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Abstract
Background Airway basal stem cells (ABSCs) have self-renewal and differentiation abilities. Although an abnormal 
mechanical environment related to chronic airway disease (CAD) can cause ABSC dysfunction, it remains unclear how 
mechanical stretch regulates the behavior and structure of ABSCs. Here, we explored the effect of mechanical stretch 
on primary human ABSCs.

Methods Primary human ABSCs were isolated from healthy volunteers. A Flexcell FX-5000 Tension system was used 
to mimic the pathological airway mechanical stretch conditions of patients with CAD. ABSCs were stretched for 12, 24, 
or 48 h with 20% elongation. We first performed bulk RNA sequencing to identify the most predominantly changed 
genes and pathways. Next, apoptosis of stretched ABSCs was detected with Annexin V-FITC/PI staining and a caspase 
3 activity assay. Proliferation of stretched ABSCs was assessed by measuring MKI67 mRNA expression and cell cycle 
dynamics. Immunofluorescence and hematoxylin-eosin staining were used to demonstrate the differentiation state of 
ABSCs at the air-liquid interface.

Results Compared with unstretched control cells, apoptosis and caspase 3 activation of ABSCs stretched for 48 h 
were significantly increased (p < 0.0001; p < 0.0001, respectively), and MKI67 mRNA levels were decreased (p < 0.0001). 
In addition, a significant increase in the G0/G1 population (20.2%, p < 0.001) and a significant decrease in S-phase cells 
(21.1%, p < 0.0001) were observed. The ratio of Krt5+ ABSCs was significantly higher (32.38% vs. 48.71%, p = 0.0037) 
following stretching, while the ratio of Ac-tub+ cells was significantly lower (37.64% vs. 21.29%, p < 0.001). Moreover, 
compared with the control, the expression of NKX2-1 was upregulated significantly after stretching (14.06% vs. 39.51%, 
p < 0.0001). RNA sequencing showed 285 differentially expressed genes, among which 140 were upregulated and 
145 were downregulated, revealing that DDIAS, BIRC5, TGFBI, and NKX2-1 may be involved in the function of primary 
human ABSCs during mechanical stretch. There was no apparent difference between stretching ABSCs for 24 and 
48 h compared with the control.
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Background
Airway epithelium functions as the first line of respira-
tory tract defense against various environmental insults. 
Airway epithelial damage usually occurs in chronic air-
way diseases (CAD), such as asthma, chronic obstructive 
pulmonary disease (COPD), and bronchiectasis. Main-
taining pulmonary homeostasis is crucial to restore the 
structural integrity and function of the airway epithe-
lium. Airway basal stem cells (ABSCs), located adjacent 
to airway epithelial basal lamina, are a population of cells 
with self-renewal and differentiation abilities. ABSCs are 
capable of generating ciliated cells, secretory cells, and 
neuroendocrine cells [1–4]. Accordingly, serving as the 
resident stem cells of the airway, ABSCs dominate pro-
cesses to maintain the dynamic balance of normal airway 
epithelium and repair after injury [4]. Various insults 
or repeated injuries could cause hyperplasia of ABSCs 
or dysplasia of airway epithelial cells, both of which are 
associated with the occurrence and development of CAD 
[5, 6]. Rao et al. found that abnormal ABSCs in COPD 
resulted in pathologic characteristics including airway 
fibrosis, inflammation, and mucus hypersecretion [7]. 
Peng et al. reported that airway progenitor cells were 
abnormally proliferative in bronchiectasis [8]. More-
over, growing evidence indicates that the dysfunction of 
ABSCs plays a crucial role in driving the progression of 
idiopathic pulmonary fibrosis [9]. However, the mecha-
nism and function of ABSCs underlying the development 
of chronic inflammatory diseases remain unclear.

Mechanical stretch plays a pivotal role in lung develop-
ment and disease progression. Respiratory diseases can 
alter the mechanical environment of the airway to regu-
late its structure and function [10–12]. In patients with 
CAD (e.g., COPD, bronchiectasis, or pulmonary fibrosis 
resulting from various factors), bronchial/alveolar struc-
ture destruction, mucus hypersecretion, and constriction 
of airway smooth muscle led to mechanical stress in the 
airway continuously and abnormally elevated; moreover, 
these individuals display ABSCs with dysfunctional self-
renewal and regeneration [10, 13]. Further, the high-
level mechanical stress exerted on the airway epithelium 
involved critical pathological processes, including induc-
ing the expression of inflammatory mediators, such as 
interleukin (IL)-8, IL-13, and matrix metalloproteinase 
9 (MMP-9), inhibiting epithelial repair and even caus-
ing the airway remodeling [14–20]. These researches 
suggested that mechanical stress probably influenced 
the normal physiological function of ABSCs [17, 21, 

22]. Therefore, we used a Flexcell® FX-5000 Tension Sys-
tem (Flexcell International Corporation, Hillsborough, 
NC, USA), which can mimic the pathological airway 
mechanical stretch conditions of patients with CAD, 
to examine the effect of mechanical stretch on primary 
human ABSCs’ function. Finally, we explored the role of 
mechanical stretch in the repair and regeneration abili-
ties of ABSCs.

