveoli (emphysema) that cause per-
sistent, often progressive, airflow obstruction [1].COPD 
is a major health burden across the world. According 
to statistics provided by the World Health Organiza-
tion (WHO), COPD has emerged as the third leading 
cause of mortality globally, accounting for approximately 
3.23  million deaths in 2019 [2].A large cross-sectional 
study conducted in China in 2018 by China Pulmonary 
Health (CPH) revealed that the prevalence rate of COPD 
among individuals aged 40 years and above was 13.7%, 
which translates to a total of almost 100  million people 
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Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous lung disease and a major health burden 
worldwide. Extracellular vesicles (EVs) are nanosized vesicles which possess a lipid bilayer structure that are secreted 
by various cells. They contain a variety of bioactive substances, which can regulate various physiological and 
pathological processes and are closely related to the development of diseases. Recently, EVs have emerged as a 
novel tool for intercellular crosstalk, which plays an essential role in COPD development. This paper reviews the 
role of EVs in the development of COPD and their potential clinical value, in order to provide a reference for further 
research on COPD.
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as well as to explore their potential applications as both 
biomarkers and therapeutic interventions.

Extracellular vesicles
EVs are membrane-bound vesicles with a lipid bilayer 
that are secreted by almost all types of cells [7]. EVs play 
vital roles in the human body, serving as crucial media-
tors for intercellular communication [8]. Based on size, 
biogenesis, and secretion mechanism, they are divided 
into three categories: exosomes, microvesicles, and apop-
totic bodies (Fig. 1). Exosomes are a type of extracellu-
lar vesicle that range in size from 50 to 150 nm and are 
released from intracellular vesicles [7]. They are formed 
in multivesicular bodies (MVBs) before release [9].When 
the MVB membrane fuses with the cell membrane of the 
origin, the exosomes are collectively released from the 
cells into the surrounding environment [9]. Exosomes are 
rich in specific surface markers, particularly endosomal 

markers such as CD9, CD63, and CD81 from the tet-
raspanin protein family, TSG101 (tumor susceptibility 
gene 101), and Alix [10]. Microvesicles are a type of extra-
cellular vesicle that range in size from 50 to 500 nm (up 
to 1 μm) and are larger than exosomes [11]. Microvesicles 
are released from the cell membrane surface through a 
process of budding [11].Thus, they tend to reflect the sur-
face composition of their parent cells and express cellular 
markers of the latter [11]. Apoptotic bodies, released as 
blebs of cells undergoing apoptosis, typically fall within 
a larger size range of 1–4  μm [12]. Proteins from the 
plasma membrane, cytosol, as well as fragmented nuclei 
are present in apoptotic bodies [13]. Apoptotic vesicles 
are a result of programmed cell death, so the extracellu-
lar vesicles involved in regulating intercellular communi-
cation mainly refer to exosomes and microvesicles. The 
International Society of Extracellular Vesicles (ISEV) rec-
ommends using the term EVs as a general designation for 

Fig. 1  Depiction of EVs subtybes and biogenesis. Exosomes are a type of extracellular vesicle that range in size from 50 to 150 nm and are formed in 
multivesicular bodies (MVBs) before release in living cell. Microvesicles are a type of extracellular vesicle that range in size from 50 to 500 nm (up to 1 μm) 
and are larger than exosomes. Microvesicles are released from the cell membrane surface through a process of budding in living cell. Apoptotic bodies, 
released as blebs of cells undergoing apoptosis, typically fall within a larger size range of 1–4 μm
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all nanoparticles released by cells with a lipid bilayer [14]. 
Unless specifically indicated, the term EVs is used generi-
cally for particles in this review.

EVs in normal airway physiology
EVs have been demonstrated in a diverse range of bodily 
fluids in the respiratory system, including saliva, spu-
tum and alveolar lavage fluid [15].Under normal pul-
monary physiological conditions, EVs play a crucial role 
in maintaining pulmonary homeostasis by facilitating 
intercellular communication within the human airway 
[16]. A diverse array of cells, including lung epithelial 
cells, endothelial cells, and various immune cells, are 
capable of releasing EVs. EVs derived from airway epi-
thelial cells contain membrane mucins on their surface, 
which are part of the mucociliary clearance system and 
innate immunity [17]. These molecules play a crucial 
role in protecting the respiratory tract from environ-
mental pathogens [17].EVs derived from alveolar macro-
phages contain suppressor of cytokine signaling protein 
1 (SOCS1) and suppressor of cytokine signaling protein 
3 (SOCS3), which regulate inflammatory and maintain 
alveolar homeostasis [18].In addition, miR-223, an RNA 
molecule enclosed in EVs secreted by alveolar macro-
phages, is tansferred to varied cells including lung epi-
thelial cells for the purpose of regulating the airway 
microenvironment and modulating cellular homeostasis 
[19]. All of these studies indicate that EVs released from 