Methods
ABSCs culture
Airway epithelium samples were collected by brushing 
the contralateral grade 3–5 bronchus of patients with 
solitary pulmonary nodules using a flexible fiberoptic 
bronchoscope (Olympus Corporation, Tokyo, Japan), 
the information of patients is provided in Additional file 
1 (see Table S2). ABSCs were isolated and cultured from 
airway epithelium samples according to a previously pub-
lished method [23]. The identification of ABSCs see also 
Figure S1. The medium was changed every 2 or 3 days. 
Cells were passaged at 80% confluency and used between 
the third to sixth passages in the following experiments. 
The study was approved by the ethics committee of the 
First Affiliated Hospital of Guangzhou Medical Univer-
sity (Ethics Review Number 2022 − 138). Informed con-
sent was obtained from all study participants.

Mechanical stretch
ABSCs were inoculated onto collagen I-coated Bioflex® 
six-well culture plates at a density of 2 × 105 cells per 
well and cultured for 24 h to reach 60–70% confluence. 
ABSCs were then divided into control (unstretched) and 
stretched groups. The experimental group was exposed 
to mechanical stretch stimulation (loading parameters: 
0.33 Hz frequency, sine wave, 20% elongation) for 12, 24, 
and 48 h using a Flexcell FX-5000 Tension System to sim-
ulate pathological conditions related to mechanical stress 
in the airway [18, 21, 24]. The control group was placed 
in the same 37ºC, 5% CO2 incubator without any addi-
tional intervention. Three independent wells/group were 
performed.

Apoptosis assay
Cell apoptosis
Cell apoptosis was measured using an Annexin V-FITC/
PI apoptosis kit (556,547; BD Pharmingen, NJ, USA). 
Harvested ABSCs were stained with 100 µL of 1× binding 
buffer following incubation with 5 µL of FITC-Annexin 

Conclusions Pathological stretching induces apoptosis of ABSCs, inhibits their proliferation, and disrupts cilia cell 
differentiation. These features may be related to abnormal regeneration and repair observed after airway epithelium 
injury in patients with CAD.
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V and 5 µL of propidium iodide (PI) for 15 min at room 
temperature in the dark. Ratios of apoptotic cells were 
detected using an LSRFortessa X-20 Flow Cytometer 
(Becton-Dickinson Immunocytometry Systems, San Jose, 
CA, USA).

Caspase-3 activity assay
ABSCs were harvested and washed with PBS. Next, 50 µL 
of lysis buffer was added to lyse cells for 15 min on an ice 
bath. The supernatant released from these lysed cells was 
collected. According to the manufacturer’s instructions, 
caspase-3 activity was detected using a detection kit 
(Beyotime Institute of Biotechnology, Shanghai, China). 
This kit is based on the ability of caspase-3 to catalyze 
acetyl-Asp-Glu-Val-Asp p-nitroanilide to produce yellow 
p-nitroaniline, which has a strong absorption at 405 nm. 
Thus, the activity of caspase-3 is reflected by measuring 
the absorbance value (optical density value).

Cell cycle
ABSCs were fixed with ice-cold 70% ethanol (4ºC over-
night). Fixed ABSCs were washed once with cold PBS 
and stained in 450 µL of PI (KGA512; KeyGEN Bio-
tech, China). Next, 50 µL of RNase A was added and 
incubated for 30  min at room temperature in the dark. 
Samples were immediately analyzed on an LSRFort-
essa X-20 Flow Cytometer, with 5 × 104 events acquired 
at 488 nm. Finally, percentages of cells in G0/G1, S, and 
G2/M phases of the cell cycle were analyzed using FlowJo 
software 10.8.1 (Treestar, Ashland, OR, USA) on a MAC1 
workstation.

RNA extraction and quantitative real-time PCR (RT-qPCR)
TransZol Up Plus RNA Kit (ER501-01; TransGen Biotech, 
Beijing, China) was used to extract total RNA from con-
trol and stretched ABSCs. cDNA was synthesized from 
all RNA samples using Hifair® III 1st Strand cDNA Syn-
thesis SuperMix for qPCR (gDNA Digester Plus) reverse 
transcription reagents (11141ES60; Yeasen, Shanghai, 
China) according to the manufacturer’s protocol. Expres-
sion of target gene mRNA in human ABSCs was detected 
by RT-qPCR. RT-qPCR detection was performed using a 
CFX ConnectTM Real-Time PCR Detection System (Bio-
Rad, Hercules, CA, USA) with Hieff UNICON® Power 
qPCR SYBR Green Master Mix (11195ES08*, Yeasen). 
RT-PCR conditions were as follows: 40 cycles of pre-
denaturation at 95 °C for 30 s, denaturation at 95 °C for 
10 s, annealing at 60 °C for 20 s, and extension at 72 °C 
for 20  s. GAPDH was used as the endogenous control 
gene and expression levels of target genes were quanti-
fied using the comparative threshold cycle method with 
arithmetic formulae. Primer sequences for RT-qPCR are 
provided in the Additional files (see Table S1).

Air-Liquid Interface (ALI) Cultures
ABSCs were seeded onto a Transwell insert (3470, Corn-
ing) at a density of 1–2 × 105 cells/well in 200 µL of ALI 
media, which was a 1:1 mixture of DMEM and BEGM 
(CC-3170; Lonza, Walkersville, USA). When cell conflu-
ence was reached, the apical medium was removed and 
800 µL of ALI medium was added to the basal chamber 
only and changed every 2 days. After 21 days of differenti-
ation, ALI cultures were fixed with 4% paraformaldehyde 
at room temperature for 15 min and then embedded in 
paraffin. Three independent wells/group were measured.

Immunofluorescence and hematoxylin and eosin staining
Paraffin sections were deparaffinized by placing them 
2 h on a 60–70ºC heating block, followed by a series of 
Histo-Clear and ethanol washes. Antigen retrieval was 
performed with 10 mM sodium citrate buffer (pH6) using 
a pressure cooker for 10  min. Sections were blocked in 
5% bovine serum albumin (130-091-376-1; Miltenyi Bio-
tec, Bergisch Gladbach, Germany) for 30  min at room 
temperature, followed by incubation with primary anti-
body at 4ºC overnight. Secondary antibodies were diluted 
in phosphate buffer and added to the sections to incubate 
for 1  h in the dark. Next, sections were counterstained 
with DAPI (G1012-10ML; Servicebio, Wuhan, China). 
The negative control was stained with secondary anti-
bodies only. Images were captured and analyzed using an 
inverted fluorescence microscope (DMi8; Leica Wetzlar, 
Germany). Primary antibodies included anti-acetylated 
tubulin (1:500; T6793; Sigma-Aldrich, St. Louis, MO, 
USA), anti-Cytokeratin 5 (1:200, ab52635-100, Abcam, 
Cambridge, UK), anti-NKX2-1 (1:25, ab227652, Abcam, 
Cambridge, UK), goat Anti-Rabbit IgG (1:200, ab150080, 
Abcam, Cambridge, UK), goat anti-mouse IgG (1:200; 
ab150115-500ug; Abcam, Cambridge, UK), and DAPI. 
Paraffin sections were stained with Hematoxylin and 
eosin according to the instructions.

RNA sequencing (RNA-Seq) analysis (transcriptome 
profiling)
We harvested 2 × 106 ABSCs from unstretched and 48 h 
stretched groups to perform RNA-Seq.  Every group 
contained three biological replicates. According to the 
manufacturer’s protocol, total RNA was extracted using a 
Trizol reagent kit (Invitrogen, Carlsbad, CA, USA). RNA 
quality was assessed on an Agilent 2100 Bioanalyzer 
(Agilent Technologies, Palo Alto, CA, USA) and checked 
using RNase-free agarose gel electrophoresis. After total 
RNA was extracted, eukaryotic mRNA was enriched by 
Oligo(dT) beads, while prokaryotic mRNA was enriched 
by removing rRNA with a Ribo-Zero™ Magnetic Kit (Epi-
centre, Madison, WI, USA). Next, the enriched mRNA 
was fragmented into short fragments using a fragmen-
tation buffer and reverse transcribed into cDNA with 
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random primers. Second-strand cDNA was synthesized 
by DNA polymerase I, RNase H, dNTP, and buffer. Next, 
the cDNA fragments were purified with a QiaQuick PCR 
Extraction Kit (Qiagen, Venlo, the Netherlands), end-
repaired, poly(A) added, and ligated to Illumina sequenc-
ing adapters (Illumina, San Diego, CA, USA). Ligation 
products were size-selected by agarose gel electropho-
resis, PCR-amplified, and sequenced using Illumina 
HiSeq2500 by Gene Denovo Biotechnology (Guangzhou, 
China).