lung cells during normal physiological conditions play a 
crucial role in maintaining host defense and pulmonary 
homeostasis. EVs serve as carriers for intercellular sig-
naling and are produced and eliminated in a dynamic 
equilibrium under physiological conditions [16]. Once 
external stimuli disturb the homeostasis, EVs can par-
ticipate in various pathological processes by modulating 
their target cells [16].

The role of EVs in the pathogenesis Of COPD
The pathogenesis of COPD is complex, involving mech-
anisms such as inflammation, oxidative stress, and pro-
tease and anti-protease imbalance. Recent evidence 
indicates that both autoimmune responses and microbial 
changes in the lungs can have an impact on COPD [20].
Pathogenic mechanisms do not exist singularly and may 
predominate in certain processes, but they typically coex-
ist and have a tendency to converge or cycle in order to 
reinforce one another [21]. EVs may act as central media-
tors and contribute to all the mechanisms involved in 
COPD pathophysiology (Fig. 2). We focused on review-
ing the role of EVs in the following mechanisms.

Inflammation
COPD is a complex disease, characterized by inflam-
mation of the airways, destruction of lung tissue, and 
limited airflow due to changes in the airway structure 
[22]. EVs act as transporters in the lung, transmitting 

Fig. 2  The Role of EVs in The Pathogenesis of COPD. EVs may act as central mediators and contribute to all the mechanisms in COPD pathophysiology 
including inflammation, protease-anti-protease imbalance, oxidative stress, autoimmune response and cell senescence
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pro-inflammatory mediators or inflammatory substances 
to other cells, thereby promoting the pathogenesis of 
COPD [23–27]. A study revealed that patients with 
COPD, whether in exacerbation or stable state, had sig-
nificantly higher levels of plasma exosomes compared 
to non-smoking healthy individuals [28]. The exosomes 
were found to be positively correlated with inflamma-
tory markers including C-reactive protein (CRP), sol-
uble tumor necrosis factor type I receptor (sTNFR1), 
and interleukin-6 (IL-6) [28]. This finding suggests that 
exosomes may play a role in the inflammatory process 
of COPD. Moon et al. demonstrated that the secretion 
of CCN1-enriched exosomes was induced by cigarette 
smoke extract (CSE) [23].CCN1, also known as CYR61 
(cysteine rich 61), belongs to the CCN (CYR61/CTGF/
NOV) family of proteins [29].It is an early response gene 
product that functions as a cysteine-rich extracellular 
matrix protein involved in various cellular processes such 
as proliferation, adhesion, migration, differentiation and 
apoptosis [29]. Additionally, it has been found to be well 
correlated with inflammatory indicators of disease [29].
CCN1 enhanced IL-8 secretion through the Wnt signal-
ing pathway [24]. Furthermore, the increased secretion 
of IL-8, in turn attracts inflammatory cells, particularly 
neutrophils, to infiltrate the lung parenchyma [24]. A 
study conducted by Martin et al. revealed that exposure 
to PM2.5 resulted in the release of macrophage-derived 
EVs, which subsequently induced a pro-inflammatory 
phenotype in lung epithelial cells, leading to the secre-
tion of IL-6 and tumor necrosis factor-alpha (TNFα) [25].
Another research conducted by Cordazzo et al. revealed 
that CSE triggered the release of EVs from monocytes, 
which in turn stimulated the production of IL-8, mono-
cyte chemotactic protein-1 (MCP-1), and intercellular 
adhesion molecule-1 (ICAM-1 or CD54) in bronchial 
epithelial cells [26]. Feller discovered that smoking led to 
an increase in the expression of Wnt5a and inflammatory 
cytokines in both mouse models and human specimens 
[27]. Additionally, EVs transported these factors to other 
organs in patients with COPD [27].This could potentially 
explain the systemic inflammatory response observed in 
individuals with COPD.