Protein - protein interaction (PPI) analysis
We first picked the differentially expressed genes (DEGs) 
involved in the biological processes of epithelial cell dif-
ferentiation and regulation of cell differentiation in Gene 
Ontology analysis. The relationship of these genes, such 
as co-expression and co-localization, and the PPI net-
work were obtained based on STRING software (https://
string-db.org/).

Statistical analysis
All statistical analyses were performed using GraphPad 
Prism 8 (GraphPad Software, San Diego, CA, USA). Data 
are presented as the mean ± standard deviation. ANOVA 
or unpaired t-test was used to analyze differences 
between experimental groups. An alpha value of < 0.05 
was considered statistically significant.

Results
Developmental timing of mechanical stretch-inducible 
apoptosis of ABSCs
We evaluated the effects of different durations of stretch-
ing on ABSCs apoptosis using Annexin V-FITC/PI stain-
ing. We found that with increased duration of stretching, 
apoptosis of ABSCs increased. When ABSCs were 
stretched for 48 h, a significant stretch-inducible increase 
in apoptosis was observed compared with the control 
(19.2% vs. 8.0%, p < 0.0001) (Fig.  1A-B). In addition, we 
used a colorimetric enzyme assay to detect the activity of 
caspase-3, a key enzyme in the process of apoptosis [25]. 
Similarly, compared with the control, levels of caspase-3 
enzyme activity induced by stretch increased in a time-
dependent manner, especially with stretching for 48  h 
(p < 0.0001) (Fig.  1C). However, no apparent difference 
could be seen in ABSCs stretched for 12 or 24  h com-
pared with the control.

Mechanical stretch inhibited ABSCs proliferation by 
inducing cell cycle arrest in G1å
The self-renewal ability of ABSCs is crucial for main-
taining and restoring airway homeostasis. Therefore, we 
investigated the effects of mechanical stretch on ABSCs 
proliferation by evaluating expression levels of MKI67 
mRNA, a marker of proliferation. RT-qPCR data reveal 

significantly lower expression of MKI67 mRNA in ABSCs 
stretched for 24 and 48  h (p < 0.0001, and p < 0.0001, 
respectively) compared with unstretched ABSCs, but 
there was no change for 12 h (Fig. 2C). We further stud-
ied the cell cycle dynamics of ABSCs proliferation under 
stretch. As the duration of stretching prolonged, the 
G0/G1 population of ABSCs increased gradually, while 
S-phase and G2/M populations decreased gradually. 
When ABSCs were stretched for 48 h, an apparent 20.2% 
increase in the G0/G1 population and remarkable 21.1% 
decrease in S-phase cells was observed compared with 
the control (p < 0.001 and p < 0.0001, respectively), indi-
cating that a prolonged duration of mechanical stretch 
could induce G1 arrest and prevent cell cycle progression 
into S phase (Fig. 2A-B; Table 1). Similarly, there was no 
significant difference between ABSCs stretched for 12 
and 24 h.

Mechanical stretch impaired the ability of ABSCs to 
differentiate into ciliated cells
We further investigated the performance of ABSCs differ-
entiation after stretching by air-liquid interface culture. 
Expression of differentiation markers was assessed with 
a fluorescence microscope. Our results demonstrate that 
after mechanical stretching of ABSCs for 48  h, remark-
edly more differentiated cells were positive for the ABSCs 
marker keratin 5 (Krt5), compared with the control 
(48.71% vs. 32.38%, p = 0.0037) (Fig.  3A-E). Importantly, 
differentiated cells displayed significantly lower ratios 
of acetylated tubulin-positive (Ac-tub+) cells (a marker 
of ciliated cells) compared with the control (21.29% vs. 
37.64%, p < 0.001) (Fig. 3A-B, and Fig. 3F-H). The expres-
sion of NK2 homeobox 1 (NKX2-1), a specific marker of 
lung epithelial progenitors, was increased apparently in 
the stretched group compared with the control (39.51% 
vs. 14.06%, p < 0.0001) (Fig. 3I-K). However, there was no 
significant between-group difference in expression of dif-
ferentiated secretory cell markers.

Transcriptome profiling
Analysis of DEGs between stretched (S) and unstretched (N) 
groups
Although we have collected three biological replicates 
per group, one outlier sample in the stretched group was 
removed. Genes with a false discovery rate (FDR) < 0.05 
and |logFC| > 0.58 were identified as DEGs. In total, 
285 DEGs were screened between stretched (S) and 
unstretched (N) groups, among which 140 were upregu-
lated and 145 were downregulated (Fig. 4A-D). The list of 
285 DEGs is added as Additional file 2.