One of the causes of exacerbations in COPD patients 
are EVs derived from bacteria [30],which contribute to 
disease progression by inducing inflammation. There is 
evidence to suggest that bacteria have adapted to utilize 
EVs as contributors to neutrophilic pulmonary inflam-
mation, which plays a role in the pathogenesis of COPD 
[31, 32]. Kim et al. initially discovered that repeated inha-
lation of EVs derived from staphylococcus aureus can 
trigger Th1 and Th17 cell responses, as well as a pulmo-
nary inflammatory response characterized by neutrophil 
infiltration [31].The inflammatory response induced by 
S. aureus EVs is primarily dependent on TLR2 signaling 

[31].In 2015, the same group discovered that EVs derived 
from Escherichia coli can cause emphysema in an IL-17 A 
dependent manner [32], which suggests a new target for 
controlling COPD [32].

Airway fibrosis in COPD is usually considered to be the 
result of long-term airway inflammation. Airway fibro-
sis, primarily caused by fibroblast differentiation into 
myofibroblasts, is a direct consequence of the inflamma-
tory response triggered by exposure to inhaled cigarette 
smoke and leads to the narrowing of small airways [33]. 
EV-miRNAs alterations could lead to airway fibrosis, 
which are hallmark processes in COPD. Myofibroblasts 
have been found to contribute to airway fibrosis by pro-
ducing extracellular matrix components, including col-
lagenous proteins and α-smooth muscle actin (α-SMA), 
which give them strong contractile activity [34]. Fujita et 
al. discovered that exposure to cigarette smoke extract 
(CSE) can enhance the expression of exosomal miR-210 
in bronchial epithelial cells [35]. This, in turn, promotes 
the conversion of lung fibroblasts into myofibroblasts by 
targeting autophagy-related 7 (ATG7) [35]. Insufficient 
expression of ATG7 leads to decreased autophagy, result-
ing in myofibroblast differentiation in lung fibroblasts 
[35].Another study also observed that CSE stimulated 
bronchial epithelial cells to produce miR-21-contain-
ing exosomes. The exosomal miR-21 from CSE-treated 
bronchial epithelial cells could promote myofibroblast 
differentiation by targeting von Hippel–Lindau protein 
(pVHL) [36].

Protease and anti-protease imbalance
Protease and anti-protease imbalance is one of the 
important pathogenic mechanisms of COPD [37].Prote-
ases can cause damage to the lung parenchyma by break-
ing down the extracellular matrix, while anti-proteases 
have the ability to protect it by binding with proteases 
[38]. Under normal conditions, protease and anti-pro-
tease are in equilibrium. When the hydrolytic capacity 
of protease exceeds the protective capacity of anti-pro-
tease, this balance is disrupted and lung parenchyma 
damage occurs, ultimately leading to the development 
of COPD [38].The main proteases and anti-proteases 
involved in the pathogenesis of COPD include neutro-
phil elastase (NE), matrix metalloproteinase (MMP), 
andα1-antitrypsin [39]. α-1 antitrypsin, remains the 
most significant contributor in the pulmonary inter-
stitium. EVs derived from innate immune cells, such as 
PMNs(polymorphonuclears) and macrophages, exhibit 
a strong capacity for direct proteolysis. Genschmer et 
al. found that active neutrophil-derived EVs assisted NE 
in bypassing the anti-protease protective barrier of the 
lung and promote extracellular matrix destruction trig-
gering loss of alveolar units leading to emphysema [40].
Similarly, EVs are involved in the transportation of α1 



Page 5 of 10Liu et al. Respiratory Research           (2024) 25:84 

antitrypsin. It has been estimated that approximately 
1–5% of COPD patients suffer from a deficiency in this 
protein [41]. Lockett et al. discovered that lung endothe-
lial cells transfer α1-antitrypsin to alveolar epithelial cells 
through EVs, while cigarette smoke hinders this process 
by suppressing exosomal activity derived from endothe-
lial cells [42]. Recently, LI et al. identified that exposure 
of macrophages to tobacco smoke extract (TSE) induced 
the release of microvesicles with proteolytic activity [43]. 
Surprisingly, they found that smoke-induced macrophage 
microvesicles carry significant gelatinolytic and colla-
genolytic activities, primarily attributed to MMP14 [43], 
which is involved in the development of emphysema in 
COPD. The above studies suggest that EVs are involved 
in regulating the protease-anti-protease system mainly 
through activation or transport of protease- and anti-
protease-related substances.

Oxidative stress
The imbalance between increased oxidative factors and 
antioxidant defense mechanisms is referred to as oxida-
tive stress, which plays a crucial role in the development 
of COPD [44]. Several studies have shown that patients 
with COPD experience an increased oxidative load [45, 
46]. The presence of reactive oxygen species (ROS) in the 
airways is a major contributor to the development and 
progression of COPD [47].When the balance between 
ROS production and antioxidant responses is disrupted, 
such as by exposure to PM2.5 or cigarette smoke, an 
accumulation of ROS occurs, leading to oxidative stress 
[48, 49].The role of EVs in oxidative stress was confirmed 
by Qiu et al. [50]in a vitro study. A significantly higher 
level of malondialdehyde, superoxide, and ROS increased 
in cell with lymphocyte-derived microparticles(LMPs) 
treatment, while simultaneously inhibiting the produc-
tion of the antioxidant glutathione [50]. Recent research 
has shown that there is a close relationship between oxi-
dative stress and mitochondrial damage in COPD, with 
the two factors interacting [51, 52]. Additionally, exo-
somes are involved in oxidative stress mainly by affecting 
mitochondrial function. EVs mediate mitochondrial pro-
duction of reactive oxygen species in receptor T cells by 
participating in mitochondrial transfer [53].Adipose mes-
enchymal stem cell-derived EVs improve macrophage 
mitochondrial integrity and relieve mitochondrial reac-
tive oxygen stress in macrophages by transporting their 
mitochondrial components to alveolar macrophages [54]. 
Thus, EVs ultimately contribute to COPD through mech-
anism induced by oxidative stress.

Autoimmune response
COPD is, to some extent, also considered an autoim-
mune disease [55]. Repeated exposure to cigarette smoke 
or pathogens activates pattern recognition receptors, 

such as Toll-like receptors, which in turn activate epi-
thelial cells and innate immune cells like macrophages 
and neutrophils [55]. This leads to the release of dam-
age-related molecules and subsequently the develop-
ment of an adaptive immune response in the lungs [55]. 
Autoantibodies, including anti-elastin antibodies [56], 
anti-epithelial cell antibodies [57], and tobacco anti-
unique antibodies [58], can be detected in the circula-
tion of patients with COPD. Polymeric immunoglobulin 
receptor-deficient mice develop a progressive COPD-like 
phenotype spontaneously [59]. Pulmonary macrophages 
are important immune effector cells that play a criti-
cal role in both innate and adaptive immune responses. 
After brief stimulation of mouse macrophages with ATP, 
MHC-II-containing EVs are released by the macrophages 
that mediate antigen presentation and immune activation 
[60], suggesting a potential role in autoimmune response. 
Secondly, it has been found that lung macrophages can 
transport miRNA233 via EVs to various respiratory 
cells, including lung epithelial cells [19].Additionally, 
miRNA233 is believed to play a crucial role in regulat-
ing the innate immune response in COPD [61]. In addi-
tion, phenotypic alterations in lung tissue macrophages 
are associated with the development and progression of 
COPD [62]. Wang et al. discovered that EVs originating 
from airway epithelial cells induced by cigarette smoke 
altered the phenotype of macrophages and promoted 
polarization towards M1-type macrophages [63]. The 
above studies suggest that EVs may participate in the 
pathogenesis of COPD by transporting relevant immune 
modulators and regulating relevant immune cells.