Gene Ontology (GO) was used to analyze significant 
DEGs between unstretched and stretched groups. Bio-
logical process results revealed that mechanical stretch 
mainly interfered with cell cycle processes, formation 

https://string-db.org/
https://string-db.org/
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of chromosomes or DNA, and regulation of cell divi-
sion. Molecular function results indicated enrichment 
of genes primally involved in binding and activity pro-
cesses related to protein, ATP, and DNA; the constitu-
tion of extracellular matrix structure; and regulation of 
tubulin binding. Cellular component results indicate 

that the most affected genes were involved in chromo-
somes, nucleosomes, spindle, and DNA packing. The top 
15 most significantly enriched GO terms are shown in 
Fig. 4E-G.

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis revealed that DEGs are mainly enriched 

Fig. 1 Mechanical stretching for 48 h induced the apoptosis ABSCs. (a) Cell apoptosis was detected by an annexin V FITC/ propidium iodide (PI) stain-
ing and flow cytometry analysis. Live cells (Q4) were stained negative for both annexin V and PI. Late apoptotic cells (Q2)were stained positive for both 
annexin V and PI. Early apoptotic cells (Q3) were stained positive for annexin V and negative for PI. Necrotic cells (Q1) were stained negative for annexin 
V and positive for PI. The apoptosis rate included Q2 and Q3. (b) Data are presented as the mean ± SD. **P < 0.01 compared with the control group. (c) Me-
chanical stretching for 48 h induced the activation of caspase 3 enzyme. Data are expressed as the mean ± SD from at least three experiments. ***P < 0.001 
compared with the control group
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for the cell cycle (16 genes), DNA replication (8 genes), 
extracellular matrix-receptor interaction (8 genes), and 
focal adhesion (10 genes). In the pathway related to the 
cell cycle, Ink4b, which is related to the G1 phase, dis-
played increased expression. However, S and G2/M 
phase-related genes, such as MCM, CDK1, CDC20, 

showed decreased expression in the stretched group 
compared with the unstretched group. Our vitro results 
also showed that mechanical stretch could induce G1 
arrest of ABSCs. The top 15 KEGG enrichment pathways 
are displayed in Fig. 4H. Expression of DEGs for the cell 
cycle pathway in KEGG analysis are provided in the Fig-
ure S2.

Validation of sequencing data by RT-qPCR
To verify the results of our sequencing data, we quanti-
fied the mRNA expression levels of eight genes using 
RT-qPCR, including ADM (the mechanical force-reg-
ulated gene), COL1A1 and FN1 (the main components 
of extracellular matrix), MKI67 (a marker of prolif-
eration), RAD51AP1, SKA1, and CENPW (involved in 
mitotic cell cycle and DNA repair), and UCHL1 (the 
neural marker protein gene). The results are consistent 

Table 1 The dynamic of cell cycle of ABSCs at different times 
induced by mechanical stretch
Group G0/G1phase S phase G2/M 

phase
Control 63.3 ± 4.8 31.6 ± 3.7 11.5 ± 2.4
Stretch
12 h 55.4 ± 6.8 36.1 ± 4.1 8.5 ± 3.6
24 h 66.8 ± 2.5 26.2 ± 2.4 6.8 ± 0.8
48 h 83.5 ± 0.8** 10.5 ± 0.3*** 5.2 ± 1.4*
Data were presented as mean ± SD from at least three experiments. *p < 0.05, 
**p < 0.01, ***p < 0.001 compared with the control group

Fig. 2 Mechanical stretching for 48 h induced the G1 arrest in ABSCs. (a) The percentage of cells in G0/G1, S, and G2/M phases of the cell cycle was 
analyzed by flow cytometry. (b) Control vs. stretch *P < 0.05, **P < 0.01, ***P < 0.001. Results are expressed as mean ± SD. (c) Mechanical stretching for 48 h 
decreased the mRNA expression of MKI67 in ABSCs. Data are expressed as the mean ± SD from three different experiments. ****P < 0.0001 compared with 
the control group
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with our transcriptome sequencing data. Specifically, we 
found that UCHL1, FN1, COL1A1, and ADM mRNA 
were upregulated (p = 0.0028, p = 0.0001, p = 0.0005, and 
p < 0.0001, respectively), while CENPW, RAD51AP1, 
SKA1, and MKI67 were downregulated (p = 0.0005, 
p < 0.0001, p = 0.0008, and p < 0.0001, respectively) in the 
stretched group compared with the unstretched group 
(Figs. 2C and 5).