Cell senescence
There is no doubt that COPD is typically found in the 
elderly and closely associated with aging. In healthy indi-
viduals, male forced expiratory volume in the 1st second 
(FEV1) and forced vital capacity (FVC) reach their peak 
around the age of 25 and then gradually decline as they 
get older [64]. Cellular senescence is a state of irrevers-
ible growth arrest that can be triggered by either telo-
mere shortening or telomere-independent signals such 
as DNA damage and oxidative stress [65]. Senescence is 
characterized by changes in morphology and metabo-
lism, chromatin remodeling, altered gene expression, 
and the emergence of a pro-inflammatory phenotype 
known as senescence associated secretory phenotype 
(SASP) [65].Abnormal cellular senescence in lung tissue 
is one of the mechanisms involved in the pathogenesis 
of COPD. Senescent cells, such as alveolar epithelial and 
endothelial cells, accumulate in the lungs of patients with 
COPD, resulting in small airway fibrosis and emphy-
sema [66]. Recent studies suggest that senescent cells in 
the lungs contribute to age-related lung diseases, such 
as COPD, by releasing SASP factors [67]. EVs released 
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by senescent cells have the ability to transport factors 
associated with senescence and regulate the phenotype 
of recipient cells, similar to SASP factors. Thus, EVs 
secreted by senescent cells are also considered a novel 
SASP factor. A recent study discovered an increase of 
EV-miR-21 expression in vitro senescent cells, which 
potentially triggers the process of cellular aging in nearby 
cells [68]. Additionally,levels of serum exosomal miR-21 
was found to be over-expressed in COPD patients [36].
EVs participate in the transport of senescence-associated 
miRNAs,transmitting cellular senescence which has been 
further supported by evidence in idiopathic pulmonary 
fibrosis [69]. Unfortunately, there is currently limited 
reports regarding the correlation between EVs and cellu-
lar senescence in COPD. Further investigation is clearly 
warranted to conduct additional research.

Biomarker potential of EVs in COPD
Biomarkers are clinical characteristics that reflect the 
activity of a disease and fluctuate with its progression, 
rendering them valuable for diagnosis, monitoring of 
disease evolution, as well as assessment of therapeutic 
response [70].EVs are promisingbiomarker candidates 
due to the high stability of their phospholipid bilayers in 
bodily fluids and their ability to encapsulate a variety of 
disease-associated biomolecules. Circulating endothe-
lial microparticles(EMPs) are small membrane vesicles 
released from endothelial cells in response to stimuli 
such as inflammatory activation, apoptosis, or injury 
[71]. They serve as novel biomarkers of endothelial acti-
vation and injury. The analysis of circulating EMPs is cur-
rently underway to assess endothelial damage in COPD 
patients and its clinical correlations. A study has found 
that the level of circulating EMPs increases in smokers 
with emphysema, which could be useful for identifying 

early development of the disease [72].Takahashi et al. 
found that the stable COPD patients had considerably 
higher levels of EMPs than the non-COPD volunteers 
[73]. According to another study, CD31(+) EMPs were 
found to be increased in mild COPD and emphysema; 
CD62E (+) EMPs were elevated in severe COPD and 
hyperinflation [74]. The study by Bazzan et al. showed 
a higher number of alveolar macrophage-derived MVs 
in the smokers with COPD compared to smokers with-
out COPD and to healthy individuals, which correlated 
positively with the pack-years of smoking and inversely 
with lung function expressed as FEV1% (Forced Expira-
tory Volume in the 1st second percent predicted, reduced 
FEV1 indicated the degree of airway obstruction) [75].
These studies are listed in Table 1.

Some studies have demonstrated that alterations in the 
circulating miRNA are the physiological responses to 
COPD development [76]. Thus, circulating miRNAs have 
the potential to serve as biomarkers for COPD. Emerging 
evidence suggests that some exosomes contain cell-spe-
cific miRNA which have the potential to serve as bio-
markers [77–79]. A recent study using exosomal miRNA 
profiling demonstrated that exosomal miR-122-5p was 
downregulated among the COPD patients comparing to 
normal non-smokers and smokers functionally serving as 
a biomarker [79].Many of the concluded studies are listed 
in Table 1.

The composition of protein in EVs is also linked to spe-
cific cellular functions, indicating that EV proteins have 
the potential to serve as biomarkers. Koba et al. have 
utilized next-generation proteomics to identify novel 
biomarkers in serum EVs [80]. Among them, fibulin-3, 
a pathogenic matricellular protein in elastic fibers, may 
serve as a potential biomarker for COPD [80].This dis-
covery implies that circulating EVs protein cargo may 