Potential genes related to ABSCs’ function during mechanical 
stretch
Because we observed in vitro that mechanical stretch 
impaired the function of ABSCs by triggering apoptosis 
(Fig.  1), inhibiting proliferation (Fig.  2), and disrupting 
cilia cell differentiation (Fig. 3), we attempted to identify 
key genes that may play a potential role in ABSCs’ func-
tion among 285 DEGs. As for apoptosis, we noticed that 
DNA-damage-induced apoptosis suppressor (DDIAS) 
and baculoviral IAP repeat containing 5 (BIRC5) that 

Fig. 3 Mechanical stretch impaired the ability of ABSCs to differentiate into ciliated cells. (a) H&E staining of air-liquid interface (ALI) culture sections in 
control unstretched ABSCs, black arrow: ciliated cells. (b) H&E staining of ALI culture sections in stretched ABSCs, black arrow: ciliated cells. (c) Control 
unstretched ABSCs stained with anti-Krt5 (red) and DAPI (blue). (d) Stretched ABSCs stained with anti-Krt5 (red) and DAPI (blue). (e) Frequency of cells 
expressing Krt5 in the control and stretched groups. (f) Control unstretched ABSCs stained with anti-Ac-tub (green) and DAPI (blue). (g) Stretched ABSCs 
stained with anti-Ac-tub (green) and DAPI (blue). (h) Frequency of cells expressing Ac-tub in the control and stretched groups. (I) Unstretched ABSCs 
stained with anti-NKX2-1 (green) and DAPI (blue). (J) Stretched ABSCs stained with anti-NKX2-1 (green) and DAPI (blue). (K) Frequency of cells express-
ing NKX2-1 in the control and stretched groups. Representative fluorescence microscopy images from three separate experiments. Scale bar represents 
103.8 μm in (c), (d), (f ), (g), (I) and (J), Compare with the control, **P < 0.01, ****P < 0.0001
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Fig. 4 The overall transcriptomes characteristics between the control and stretch groups. (a) The PCA plot of transcriptome profiling. (b) Heat maps 
of mRNA (|log2FC| >0.58 and FDR < 0.05). Red and blue indicate up- and downregulation, respectively. (c) Histogram of differentially expressed genes 
(DEGs) expression between the control and stretch groups. (d) The volcano analysis of DEGs with color-coded. The x-axis represented the log2 of fold 
change (FC) and the y-axis represented log10 of p values. Blue dots were downregulated genes and red dots were upregulated genes. The leftover black 
dots were the genes without significant differences. The top 15 enrichment GO of differentially expressed genes. All GO terms were divided into three 
ontologies: yellow, biological process (e); blue, molecular function (f), and red, cellular component (g). The top 15 KEGG pathway terms (h) of differentially 
expressed genes
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have an anti-apoptotic function were both downregu-
lated significantly in our transcriptome profiling, it sug-
gested that DDIAS and BIRC5 may involve the process of 
mechanical stretch-induced apoptosis in ABSCs. In addi-
tion, we observed that the transforming growth factor 
beta induced (TGFBI) which possibly played an crucial 
role in controlling the proliferation of ABSCs was upreg-
ulated remarkably when ABSCs were stretched. Finally, 
in our IF staining (Fig. 3I-K) and PPI analysis (Fig. 6), we 
revealed that NKX2-1 was up-regulated obviously and 
potentially involved in the differentiation of ABSCs dur-
ing the mechanical stretch. The heatmap for these poten-
tial genes was provided as Fig. 7.

Discussion
In this study, we found that prolonged mechanical 
stretching impaired ABSCs function, including induction 
of apoptosis, inhibition of proliferation, and dysfunction 
of cilia cell differentiation. Our transcriptome profiling 
supports our in vitro results and suggests that DDIAS, 
BIRC5, TGFBI, and NKX2-1 might be the signaling mole-
cules involved in the function of ABSCs during mechani-
cal stretch. Mechanical stretch may be one of the reasons 
for abnormal repair of airway epithelium after injury. To 
our knowledge, ours is the first study focused on how 
mechanical stretch affects primary human ABSCs func-
tion, providing novel insight into the pathogenesis and 
treatment of chronic airway diseases with obviously 

Fig. 6 Analysis of protein-protein interaction networks of forty-two genes involved in epithelial cell differentiation. The line thickness indicates the 
strength of data support

 

Fig. 5 Quantitative RT-qPCR validation of differential genes. Statistical significance of expression level with *for p < 0.05, **for p < 0.01, ***for p < 0.001, and 
****for p < 0.0001, compared with the control. Data are presented as the mean ± SD from at least three experiments
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disordered mechanical environments, such as asthma, 
bronchiectasis, and COPD.

During development of the whole airway lumen and 
lung, the airway continuously undergoes the dynamic 
mechanical forces of the lung. Airway epithelial cells 
have mechanically sensitive cell membrane channels 
capable of responding to changes in the mechanical 
environment and regulating airway behavior and struc-
ture [10, 26, 27]. Although growing evidence indicates 
that mechanical stress could affect airway epithelial cell 
function and phenotype, the biomechanical environment 
of ABSCs remains elusive. Using the Flexcell Tension 
System, Tschumperlin et al. discovered that mechanical 
strain with 17–22% elongation corresponded approxi-
mately to strains 37–50% of total lung capacity, which 

would damage cells [24]. On this basis, previous studies 
have referred to the mechanical parameters mentioned 
above to simulate the pathological mechanical environ-
ments in airways [16–18]. Therefore, we also used the 
Flexcell FX-5000 Tension System to establish a model of 
ABSCs mechanical injury with 20% elongation [24]. We 
found that prolonging the mechanical stretch of ABSCs 
activated apoptosis, hindered their proliferation, and 
impeded ciliogenesis. Apoptosis of ABSCs and caspase-3 
activity were enhanced in time-dependent manners, 
especially following stretching for 48 h. Similar findings 
have been observed for other cell types. Juan et al. noticed 
that with prolonged states of mechanical stretch, even 
with 5% elongation, apoptosis was induced in fibroblasts 
[28]. Wu et al. also observed that mechanical stretch with 

Fig. 7 The heatmap for the potential genes related to the function of ABSCs during the mechanical stretch. Red and blue indicate up- and downregula-
tion, respectively
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20% elongation could cause apoptosis of alveolar epithe-
lial cells, and the severity of apoptosis increased over time 
[29]. The apoptosis of airway epithelial cells was observed 
in fetal sheep after prolonged mechanical ventilation [30]. 
Moreover, in our transcriptome profiling, we noticed that 
DDIAS and BIRC5 may involve the process of mechani-
cal stretch-induced apoptosis in ABSCs. Previous studies 
have confirmed that high expression of DDIAS which has 
an anti-apoptotic function promotes cell survival [31, 32]. 
Besides, Brunette et al. found that DDIAS deficiency dis-
turbed the process of homologous recombination, even 
breaking the DNA double-strand [33]. Similarly, our GO 
analysis revealed that mechanical stretch interfered with 
DNA packing, formation, or replication. Therefore, we 
proposed that mechanical stretch may induce the apop-
tosis of ABSCs through damaging DNA. An additional 
pro-apoptosis mechanism for ABSCs might be decreased 
expression of BIRC5, which was found decreased obvi-
ously in our RNA-seq.  BIRC5 encodes for the protein 
survivin, blocking the final steps of the apoptotic path-
way and inhibiting executioner caspases [34]. It has been 
proven that up-regulation of BIRC5 could impede the cell 
apoptosis-induced by cyclic stretch [35]. Maybe mechan-
ical stretch induced the apoptosis of ABSCs by regulating 
the expression of DDIAS and BIRC5 which needs further 
exploration.

The disruption of airway epithelium homeostasis may 
lead to various pathological manifestations. Prolifera-
tion and differentiation are the most important functions 
of ABSCs (the vital progenitors of the airway) to main-
tain the dynamic balance of airway epithelium and repair 
after injury. Deptula et al. have found that mechani-
cal ventilation for 15  min could cause airway epithelial 
injury which was repaired by activating ABSCs in the 
fetal, preterm lambs [36]. However, little is known about 
how mechanical force regulates ABSCs function. We first 
found that mechanical stretch for over 48  h hindered 
ABSCs proliferation and differentiation into ciliated cells. 
Many investigations have revealed that mechanical force 
had a strong influence on controlling the fate of airway 
epithelial cells [37, 38]. Saval et al. observed that mechan-
ical force significantly slowed wound repair in human 
and cat airway epithelial cells [39]. Moreover, prolonged 
mechanical ventilation aggravated airway dysfunction 
in premature infants whose lungs were very immature 
[40]. Differing from the above studies, we used healthy 
primary human ABSCs for mechanical stimulation. 
Even in healthy ABSCs, overstretching impaired self-
renewal. Our GO and KEGG analyses indicated enrich-
ment of genes and pathways concentrated in regulation 
of cell cycle and cell division, further supporting our in 
vitro results. We also determined that TGFBI might be 
a signaling molecule and play a role in the proliferation 
of ABSCs during mechanical stretch. TGFBI protein is 

induced by TGF-β. Evidence showed that TGF-β plays 
an crucial role in controlling the fate of ABSCs. Inhibi-
tion of TGFβ/BMP/SMAD pathway signaling promoted 
ABSCs hyperplasia [41]. Kiyokawa et al. determined that 
TGF-β signaling could slow the cell cycle by suppress-
ing Id2 in ABSCs [42]. Interestingly, elevated mechanical 
tension activated the TGF-β signaling pathway in alveo-
lar stem cells, leading to pulmonary alveolar regenera-
tion dysfunction [43]. Perhaps TGFBI was the potential 
gene involving ABSCs’ proliferation, more experiments 
are needed to verify this in the future. Collectively, these 
results suggest that long-term mechanical stretch proba-
bly slowed the proliferation of ABSCs by preventing their 
transition from G0/G1 to S phase.