Table 1  Biomarker potential of EVs in COPD
References Body Fluids Cohort Potential Biomarkers
 [73] plasma stable COPD patients,

exacerbated COPD patients,
healthy individuals

CD144+ EMPs,
CD31+ EMPs,
CD62E+ EMPs

 [74] plasma COPD
control subjects

CD31+ EMPs,
CD62E+ EMPs

 [75] BALF smokers with COPD,
smokers without COPD,
nonsmokers

CD14+
Macrophage microparticles

 [77] plasma nonsmokers,
smoker,
COPD patients

upregulated
miR-22-3p, miR-99a-5p, miR-151a-5p, miR-320b, miR-320d;
downregulated
miR-335-5p, miR-628-3p, miR-887-5p, and miR-937-3p

 [78] plasma COPD patients,
healthy individuals

miR-23a, miR-221, and miR-574

 [79] BALF and LungTissue healthy non-smokers,
smokers,
patients with COPD or IPF

miR-122-5p

 [80] serum patients with COPD, healthy controls fibulin-3



Page 7 of 10Liu et al. Respiratory Research           (2024) 25:84 

serve as biomarkers for COPD. However, there is a dearth 
of reports that focus on EV protein cargo as biomarkers, 
and further investigation is required to address this issue.

Therapeutic potential of EVs in COPD
The efficacy of treatments for patients with COPD is 
currently limited, as they can only alleviate symptoms 
and prevent exacerbations to a certain extent, but can-
not halt the progression of COPD. Mesenchymal stromal 
cells (MSCs) have been reported to be anti-inflamma-
tory and regenerative. Some studies have suggested that 
MSC-derived EVs appear to possess the same functions, 
indicating a novel target for COPD control. Maremanda 
et al. report that MSCs and MSC-derived EVs protected 
against cigarette-induced inflammation and mitochon-
drial dysfunction in a mouse model of COPD [81]. 
Ridzuan et al. discovered that the intratracheal adminis-
tration of human umbilical cord mesenchymal stem cell 
(hUC-MSC)-derived EVs effectively alleviated inflamma-
tion in a rat model of cigarette exposure-induced COPD 
[82].Song’s study revealed that EVs secreted by damaged 
alveolar epithelial type II (AEC-II) cells can promote 
the proliferation and migration of MSCs [83]. Addition-
ally, EVs secreted by AEC-II cells increased the expres-
sion levels of genes related to mitochondrial synthesis 
and metastasis [83]. This finding provides a new idea for 
treating COPD with MSCs. In addition to MSC-derived 
EVs, other sources of EVs have also been shown to inter-
vene in COPD. Recent study has found that adipose stem 
cell-derived EVs alleviate cigarette smoke-induced lung 
inflammation and injury by inhibiting alveolar macro-
phage pyroptosis [84]. Although there is a lack of studies 
on the use of these strategies for COPD treatment, some 
EVs have already been investigatedfor cancer and trans-
plantation treatments in phase I and II trials [85–87]. 
Some issues still need to be addressed for future clinical 
application of EVs for COPD treatment.Firstly,there is an 
inherent issue in acquiring EVs due to the requirement of 
large amounts of sample and the limitations of obtaining 
fresh samples in a longitudinal study.Secondly,EVs can 
be isolated and purified from cell culture supernatant 
and biological fluids through many methods including 
ultrafast centrifugation, density gradient centrifugation, 
immunoaffinity capture,which have their advantages 
and disadvantages [88–90].But there is no unified stan-
dard for EV isolation and characterisation.Additional 
consideration is the safety behind EV as a novel biomedi-
cal products.Some studies suggest that EVs have certain 
safety [91, 92], but no recognized safety evaluation sys-
tem has been established.

Conclusion
In summary, various lung cells secrete EVs that play a 
crucial pathogenic role in the development of COPD by 
transporting miRNAs and proteins. The role of EVs in 
the development of inflammation and protease imbal-
ance in COPD has been partially investigated, but fur-
ther research is necessary to explore other pathogenic 
mechanisms. At the same time, EVs are expected to iden-
tify more precise biomarkers for COPD, as their phos-
pholipid bilayer packaging allows them to remain stable 
in various biological fluids of the respiratory system. 
Although the potential of EVs in treating COPD has been 
explored in animal models, further research is necessary 
to determine their clinical applicability. Nevertheless, 
the outlook for future studies is promising. Some issues 
related to exosome research require resolution, includ-
ing the clinical applicability of EV detection, isolation and 
purification. Further research is urgently needed for clini-
cal application. By investigating the role of EVs in COPD 
development, a deeper understanding of its pathogen-
esis can be gained and novel diagnostic and therapeutic 
methods developed.
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