The strength of mechanical force in regulating alveolar 
epithelial cell differentiation was demonstrated by Jiao Li 
et al. [11], who reported that during lung development, 
low-strength mechanical stimuli impeded differentia-
tion of alveolar epithelial type I cells, while high-strength 
mechanical stimuli promoted differentiation of alveo-
lar epithelial type I cells into alveolar epithelial type II 
cells. However, in the context of pulmonary fibrosis, 
persistent elevated mechanical force caused by alveolar 
regeneration dysfunction drove the progression of pul-
monary fibrosis [12]. Runguang Li et al. demonstrated 
that mechanical stretch also inhibited mesenchymal 
stem cell differentiation into adipocytes [44]. Similarly, 
we observed that overstretched ABSCs were hard to dif-
ferentiate into cilia cells. Airway cilia have the capacity 
to clear mucus and excrete inhaled contaminants. Dys-
functional or deficient cilia result in mucus plugs and 
severe lung diseases [45, 46]. Sanderson et al. confirmed 
that mechanical stimulation could affect ciliary beating 
activity, which was achieved by using a glass microprobe 
to stimulate the cell surface [47]. Therefore, disruption 
of ciliogenesis caused by overstretching might explain 
why mucus secretion increases in a sustained manner 
in patients with CAD, including individuals with COPD, 
asthma, and bronchiectasis. In addition, we noticed 
that the expression of NKX2-1 was upregulated after 
stretching,which may be closely related to ABSCs differ-
entiation. NKX2-1 plays an essential role in normal air-
way system development. Disruption involving NKX2-1 
interrupted epithelial cell differentiation and morpho-
genesis, even causing the failure of lung development [48, 
49]. We presumed that NKX2-1 plays a potential role in 
the differentiation of ABSCs. However, the mechanism 
by which mechanical force affects ABSCs function needs 
further exploration.

In CAD, pathological mechanical stretching increased 
the expression of inflammatory mediators, including 
IL-8, IL-13, and MMP-9, and induced epithelial-mes-
enchymal transition in airway epithelial cells that exac-
erbated airway remodeling [15, 17, 18]. Based on our 
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results verifying the sequencing data, we found that 
collagen type 1 (COL1A1) and fibronectin 1 (FN1), the 
main components of extracellular matrix, were highly 
expressed in the stretched group. We considered that 
mechanical stretch damage to ABSCs may contribute to 
extracellular matrix remodeling – the main pathologi-
cal characteristic of CAD. Several studies determined 
that pathological mechanical stretch increased expres-
sion levels of collagen and fibronectin, thereby affecting 
airway remodeling [21, 50]. The same phenomenon was 
observed in a model of lipopolysaccharide-induced cell 
injury [51]. Our research also found the upregulation of 
several inflammatory genes (CCL22, IL32, and MMP2) 
in stretch groups, this suggested that mechanical stretch 
is probably involved in an inflammatory response of the 
airway. However, variations in cell type and mechanical 
loading parameters (such as extension, amplitude, fre-
quency, and duration) may cause these stretch-induced 
inflammatory genes to deviate from previous studies [15, 
17, 18]. Therefore, further validation of these results is 
required. Our results provide indirect evidence for the 
mechanism underlying abnormal repair of airway epithe-
lium in individuals with CAD.

There are two primary limitations of our study. Once 
is that we did not observe the biomechanical effect of 
how pathological ABSCs respond to mechanical stretch, 
which possibly resembles the pathological status of 
patients with CAD. Another is that we did not study the 
impact of different mechanical loading parameters on 
ABSCs, which may provide optimal mechanical stimu-
lation conditions for ABSCs growth and regeneration. 
Taken together, mechanical stretch damaged the function 
of healthy ABSCs and likely aggravated dysfunctional 
regeneration after airway injury.

Conclusions
our results provide the first evidence that prolonged 
mechanical stretching time induces primary human 
ABSCs apoptosis, impedes ABSCs proliferation, and 
disrupts ciliary cell differentiation. RNA-Seq analysis 
supports our results and revealed that DDIAS, BIRC5, 
TGFBI, and NKX2-1 may be closely related to the func-
tion of primary human ABSCs during mechanical 
stretch. Altogether, our findings suggest that mechani-
cal stretching participates in abnormal regeneration and 
repair processes of airway epithelium in chronic airway 
diseases by disturbing ABSCs function.
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